1
|
Anderson RP, Mughal S, Wedlake GO. Proterozoic microfossils continue to provide new insights into the rise of complex eukaryotic life. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240154. [PMID: 39170929 PMCID: PMC11336685 DOI: 10.1098/rsos.240154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Eukaryotes have evolved to dominate the biosphere today, accounting for most documented living species and the vast majority of the Earth's biomass. Consequently, understanding how these biologically complex organisms initially diversified in the Proterozoic Eon over 539 million years ago is a foundational question in evolutionary biology. Over the last 70 years, palaeontologists have sought to document the rise of eukaryotes with fossil evidence. However, the delicate and microscopic nature of their sub-cellular features affords early eukaryotes diminished preservation potential. Chemical biomarker signatures of eukaryotes and the genetics of living eukaryotes have emerged as complementary tools for reconstructing eukaryote ancestry. In this review, we argue that exceptionally preserved Proterozoic microfossils are critical to interpreting these complementary tools, providing crucial calibrations to molecular clocks and testing hypotheses of palaeoecology. We highlight recent research on their preservation and biomolecular composition that offers new ways to enhance their utility.
Collapse
Affiliation(s)
- Ross P. Anderson
- Museum of Natural History, University of Oxford, OxfordOX1 3PW, UK
- All Souls College, University of Oxford, OxfordOX1 4AL, UK
| | - Sanaa Mughal
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AlbertaT6G 2E3, Canada
| | - George O. Wedlake
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| |
Collapse
|
2
|
Slagter S, Konhauser KO, Briggs DEG, Tarhan LG. Controls on authigenic mineralization in experimental Ediacara-style preservation. GEOBIOLOGY 2024; 22:e12615. [PMID: 39149974 DOI: 10.1111/gbi.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The earliest evidence of complex macroscopic life on Earth is preserved in Ediacaran-aged siliciclastic deposits as three-dimensional casts and molds, known as Ediacara-style preservation. The mechanisms that led to this extraordinary preservation of soft-bodied organisms in fine- to medium-grained sandstones have been extensively debated. Ediacara-style fossilization is recorded in a variety of sedimentary facies characterized by clean quartzose sandstones (as in the eponymous Ediacara Member) as well as less compositionally mature, clay-rich sandstones and heterolithic siliciclastic deposits. To investigate this preservational process, we conducted experiments using different mineral substrates (quartzose sand, kaolinite, and iron oxides), a variety of soft-bodied organisms (microalgae, cyanobacteria, marine invertebrates), and a range of estimates for Ediacaran seawater dissolved silica (DSi) levels (0.5-2.0 mM). These experiments collectively yielded extensive amorphous silica and authigenic clay coatings on the surfaces of organisms and in intergranular pore spaces surrounding organic substrates. This was accompanied by a progressive drawdown of the DSi concentration of the experimental solutions. These results provide evidence that soft tissues can be rapidly preserved by silicate minerals precipitated under variable substrate compositions and a wide range of predicted scenarios for Ediacaran seawater DSi concentrations. These observations suggest plausible mechanisms explaining how interactions between sediments, organic substrates, and seawater DSi played a significant role in the fossilization of the first complex ecosystems on Earth.
Collapse
Affiliation(s)
- Silvina Slagter
- Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Kurt O Konhauser
- Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Derek E G Briggs
- Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - Lidya G Tarhan
- Department of Earth & Planetary Sciences, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Woltz CR, Anderson RP, Tosca NJ, Porter SM. The role of clay minerals in the preservation of Precambrian organic-walled microfossils. GEOBIOLOGY 2023; 21:708-724. [PMID: 37724627 DOI: 10.1111/gbi.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/20/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
Precambrian organic-walled microfossils (OWMs) are primarily preserved in mudstones and shales that are low in total organic carbon (TOC). Recent work suggests that high TOC may hinder OWM preservation, perhaps because it interferes with chemical interactions involving certain clay minerals that inhibit the decay of microorganisms. To test if clay mineralogy controls OWM preservation, and if TOC moderates the effect of clay minerals, we compared OWM preservational quality (measured by pitting on fossil surfaces and the deterioration of wall margins) to TOC, total clay, and specific clay mineral concentrations in 78 shale samples from 11 lithologic units ranging in age from ca. 1650 to 650 million years ago. We found that the probability of finding well-preserved microfossils positively correlates with total clay concentrations and confirmed that it negatively correlates with TOC concentrations. However, we found no evidence that TOC influences the effect of clay mineral concentrations on OWM preservation, supporting an independent role of both factors on preservation. Within the total clay fraction, well-preserved microfossils are more likely to occur in shales with high illite concentrations and low berthierine/chamosite concentrations; however, the magnitude of their effect on preservation is small. Therefore, there is little evidence that bulk clay chemistry is important in OWM preservation. Instead, we propose that OWM preservation is largely regulated by physical properties that isolate organic remains from microbial degradation such as food scarcity (low TOC) and low sediment permeability (high total clay content): low TOC increases the diffusive distances between potential carbon sources and heterotrophic microbes (or their degradative enzymes), while high clay concentrations reduce sediment pore space, thereby limiting the diffusion of oxidants and degradative enzymes to the sites of decay.
Collapse
Affiliation(s)
- C R Woltz
- Department of Earth Science, University of California, Santa Barbara, California, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, USA
| | - R P Anderson
- All Souls College, University of Oxford, Oxford, UK
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - S M Porter
- Department of Earth Science, University of California, Santa Barbara, California, USA
| |
Collapse
|
4
|
Tingle KE, Porter SM, Raven MR, Czaja AD, Webb SM, Bloeser B. Organic preservation of vase-shaped microfossils from the late Tonian Chuar Group, Grand Canyon, Arizona, USA. GEOBIOLOGY 2023; 21:290-309. [PMID: 36651474 DOI: 10.1111/gbi.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate (shell-forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X-ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light-colored, translucent appearance in transmitted light.
Collapse
Affiliation(s)
- Kelly E Tingle
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Susannah M Porter
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Morgan R Raven
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Andrew D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Bonnie Bloeser
- Department of Geological Sciences, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Nims C, Johnson JE. Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations. GEOBIOLOGY 2022; 20:743-763. [PMID: 36087062 PMCID: PMC9826415 DOI: 10.1111/gbi.12523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Marine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, Shewanella putrefaciens CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.
Collapse
Affiliation(s)
- Christine Nims
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| | - Jena E. Johnson
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Stüeken EE, Prave AR. Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals. GEOBIOLOGY 2022; 20:623-633. [PMID: 35749131 PMCID: PMC9544726 DOI: 10.1111/gbi.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen isotopes and abundances in sedimentary rocks have become an important tool for reconstructing biogeochemical cycles in ancient ecosystems. There are two archives of nitrogen in the rock record, namely kerogen-bound amines and silicate-bound ammonium, and it is well documented that the isotopic ratios of these two archives can be offset from one another. This offset has been observed to increase with metamorphic grade, suggesting that it may be related to the bonding environment in differing nitrogen host phases and associated equilibrium isotope fractionation. However, theoretical bounds for this effect have not been established, and it remains possible that some isotopic offsets predate metamorphism. In support of this hypothesis, we report an unexpectedly large isotopic offset of 4-5‰ in siltstones of very low metamorphic grade from the late Mesoproterozoic Diabaig Formation in NW Scotland (1.0 Ga). Carbon to nitrogen ratios of bulk rocks are 2-3 times lower than in other Mesoproterozoic sections. The rocks also contain early-formed phosphate concretions and display wrinkled surfaces on bedding planes, indicative of fossilised microbial mats. Collectively, these data are most parsimoniously interpreted as evidence of diagenetic ammonium release from microbial mats into porewaters, followed by partial oxidation to nitrite or nitrate at the sediment-water interface. This process would render residual ammonium in clays isotopically heavy, while the resulting nitrite or nitrate would be relatively lighter and captured in new biomass, leading to the observed isotopic divergence. The same diagenetic degradation pathway likely also liberated phosphate that was trapped within concretions. Diagenetic release of nutrients is known to occur in modern settings, and our data suggest that nitrogen isotopes may be a way to track this local sedimentary nutrient source in past environments. Lastly, we speculate that diagenetic nutrient recycling within Proterozoic microbial mats may have created a favourable niche for eukaryotic organisms in shallow waters.
Collapse
Affiliation(s)
- Eva E. Stüeken
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| | - Anthony R. Prave
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
7
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Lukeneder P, Lukeneder A. Mineralized belemnoid cephalic cartilage from the late Triassic Polzberg Konservat-Lagerstätte (Austria). PLoS One 2022; 17:e0264595. [PMID: 35442996 PMCID: PMC9020720 DOI: 10.1371/journal.pone.0264595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Although hyaline cartilage is widely distributed in various invertebrate groups such as sabellid polychaetes, molluscs (cephalopods, gastropods) and a chelicerate arthropod group (horseshoe crabs), the enigmatic relationship and distribution of cartilage in taxonomic groups remains to be explained. It can be interpreted as a convergent trait in animal evolution and thus does not seem to be a vertebrate invention. Due to the poor fossil record of cartilaginous structures, occurrences of mineralized fossil cartilages are important for evolutionary biology and paleontology. Although the biochemical composition of recent cephalopod cartilage differs from vertebrate cartilage, histologically the cartilages of these animal groups resemble one another remarkably. In this study we present fossil material from the late Triassic Polzberg Konservat-Lagerstätte near Lunz am See (Lower Austria, Northern Calcareous Alps). A rich Carnian fauna is preserved here, whereby a morphogroup (often associated with belemnoid remains) of black, amorphous appearing fossils still remained undetermined. These multi-elemental, symmetrical fossils show remarkable similarities to recent cartilage. We examined the conspicuous micro- and ultrastructure of these enigmatic fossils by thin-sectioning and Scanning Electron Microscopy (SEM). The geochemical composition analyzed by Microprobe and Energy Dispersive X-ray Spectroscopy (SEM-EDX) revealed carbonization as the taphonomic pathway for this fossil group. Mineralization of soft tissues permits the 3D preservation of otherwise degraded soft tissues such as cartilage. We examined eighty-one specimens from the Polzberg locality and seven specimens from Cave del Predil (formerly Raibl, Julian Alps, Italy). The study included morphological examinations of these multi-elemental fossils and a focus on noticeable structures like grooves and ridges. The detected grooves are interpreted to be muscular attachment areas, and the preserved branched system of canaliculi is comparable to a channel system that is also present in recent coleoid cartilage. The new findings on these long-known enigmatic structures strongly point to the preservation of cephalic cartilage belonging to the belemnoid Phragmoteuthis bisinuata and its homologization to the cephalic cartilage of modern coleoids.
Collapse
Affiliation(s)
- Petra Lukeneder
- University of Vienna, Doctoral School of Ecology and Evolution, Vienna, Austria
| | | |
Collapse
|
9
|
Manning-Berg A, Selly T, Bartley JK. Actualistic approaches to interpreting the role of biological decomposition in microbial preservation. GEOBIOLOGY 2022; 20:216-232. [PMID: 34632704 DOI: 10.1111/gbi.12475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Taphonomic processes, especially post-mortem biological decomposition, act as crucial controls on the microbial fossil record. Information loss during the fossilization process obscures interpretation of ancient microbial ecology and limits our view of preserved ecosystems. Conversely, taphonomic information can itself provide insight into fossilization pathways and processes. This information-gain approach requires specific attention to taphonomic patterns in ancient assemblages and robust modern analogue data to serve as points of reference. In this study, we combine experimental taphonomy with decomposition models in order to constrain taphonomic hypotheses regarding Proterozoic microfossil assemblages. Several filamentous and coccoidal prokaryotic and eukaryotic phototrophs were evaluated for taphonomic pattern over the course of a short (~100 days) decomposition experiment. In parallel, simple numerical models were constructed to explain potential taphonomic pathways. These analogue data were then compared to two Mesoproterozoic fossil assemblages, the ~1.5 Ga Kotuikan Formation, Siberia, and the ~1 Ga Angmaat Formation, Canada. Concordant with previous experiments and observations, our results suggest that sheath morphology is more persistent than cell/trichome morphology during early stages of decomposition. These experiments also suggest that taphonomic change in cell morphology may follow one of several trajectories, resulting in distinct taphonomic endpoints. Model output suggests two categories of underlying mechanism and resultant taphonomic trajectory: (1) uniform decomposition, resulting in a low overall taphonomic grade and poor preservation, and (2) faster decomposition of structurally compromised individuals, producing a final population with better overall preservation of very few individuals. In this experiment, cells of coccoidal organisms exhibit the first pattern and trichomes of filamentous organisms and some sheaths exhibit the second. Comparison with preserved microfossil assemblages suggests that differences in taphonomic pattern between parts of an assemblage could be useful in assessing taphonomic processes or degree of taphonomic loss in an entire assemblage.
Collapse
Affiliation(s)
- Ashley Manning-Berg
- Department of Biology, Geology & Environmental Science, University of Tennessee Chattanooga, Chattanooga, Tennessee, USA
| | - Tara Selly
- X-ray Microanalysis Core Facility, University of Missouri, Columbia, Missouri, USA
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Julie K Bartley
- Department of Geology, Gustavus Adolphus College, St. Peter, Minnesota, USA
| |
Collapse
|
10
|
Strother PK, Brasier MD, Wacey D, Timpe L, Saunders M, Wellman CH. A possible billion-year-old holozoan with differentiated multicellularity. Curr Biol 2021; 31:2658-2665.e2. [PMID: 33852871 DOI: 10.1016/j.cub.2021.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023]
Abstract
Sediments of the Torridonian sequence of the Northwest Scottish Highlands contain a wide array of microfossils, documenting life in a non-marine setting a billion years ago (1 Ga).1-4 Phosphate nodules from the Diabaig Formation at Loch Torridon preserve microorganisms with cellular-level fidelity,5,6 allowing for partial reconstruction of the developmental stages of a new organism, Bicellum brasieri gen. et sp. nov. The mature form of Bicellum consists of a solid, spherical ball of tightly packed cells (a stereoblast) of isodiametric cells enclosed in a monolayer of elongated, sausage-shaped cells. However, two populations of naked stereoblasts show mixed cell shapes, which we infer to indicate incipient development of elongated cells that were migrating to the periphery of the cell mass. These simple morphogenetic movements could be explained by differential cell-cell adhesion.7,8 In fact, the basic morphology of Bicellum is topologically similar to that of experimentally produced cell masses that were shown to spontaneously segregate into two distinct domains based on differential cadherin-based cell adhesion.9 The lack of rigid cell walls in the stereoblast renders an algal affinity for Bicellum unlikely: its overall morphology is more consistent with a holozoan origin. Unicellular holozoans are known today to form multicellular stages within complex life cycles,10-13 so the occurrence of such simple levels of transient multicellularity seen here is consistent with a holozoan affinity. Regardless of precise phylogenetic placement, these fossils demonstrate simple cell differentiation and morphogenic processes that are similar to those seen in some metazoans today.
Collapse
Affiliation(s)
- Paul K Strother
- Department of Earth & Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, MA 02493, USA.
| | - Martin D Brasier
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David Wacey
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Leslie Timpe
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles H Wellman
- Department of Animal & Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Bischoff K, Sirantoine E, Wilson MEJ, George AD, Mendes Monteiro J, Saunders M. Spherulitic microbialites from modern hypersaline lakes, Rottnest Island, Western Australia. GEOBIOLOGY 2020; 18:725-741. [PMID: 32463178 DOI: 10.1111/gbi.12400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/08/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Fibrous-radiating carbonate spherulites spatially associated with poorly crystalline Mg-Si substances have formed within conical microbialites in modern hypersaline lakes on Rottnest Island, Western Australia. Two spherulitic fabrics can be distinguished based on compositional and textural differences. The oldest (lowermost) fabric comprises variably intergrown aragonitic spherulites 100-500 μm wide, containing micritic nuclei with coccoid cell molds in various stages of cell division. Spherulite matrices contain aggregates of individual nanospheres 150-200 nm wide, composed of a poorly crystalline Mg-Si phase, locally containing cell molds with similar dimensions to those within spherulite nuclei. The younger (upper) fabric comprises sub-polyhedral networks of mineralized EPS composed of an Mg-Si substance. The polyhedrons contain aragonite-replaced coccoid cells, voids, and polyhedral spherulites 8-12 μm wide with a morphology determined by fossil EPS, interpreted to have been produced by coccoid cyanobacteria. These spherulites are composed of high-Mg calcite, inferred to have formed in association with heterotrophic bacteria. Stable isotope data, textural relationships, and geochemical modeling are consistent with cyanobacterial oxygenic photosynthesis influencing the precipitation of Mg-Si substances and aragonitic spherulites by locally increasing the pH. The morphology of the polyhedral spherulites suggests the former presence of EPS and that faceted spherulites with similar dimensions in the geological record may represent biosignatures. The Rottnest Island conical microbialites demonstrate an intimate association between microbial features and processes and spherulitic fabrics, potentially providing insights into texturally and compositionally similar features in the geological record.
Collapse
Affiliation(s)
- Karl Bischoff
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Eva Sirantoine
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Moyra E J Wilson
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Annette D George
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - Juliana Mendes Monteiro
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Martin Saunders
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
12
|
Anderson RP, Tosca NJ, Cinque G, Frogley MD, Lekkas I, Akey A, Hughes GM, Bergmann KD, Knoll AH, Briggs DEG. Aluminosilicate haloes preserve complex life approximately 800 million years ago. Interface Focus 2020; 10:20200011. [PMID: 32642055 PMCID: PMC7333908 DOI: 10.1098/rsfs.2020.0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Mudstone-hosted microfossils are a major component of the Proterozoic fossil record, particularly dominating the record of early eukaryotic life. Early organisms possessed no biomineralized parts to resist decay and controls on their fossilization in mudstones are poorly understood. Consequently, the Proterozoic fossil record is compromised-we do not know whether changing temporal/spatial patterns of microfossil occurrences reflect evolution or the distribution of favourable fossilization conditions. We investigated fossilization within the approximately 1000 Ma Lakhanda Group (Russia) and the approximately 800 Ma Svanbergfjellet and Wynniatt formations (Svalbard and Arctic Canada). Vertical sections of microfossils and surrounding matrices were extracted from thin sections by focused ion beam milling. Elemental mapping and synchrotron-based infrared microspectroscopy revealed that microfossils are surrounded by haloes rich in aluminium, probably hosted in kaolinite. Kaolinite has been implicated in Cambrian Burgess Shale-type (BST) fossilization and is known to slow the growth of degraders. The Neoproterozoic mudstone microfossil record may be biased to tropical settings conducive to kaolinite formation. These deposits lack metazoan fossils even though they share fossilization conditions with younger BST deposits that are capable of preserving non-mineralizing metazoans. Thus metazoans, at least those typically preserved in BST deposits, were probably absent from sedimentary environments before approximately 800 Ma.
Collapse
Affiliation(s)
- Ross P. Anderson
- All Souls College, University of Oxford, Oxford OX1 4AL, UK
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, UK
| | - Mark D. Frogley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, UK
| | - Ioannis Lekkas
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, UK
| | - Austin Akey
- Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
| | - Gareth M. Hughes
- Department of Materials, University of Oxford, Oxford OX1 3PH, UK
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Derek E. G. Briggs
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Rodriguez JAP, Dobrea EN, Kargel JS, Baker VR, Crown DA, Webster KD, Berman DC, Wilhelm MB, Buckner D. The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits. Sci Rep 2020; 10:10347. [PMID: 32587301 PMCID: PMC7316829 DOI: 10.1038/s41598-020-64676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
The oldest terrains of Mars are cratered landscapes, in which extensive valleys and basins are covered by ubiquitous fluvial plains. One current paradigm maintains that an impact-generated megaregolith underlies these sediments. This megaregolith was likely largely generated during the Early Noachian (~4.1 to ~3.94 Ga) when most Martian impact basins formed. We examined the geologic records of NW Hellas and NW Isidis, which include this epoch’s most extensive circum-basin outcrops. Here, we show that these regions include widespread, wind-eroded landscapes, crater rims eroded down by several hundred meters, pitted plains, and inverted fluvial and crater landforms. These surfaces exhibit few fresh craters, indicating geologically recent wind erosion. The deep erosion, topographic inversions, and an absence of dunes on or near talus across these regions suggest that sediments finer than sand compose most of these highland materials. We propose that basin-impact-generated hurricane-force winds created sediment-laden atmospheric conditions, and that muddy rains rapidly settled suspended sediments to construct extensive Early Noachian highlands. The implied high abundance of fine-grained sediments before these impacts suggests large-scale glacial silt production and supports the previously proposed Noachian “icy highlands” hypothesis. We suggest that subglacial meltwater interactions with the sedimentary highlands could have promoted habitability, particularly in clay strata.
Collapse
Affiliation(s)
- J Alexis P Rodriguez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA.
| | - Eldar Noe Dobrea
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Jeffrey S Kargel
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - V R Baker
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - David A Crown
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Kevin D Webster
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - Daniel C Berman
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | | | - Denise Buckner
- University of North Dakota, Department of Space Studies, Grand Forks, ND, 58202, USA.,Blue Marble Space Institute of Science, 1001 4th Ave, Suite 3201, Seattle, WA, 98154, USA
| |
Collapse
|
14
|
Minimal biomass deposition in banded iron formations inferred from organic matter and clay relationships. Nat Commun 2019; 10:5022. [PMID: 31685820 PMCID: PMC6828686 DOI: 10.1038/s41467-019-12975-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
The cycling of iron and organic matter (OM) is thought to have been a major biogeochemical cycle in the early ferruginous oceans which contributed to the deposition of banded iron formations (BIF). However, BIF are deficient in OM, which is postulated to be the result of near-complete oxidation of OM during iron reduction. We test this idea by documenting the prevalence of OM in clays within BIF and clays in shales associated with BIF. We find in shales >80% of OM occurs in clays, but <1% occurs in clays within BIF. Instead, in BIF OM occurs with 13C-depleted carbonate and apatite, implying OM oxidation occurred. Conversely, BIF which possess primary clays would be expected to preserve OM in clays, yet this is not seen. This implies OM deposition in silicate-bearing BIF would have been minimal, this consequently stifled iron-cycling and primary productivity through the retention of nutrients in the sediments. Banded iron formations could have formed in the early oceans due to microbial metabolism. Here Dodd and colleagues find little organic carbon in these formations, indicating microbial iron cycling was minimal and could have limited the recycling of important nutrients to overlying waters.
Collapse
|
15
|
Pan Y, Hu L, Zhao T. Applications of chemical imaging techniques in paleontology. Natl Sci Rev 2019; 6:1040-1053. [PMID: 34691967 PMCID: PMC8291642 DOI: 10.1093/nsr/nwy107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023] Open
Abstract
Chemical imaging techniques, based on a combination of microscopy and spectroscopy, are designed to analyse the composition and spatial distribution of heterogeneous chemical complexes within a sample. Over the last few decades, it has become an increasingly popular tool for characterizing trace elements, isotopic information and organic biomarkers (molecular biosignatures) found in fossils. Here, we introduce the analytical principle of each technique and the interpretation of the chemical signals, followed by a review of the main applications of these techniques in paleontology. We also demonstrate that each technique is associated with pros and cons, and the current limitations and obstacles associated with the use of each specific technique should be taken into account before being applied to fossil samples. Finally, we propose that, due to the rapid advances in the available technology and overall trends towards more multi-disciplinary studies in paleontology, chemical imaging techniques can be expected to have broader applications in paleontology in the near future.
Collapse
Affiliation(s)
- Yanhong Pan
- CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liang Hu
- CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
16
|
Wacey D, Sirantoine E, Saunders M, Strother P. 1 billion-year-old cell contents preserved in monazite and xenotime. Sci Rep 2019; 9:9068. [PMID: 31227773 PMCID: PMC6588638 DOI: 10.1038/s41598-019-45575-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
Exceptional microfossil preservation, whereby sub-cellular details of an organism are conserved, remains extremely rare in the Precambrian rock record. We here report the first occurrence of exceptional cellular preservation by the rare earth element (REE) phosphates monazite and xenotime. This occurs in ~1 billion-year-old lake sediments where REEs were likely concentrated by local erosion and drainage into a closed lacustrine basin. Monazite and xenotime preferentially occur inside planktonic cells where they preserve spheroidal masses of plasmolyzed cell contents, and occasionally also membranous fragments. They have not been observed associated with cell walls or sheaths, which are instead preserved by clay minerals or francolite. REE phosphates are interpreted to be the earliest minerals precipitated in these cells after death, with their loci controlled by the micro-scale availability of inorganic phosphate (Pi) and REEs, probably sourced from polyphosphate granules within the cells. The strong affinity of REEs for phosphate and the insolubility of these minerals once formed means that REE phosphates have the potential for rapid preservation of cellular morphology after death and durability in the rock record. Hence, authigenic REE phosphates provide a promising new target in the search for the preservation of intra-cellular components of fossilised microorganisms.
Collapse
Affiliation(s)
- David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Eva Sirantoine
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Paul Strother
- Department of Earth and Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, MA, 02493, USA
| |
Collapse
|
17
|
Aubineau J, El Albani A, Bekker A, Somogyi A, Bankole OM, Macchiarelli R, Meunier A, Riboulleau A, Reynaud JY, Konhauser KO. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth. Nat Commun 2019; 10:2670. [PMID: 31209248 PMCID: PMC6572813 DOI: 10.1038/s41467-019-10620-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Illitisation requires potassium incorporation into a smectite precursor, a process akin to reverse weathering. However, it remains unclear whether microbes facilitate K+ uptake to the sediments and whether illitisation was important in the geological past. The 2.1 billion-year-old Francevillian Series of Gabon has been shown to host mat-related structures (MRS) and, in this regard, these rocks offer a unique opportunity to test whether ancient microbes induced illitisation. Here, we show high K content confined to illite particles that are abundant in the facies bearing MRS, but not in the host sandstone and black shale. This observation suggests that microbial biofilms trapped K+ from the seawater and released it into the pore-waters during respiration, resulting in illitisation. The K-rich illite developed exclusively in the fossilized MRS thus provides a new biosignature for metasediments derived from K-feldspar-depleted rocks that were abundant crustal components on ancient Earth.
Collapse
Affiliation(s)
- Jérémie Aubineau
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | | | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA
| | - Andrea Somogyi
- Nanoscopium Beamline Synchrotron Soleil, BP 48, Saint-Aubin, Gif-sur-Yvette, 91192, France
| | - Olabode M Bankole
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | - Roberto Macchiarelli
- Department of Geosciences, University of Poitiers, Poitiers, 86073, France
- Department of Prehistory, UMR 7194 CNRS, National Museum of Natural History, Paris, 75005, France
| | - Alain Meunier
- UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, 86073, France
| | - Armelle Riboulleau
- UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, 59655, France
| | - Jean-Yves Reynaud
- UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, 59655, France
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
18
|
Graham LE. Digging deeper: why we need more Proterozoic algal fossils and how to get them. JOURNAL OF PHYCOLOGY 2019; 55:1-6. [PMID: 30270424 DOI: 10.1111/jpy.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Known Proterozoic algal fossils raise compelling questions about the origin and diversification of cyanobacteria and eukaryotic algae, and their ecological influence in deep time. This Perspectives article describes particular examples of persistent evolutionary and biogeochemical issues whose resolution would be aided by additional algal fossil evidence from Proterozoic deposits, which have been the subjects of recent intensive study. New Proterozoic geosciences literature relevant to the early diversification of algae is surveyed. Previously underappreciated algal traits that might improve taxonomic attributions of fossil remains are highlighted. Processes that phycologists could use to improve detection of algal fossils are recommended. Potential geological sources of new Proterozoic fossils are suggested.
Collapse
Affiliation(s)
- Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Wiesendanger R, Wacey D, Tulej M, Neubeck A, Ivarsson M, Grimaudo V, Moreno-García P, Cedeño-López A, Riedo A, Wurz P. Chemical and Optical Identification of Micrometer-Sized 1.9 Billion-Year-Old Fossils by Combining a Miniature Laser Ablation Ionization Mass Spectrometry System with an Optical Microscope. ASTROBIOLOGY 2018; 18:1071-1080. [PMID: 30095994 DOI: 10.1089/ast.2017.1780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The recognition of biosignatures on planetary bodies requires the analysis of the putative microfossil with a set of complementary analytical techniques. This includes localized elemental and isotopic analysis of both, the putative microfossil and its surrounding host matrix. If the analysis can be performed with spatial resolution at the micrometer level and ppm detection sensitivities, valuable information on the (bio)chemical and physical processes that influenced the sample material can be gained. Our miniaturized laser ablation ionization mass spectrometry (LIMS)-time-of-flight mass spectrometer instrument is a valid candidate for performing the required chemical analysis in situ. However, up until now it was limited by the spatial accuracy of the sampling. In this contribution, we introduce a newly developed microscope system with micrometer accuracy for Ultra High Vacuum application, which allows a significant increase in the measurement capabilities of our miniature LIMS system. The new enhancement allows identification and efficient and accurate sampling of features of micrometer-sized fossils in a host matrix. The performance of our system is demonstrated by the identification and chemical analysis of signatures of micrometer-sized fossil structures in the 1.9 billion-year-old Gunflint chert.
Collapse
Affiliation(s)
- Reto Wiesendanger
- 1 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
- 2 Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale, Lausanne, Neuchâtel, Switzerland
| | - David Wacey
- 3 Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Marek Tulej
- 1 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| | - Anna Neubeck
- 4 Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Magnus Ivarsson
- 5 Department of Paleobiology, Nordic Centre for Earth Evolution, Swedish Museum of Natural History, Stockholm, Sweden
- 6 Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Valentine Grimaudo
- 7 Department of Chemistry and Biochemistry, Interfacial Electrochemistry Group, University of Bern , Bern, Switzerland
| | - Pavel Moreno-García
- 7 Department of Chemistry and Biochemistry, Interfacial Electrochemistry Group, University of Bern , Bern, Switzerland
| | - Alena Cedeño-López
- 7 Department of Chemistry and Biochemistry, Interfacial Electrochemistry Group, University of Bern , Bern, Switzerland
| | - Andreas Riedo
- 8 Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University , The Netherlands
| | - Peter Wurz
- 1 Space Research and Planetary Sciences, Physics Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Igisu M, Yokoyama T, Ueno Y, Nakashima S, Shimojima M, Ohta H, Maruyama S. Changes of aliphatic C-H bonds in cyanobacteria during experimental thermal maturation in the presence or absence of silica as evaluated by FTIR microspectroscopy. GEOBIOLOGY 2018; 16:412-428. [PMID: 29869829 DOI: 10.1111/gbi.12294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Aliphatic C-H bonds are one of the major organic signatures detected in Proterozoic organic microfossils, and their origin is a topic of interest. To investigate the influence of the presence of silica on the thermal alteration of aliphatic C-H bonds in prokaryotic cells during diagenesis, cyanobacteria Synechocystis sp. PCC6803 were heated at temperatures of 250-450°C. Changes in the infrared (IR) signals were monitored by micro-Fourier transform infrared (FTIR) spectroscopy. Micro-FTIR shows that absorbances at 2,925 cm-1 band (aliphatic CH2 ) and 2,960 cm-1 band (aliphatic CH3 ) decrease during heating, indicating loss of the C-H bonds, which was delayed by the presence of silica. A theoretical approach using solid-state kinetics indicates that the most probable process for the aliphatic C-H decrease is three-dimensional diffusion of alteration products under both non-embedded and silica-embedded conditions. The extrapolation of the experimental results obtained at 250-450°C to lower temperatures implies that the rate constant for CH3 (kCH3 ) is similar to or lower than that for CH2 (kCH2 ; i.e., CH3 decreases at a similar rate or more slowly than CH2 ). The peak height ratio of 2,960 cm-1 band (CH3 )/2,925 cm-1 band (CH2 ; R3/2 values) either increased or remained constant during the heating. These results reveal that the presence of silica does affect the decreasing rate of the aliphatic C-H bonds in cyanobacteria during thermal maturation, but that it does not significantly decrease the R3/2 values. Meanwhile, studies of microfossils suggest that the R3/2 values of Proterozoic prokaryotic fossils from the Bitter Springs Group and Gunflint Formation have decreased during fossilization, which is inconsistent with the prediction from our experimental results that R3/2 values did not decrease after silicification. Some process other than thermal degradation, possibly preservation of specific classes of biomolecules with low R3/2 values, might have occurred during fossilization.
Collapse
Affiliation(s)
- Motoko Igisu
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Tadashi Yokoyama
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuichiro Ueno
- Department of Subsurface Geobiology Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Satoru Nakashima
- Department of Earth and Space Science, Osaka University, Osaka, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Hiroyuki Ohta
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shigenori Maruyama
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
21
|
Wacey D, Noffke N, Saunders M, Guagliardo P, Pyle DM. Volcanogenic Pseudo-Fossils from the ∼3.48 Ga Dresser Formation, Pilbara, Western Australia. ASTROBIOLOGY 2018; 18:539-555. [PMID: 29461869 PMCID: PMC5963881 DOI: 10.1089/ast.2017.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/29/2017] [Indexed: 05/31/2023]
Abstract
The ∼3.48 billion-year-old Dresser Formation, Pilbara Craton, Western Australia, is a key geological unit for the study of Earth's earliest life and the habitats it occupied. Here, we describe a new suite of spheroidal to lenticular microstructures that morphologically resemble some previously reported Archean microfossils. Correlative microscopy shows that these objects have a size distribution, wall ultrastructure, and chemistry that are incompatible with a microfossil origin and instead are interpreted as pyritized and silicified fragments of vesicular volcanic glass. Organic kerogenous material is associated with much of the altered volcanic glass; variable quantities of organic carbon line or fill the insides of some individual vesicles, while relatively large, tufted organic-rich laminae envelop multiple vesicles. The microstructures reported herein constitute a new type of abiogenic artifact (pseudo-fossil) that must be considered when evaluating potential signs of early life on Earth or elsewhere. In the sample studied here, where hundreds of these microstructures are present, the combined evidence permits a relatively straightforward interpretation as vesicular volcanic glass. However, reworked, isolated, and silicified microstructures of this type may prove particularly problematic in early or extraterrestrial life studies since they adsorb carbon onto their surfaces and are readily pyritized, mimicking a common preservation mechanism for bona fide microfossils. In those cases, nanoscale analysis of wall ultrastructure would be required to firmly exclude a biological origin. Key Words: Microfossils-Pseudo-fossils-Volcanic vesicles-Archean life-Pilbara Craton-Dresser Formation. Astrobiology 18, 539-555.
Collapse
Affiliation(s)
- David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Nora Noffke
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - Paul Guagliardo
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, Australia
| | - David M. Pyle
- Department of Earth Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Wacey D, Urosevic L, Saunders M, George AD. Mineralisation of filamentous cyanobacteria in Lake Thetis stromatolites, Western Australia. GEOBIOLOGY 2018; 16:203-215. [PMID: 29318763 DOI: 10.1111/gbi.12272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Stromatolites are cited as some of the earliest evidence for life on Earth, but problems remain in reconciling the paucity of microfossils in ancient carbonate examples with the abundance of microbes that help construct modern analogues. Here, we trace the mineralisation pathway of filamentous cyanobacteria within stromatolites from Lake Thetis, Western Australia, providing new insights into microfossil preservation in carbonate stromatolites. Lake Thetis cyanobacteria exhibit a spectrum of mineralisation processes that include early precipitation of Mg-silicates, largely controlled by the morphochemical features of the cyanobacteria, followed by aragonite formation that is inferred to be driven by heterotrophic activity. Fossilised cyanobacteria with high-quality morphological preservation are characterised by a significant volume of authigenic Mg-silicates, which have preferentially nucleated in/on extracellular organic material and on cell walls, and now replicate the region once occupied by the cyanobacterial sheath. In such specimens, aragonite is restricted to the outer sheath margin and parts of the cell interior. Cyanobacteria that display more significant degradation appear to possess a higher ratio of aragonite to Mg-silicate. In these specimens, aragonite forms micronodules in the sheath zone and is spatially associated with the inferred remains of heterotrophic bacteria. Aragonite also occurs as an advancing front from the outer margin of the sheath where it is commonly intergrown with Mg-silicates. Where there is no evidence of Mg-silicates within filaments, the fidelity of microfossil preservation is poor. In these cases, individual filaments may no longer be visible under light microscopy, and little organic material remains, but filament traces remain detectable using electron microscopy due to variations in aragonite texture. These data provide further evidence that authigenic silicate minerals play a crucial role in the fossilisation of micro-organisms; in their absence, carbonate crystal growth potentially mediated by heterotrophic microbial decay may largely obliterate morphological evidence for life within stromatolites, although mineralogical traces may still be detectable using electron microscopy.
Collapse
Affiliation(s)
- D Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - L Urosevic
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| | - M Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - A D George
- School of Earth Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Miot J, Bernard S, Bourreau M, Guyot F, Kish A. Experimental maturation of Archaea encrusted by Fe-phosphates. Sci Rep 2017; 7:16984. [PMID: 29208997 PMCID: PMC5717249 DOI: 10.1038/s41598-017-17111-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022] Open
Abstract
Burial is generally detrimental to the preservation of biological signals. It has often been assumed that (bio)mineral-encrusted microorganisms are more resistant to burial-induced degradation than non-encrusted ones over geological timescales. For the present study, we submitted Sulfolobus acidocaldarius experimentally encrusted by amorphous Fe phosphates to constrained temperature conditions (150 °C) under pressure for 1 to 5 days, thereby simulating burial-induced processes. We document the molecular and mineralogical evolution of these assemblages down to the sub-micrometer scale using X-ray diffraction, scanning and transmission electron microscopies and synchrotron-based X-ray absorption near edge structure spectroscopy at the carbon K-edge. The present results demonstrate that the presence of Fe-phosphates enhances the chemical degradation of microbial organic matter. While Fe-phosphates remained amorphous in abiotic controls, crystalline lipscombite (FeIIxFeIII3-x(PO4)2(OH)3-x) entrapping organic matter formed in the presence of S. acidocaldarius cells. Lipscombite textures (framboidal vs. bipyramidal) appeared only controlled by the initial level of encrustation of the cells, suggesting that the initial organic matter to mineral ratio influences the competition between nucleation and crystal growth. Altogether these results highlight the important interplay between minerals and organic matter during fossilization, which should be taken into account when interpreting the fossil record.
Collapse
Affiliation(s)
- J Miot
- IMPMC, Sorbonne Université, MNHN, UPMC, CNRS UMR 7590, 4 pl. Jussieu, 75005, Paris, France.
| | - S Bernard
- IMPMC, Sorbonne Université, MNHN, UPMC, CNRS UMR 7590, 4 pl. Jussieu, 75005, Paris, France
| | - M Bourreau
- MCAM, MNHN, UPMC, CNRS UMR 7245, 63 rue Buffon, 75005, Paris, France
| | - F Guyot
- IMPMC, Sorbonne Université, MNHN, UPMC, CNRS UMR 7590, 4 pl. Jussieu, 75005, Paris, France
| | - A Kish
- MCAM, MNHN, UPMC, CNRS UMR 7245, 63 rue Buffon, 75005, Paris, France
| |
Collapse
|
24
|
Moore KR, Bosak T, Macdonald FA, Lahr DJG, Newman S, Settens C, Pruss SB. Biologically agglutinated eukaryotic microfossil from Cryogenian cap carbonates. GEOBIOLOGY 2017; 15:499-515. [PMID: 28063184 DOI: 10.1111/gbi.12225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Cryogenian cap carbonates that overlie Sturtian glacial deposits were formed during a post-glacial transgression. Here, we describe microfossils from the Kakontwe Formation of Zambia and the Taishir Formation of Mongolia-both Cryogenian age, post-Sturtian cap carbonates-and investigate processes involved in their formation and preservation. We compare microfossils from these two localities to an assemblage of well-documented microfossils previously described in the post-Sturtian Rasthof Formation of Namibia. Microfossils from both new localities have 10 ± 1 μm-thick walls composed of carbonaceous matter and aluminosilicate minerals. Those found in the Kakontwe Formation are spherical or ovoid and 90 ± 5 μm to 200 ± 5 μm wide. Structures found in the Taishir Formation are mostly spherical, 50 ± 5 μm to 140 ± 5 μm wide, with distinct features such as blunt or concave edges. Chemical and mineralogical analyses show that the walled structures and the clay fraction extracted from the surrounding sediments are composed of clay minerals, especially muscovite and illite, as well as quartz, iron and titanium oxides, and some dolomite and feldspar. At each locality, the mineralogy of the microfossil walls matched that of the clay fractions of the surrounding sediment. The abundance of these minerals in the walled microfossils relative to the surrounding carbonate matrix and microbial laminae, and the presence of minerals that cannot precipitate from solution (titanium oxide and feldspar), suggests that the composition represents the original mineralogy of the structures. Furthermore, the consistency in mineralogy of both microfossils and sediments across the three basins, and the uniformity of size and shape among mineral grains in the fossil walls indicate that these organisms incorporated these minerals by primary biological agglutination. The discovery of new, mineral-rich microfossil assemblages in microbially laminated and other fine-grained facies of Cryogenian cap carbonates from multiple localities on different palaeocontinents demonstrates that agglutinating eukaryotes were widespread in carbonate-dominated marine environments in the aftermath of the Sturtian glaciation.
Collapse
Affiliation(s)
- K R Moore
- The Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - T Bosak
- The Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F A Macdonald
- The Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D J G Lahr
- Department of Zoology, University of São Paulo, São Paulo SP, Brazil
| | - S Newman
- The Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Settens
- Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S B Pruss
- Department of Geosciences, Smith College, Northampton, MA, USA
| |
Collapse
|
25
|
Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nat Commun 2017; 8:14890. [PMID: 28332570 PMCID: PMC5376642 DOI: 10.1038/ncomms14890] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 02/10/2017] [Indexed: 01/19/2023] Open
Abstract
Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic. Fossil microorganisms older than 1.7 billion years are challenging to interpret due to their size, simple shapes, and alteration. Here, in 1.88 billion year old microfossils, the authors show a pattern of cellular preservation and internal iron nanominerals consistent with oxygenic photosynthetic bacteria.
Collapse
|
26
|
Abstract
Some fragments of ancient protein are less prone to degradation because they bind strongly to the surfaces of minerals.
Collapse
Affiliation(s)
- Adam F Wallace
- Department of Geological Sciences, University of Delaware, Newark, United States
| | - James D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, United States
| |
Collapse
|
27
|
Strother PK, Wellman CH. Palaeoecology of a billion-year-old non-marine cyanobacterium from the Torridon Group and Nonesuch Formation. PALAEONTOLOGY 2016; 59:89-108. [PMID: 27609993 PMCID: PMC4995629 DOI: 10.1111/pala.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/11/2015] [Indexed: 06/06/2023]
Abstract
A new chroococcalean cyanobacterium is described from approximately 1-billion-year-old non-marine deposits of the Torridonian Group of Scotland and the Nonesuch Formation of Michigan, USA. Individual cells of the new microfossil, Eohalothece lacustrina gen. et sp. nov., are associated with benthic microbial biofilms, but the majority of samples are recovered in palynological preparations in the form of large, apparently planktonic colonies, similar to extant species of Microcystis. In the Torridonian, Eohalothece is associated with phosphatic nodules, and we have developed a novel hypothesis linking Eohalothece to phosphate deposition in ancient freshwater settings. Extant cyanobacteria can be prolific producers of extracellular microcystins, which are non-ribosomal polypeptide phosphatase inhibitors. Microcystins may have promoted the retention and concentration of sedimentary organic phosphate prior to mineralization of francolite and nodule formation. This has a further implication that the Torridonian lakes were nitrogen limited as the release of microcystins is enhanced under such conditions today. The abundance and wide distribution of Eohalothece lacustrina attests to the importance of cyanobacteria as oxygen-producing photoautotrophs in lacustrine ecosystems at the time of the Mesoproterozoic-Neoproterozoic transition.
Collapse
Affiliation(s)
- Paul K. Strother
- Department of Earth and Environmental SciencesWeston Observatory of Boston CollegeWestonMA02493USA
| | - Charles H. Wellman
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
28
|
Leroux F, Rabu P, Sommerdijk NAJM, Taubert A. Two‐Dimensional Hybrid Materials: Transferring Technology from Biology to Society. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabrice Leroux
- Inorganic Materials, Institut de Chimie de Clermont‐Ferrand (ICCF) – UMR CNRS 6296, Université Blaise Pascal, Chimie 5, Campus des Cézeaux, 24 avenue des Landais BP 80026 63171 Aubière Cedex, France, http://iccf.univ‐bpclermont.fr/spip.php?article166
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR7504 CNRS – Université de Strasbourg, 23 Rue du Loess, F‐67034 Strasbourg, France, http://www.ipcms.unistra.fr/?page_id=11205
| | - Nico A. J. M. Sommerdijk
- Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, NL‐5600 MB Eindhoven, The Netherlands, http://www.biomineralization.nl/general/our_group/tue.html
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl‐Liebknecht‐Str. 24‐25, D‐14476 Potsdam, Germany, http://www.taubert‐lab.net
| |
Collapse
|