1
|
Taale M, Schamberger B, Monclus MA, Dolle C, Taheri F, Mager D, Eggeler YM, Korvink JG, Molina‐Aldareguia JM, Selhuber‐Unkel C, Lantada AD, Islam M. Microarchitected Compliant Scaffolds of Pyrolytic Carbon for 3D Muscle Cell Growth. Adv Healthc Mater 2024; 13:e2303485. [PMID: 38150609 PMCID: PMC11469158 DOI: 10.1002/adhm.202303485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/29/2023]
Abstract
The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Barbara Schamberger
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | | | - Christian Dolle
- Microscopy of Nanoscale Structures and Mechanisms (MNM)Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of TechnologyEngesserstr. 7D‐76131KarlsruheGermany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Dario Mager
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Yolita M. Eggeler
- Microscopy of Nanoscale Structures and Mechanisms (MNM)Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of TechnologyEngesserstr. 7D‐76131KarlsruheGermany
| | - Jan G. Korvink
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Jon M. Molina‐Aldareguia
- IMDEA Materials InstituteEric Kandel, 2Getafe28906Spain
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutierréz Abascal, 2Madrid28006Spain
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutierréz Abascal, 2Madrid28006Spain
| | - Monsur Islam
- IMDEA Materials InstituteEric Kandel, 2Getafe28906Spain
- Institute of Microstructure TechnologyKarlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| |
Collapse
|
2
|
Sato S, Hanai T, Kanamoto T, Kawano F, Hikida M, Yokoi H, Take Y, Magome T, Ebina K, Mae T, Tanaka H, Nakata K. Vibration acceleration enhances proliferation, migration, and maturation of C2C12 cells and promotes regeneration of muscle injury in male rats. Physiol Rep 2024; 12:e15905. [PMID: 38396237 PMCID: PMC10890929 DOI: 10.14814/phy2.15905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024] Open
Abstract
Vibration acceleration (VA) using a whole-body vibration device is beneficial for skeletal muscles. However, its effect at the cellular level remains unclear. We aimed to investigate the effects of VA on muscles in vitro and in vivo using the C2C12 mouse myoblast cell line and cardiotoxin-induced injury in male rat soleus muscles. Cell proliferation was evaluated using the WST/CCK-8 assay and proportion of Ki-67 positive cells. Cell migration was assessed using wound-healing assay. Cell differentiation was examined by the maturation index in immunostained cultured myotubes and real-time polymerase chain reaction. Regeneration of soleus muscle in rats was assessed by recruitment of satellite cells, cross-sectional area of regenerated muscle fibers, number of centrally nucleated fibers, and conversion of regenerated muscle from fast- to slow-twitch. VA at 30 Hz with low amplitude for 10 min promoted C2C12 cell proliferation, migration, and myotube maturation, without promoting expression of genes related to differentiation. VA significantly increased Pax7-stained satellite cells and centrally nucleated fibers in injured soleus muscles on Day 7 and promoted conversion of fast- to slow-twitch muscle fibers with an increase in the mean cross-sectional area of regenerated muscle fibers on Day 14. VA enhanced the proliferation, migration, and maturation of C2C12 myoblasts and regeneration of injured rat muscles.
Collapse
Affiliation(s)
- Seira Sato
- Department of Sports Medical ScienceOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tatsuhiro Hanai
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takashi Kanamoto
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Fuminori Kawano
- Graduate School of Health SciencesMatsumoto UniversityMatsumotoNaganoJapan
| | - Minami Hikida
- Department of Oral and Maxillofacial SurgeryNihon University School of DentistryChiyoda‐kuTokyoJapan
| | - Hiroyuki Yokoi
- Yokoi Health Care and Sports Orthopaedics ClinicToyonakaOsakaJapan
| | - Yasuhiro Take
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takuya Magome
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kosuke Ebina
- Department of Musculoskeletal Regenerative MedicineOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tatsuo Mae
- Department of Sports Medical BiomechanicsOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hiroyuki Tanaka
- Department of Sports Medical ScienceOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Ken Nakata
- Department of Medicine for Sports and Performing ArtsOsaka University Graduate School of MedicineSuitaOsakaJapan
| |
Collapse
|
3
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
4
|
Calejo I, Labrador‐Rached CJ, Gomez‐Florit M, Docheva D, Reis RL, Domingues RMA, Gomes ME. Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Adv Healthc Mater 2022; 11:e2102863. [PMID: 35596614 DOI: 10.1002/adhm.202102863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Clinically relevant in vitro models of human tissue's health and disease are urgently needed for a better understanding of biological mechanisms essential for the development of novel therapies. Herein, physiological (healthy) and pathological (disease) tendon states are bioengineered by coupling the biological signaling of platelet lysate components with controlled 3D architectures of electrospun microfibers to drive the fate of human tendon cells in different composite living fibers (CLFs). In the CLFs-healthy model, tendon cells adopt a high cytoskeleton alignment and elongation, express tendon-related markers (scleraxis, tenomodulin, and mohawk) and deposit a dense tenogenic matrix. In contrast, cell crowding with low preferential orientation, high matrix deposition, and phenotypic drift leading to increased expression of nontendon related and fibrotic markers, are characteristics of the CLFs-diseased model. This diseased-like profile, also reflected in the increase of COL3/COL1 ratio, is further evident by the imbalance between matrix remodeling and degradation effectors, characteristic of tendinopathy. In summary, microengineered 3D in vitro models of human tendon healthy and diseased states are successfully fabricated. Most importantly, these innovative and versatile microphysiological models offer major advantages over currently used systems, holding promise for drugs screening and development of new therapies.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Claudia J. Labrador‐Rached
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuel Gomez‐Florit
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Denitsa Docheva
- Experimental Trauma Surgery Department of Trauma Surgery University Hospital Regensburg Franz‐Josef Strauss‐Allee 11 93053 Regensburg Germany
| | - Rui L. Reis
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
5
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
6
|
3D Microwell Platforms for Control of Single Cell 3D Geometry and Intracellular Organization. Cell Mol Bioeng 2020; 14:1-14. [PMID: 33643464 DOI: 10.1007/s12195-020-00646-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Cell structure and migration is impacted by the mechanical properties and geometry of the cell adhesive environment. Most studies to date investigating the effects of 3D environments on cells have not controlled geometry at the single-cell level, making it difficult to understand the influence of 3D environmental cues on single cells. Here, we developed microwell platforms to investigate the effects of 2D vs. 3D geometries on single-cell F-actin and nuclear organization. Methods We used microfabrication techniques to fabricate three polyacrylamide platforms: 3D microwells with a 3D adhesive environment (3D/3D), 3D microwells with 2D adhesive areas at the bottom only (3D/2D), and flat 2D gels with 2D patterned adhesive areas (2D/2D). We measured geometric swelling and Young's modulus of the platforms. We then cultured C2C12 myoblasts on each platform and evaluated the effects of the engineered microenvironments on F-actin structure and nuclear shape. Results We tuned the mechanical characteristics of the microfabricated platforms by manipulating the gel formulation. Crosslinker ratio strongly influenced geometric swelling whereas total polymer content primarily affected Young's modulus. When comparing cells in these platforms, we found significant effects on F-actin and nuclear structures. Our analysis showed that a 3D/3D environment was necessary to increase actin and nuclear height. A 3D/2D environment was sufficient to increase actin alignment and nuclear aspect ratio compared to a 2D/2D environment. Conclusions Using our novel polyacrylamide platforms, we were able to decouple the effects of 3D confinement and adhesive environment, finding that both influenced actin and nuclear structure.
Collapse
|
7
|
Wang Y, Song J, Liu X, Liu J, Zhang Q, Yan X, Yuan X, Ren D. Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells. Stem Cells Dev 2020; 29:336-352. [PMID: 31950873 DOI: 10.1089/scd.2019.0286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yaqi Wang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xinqiang Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jun Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Lei Y, Goldblatt ZE, Billiar KL. Micromechanical Design Criteria for Tissue-Engineering Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Müller S, Ueda M, Isoshima T, Ushida T, Ito Y. Stretching of fibroblast cells on micropatterned gelatin on silicone elastomer. J Mater Chem B 2020; 8:416-425. [DOI: 10.1039/c9tb02203a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micropatterned gelatin was formed on the silicone elastomer surface. The micropattern enabled cell alignment, regulation of the cell shape, and endowed the cells with resistance against mechanical stress.
Collapse
Affiliation(s)
- Stefan Müller
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Saitama
- Japan
- Graduate School of Medicine
| | - Motoki Ueda
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Saitama
- Japan
- Nano Medical Engineering Laboratory
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory
- RIKEN Cluster for Pioneering Research
- Saitama
- Japan
| | - Takashi Ushida
- Graduate School of Medicine
- The University of Tokyo
- Tokyo
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Saitama
- Japan
- Nano Medical Engineering Laboratory
| |
Collapse
|
10
|
Gong HY, Park J, Kim W, Kim J, Lee JY, Koh WG. A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47695-47706. [PMID: 31794187 DOI: 10.1021/acsami.9b16005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we designed a cell-adhesive poly(ethylene glycol) (PEG)-based hydrogel that simultaneously provides topographical and electrical stimuli to C2C12 myoblasts. Specifically, PEG hydrogels with microgroove structures of 3 μm ridges and 3 μm grooves were prepared by micromolding; in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) was then performed within the micropatterned PEG hydrogels to create a microgrooved conductive hydrogel (CH/P). The CH/P had clear replica patterns of the silicone mold and a conductivity of 2.49 × 10-3 S/cm, with greater than 85% water content. In addition, the CH exhibited Young's modulus (45.84 ± 7.12 kPa) similar to that of a muscle tissue. The surface of the CH/P was further modified via covalent bonding with cell-adhesive peptides to facilitate cell adhesion without affecting conductivity. An in vitro cell assay revealed that the CH/P was cytocompatible and enhanced the cell alignment and elongation of C2C12 myoblasts. The microgrooves and conductivity of the CH/P had the greatest positive effect on the myogenesis of C2C12 myoblasts compared to the other PEG hydrogel samples without conductivity or/and microgrooves, even in the absence of electrical stimulation. Electrical stimulation studies indicated that the combination of topographical and electrical cues maximized the differentiation of C2C12 myoblasts into myotubes, confirming the synergetic effect of incorporating microgroove surface features and a conductive PEDOT component into hydrogels.
Collapse
Affiliation(s)
| | - Junggeon Park
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61105 , South Korea
| | | | | | - Jae Young Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju 61105 , South Korea
| | | |
Collapse
|
11
|
Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep 2019; 9:17774. [PMID: 31780803 PMCID: PMC6883046 DOI: 10.1038/s41598-019-54330-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023] Open
Abstract
Bioprinting could spatially align various cells in high accuracy to simulate complex and highly organized native tissues. However, the uniform suspension and low concentration of cells in the bioink and subsequently printed construct usually results in weak cell-cell interaction and slow proliferation. Acoustic manipulation of biological cells during the extrusion-based bioprinting by a specific structural vibration mode was proposed and evaluated. Both C2C12 cells and human umbilical vein endothelial cells (HUVECs) could be effectively and quickly accumulated at the center of the cylindrical tube and consequently the middle of the printed construct with acoustic excitation at the driving frequency of 871 kHz. The full width at half maximum (FWHM) of cell distributions fitted with a Gaussian curve showed a significant reduction by about 2.2 fold in the printed construct. The viability, morphology, and differentiation of these cells were monitored and compared. C2C12 cells that were undergone the acoustic excitation had nuclei oriented densely within ±30° and decreased circularity index by 1.91 fold or significant cell elongation in the printing direction. In addition, the formation of the capillary-like structure in the HUVECs construct was found. The number of nodes, junctions, meshes, and branches of HUVECs on day 14 was significantly greater with acoustic excitation for the enhanced neovascularization. Altogether, the proposed acoustic technology can satisfactorily accumulate/pattern biological cells in the printed construct at high biocompatibility. The enhanced cell interaction and differentiation could subsequently improve the performance and functionalities of the engineered tissue samples.
Collapse
|
12
|
Müller A, Müller S, Nasufovic V, Arndt HD, Pompe T. Actin stress fiber dynamics in laterally confined cells. Integr Biol (Camb) 2019; 11:175-185. [DOI: 10.1093/intbio/zyz016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Abstract
Multiple cellular processes are affected by spatial constraints from the extracellular matrix and neighboring cells. In vitro experiments using defined micro-patterning allow for in-depth analysis and a better understanding of how these constraints impact cellular behavior and functioning. Herein we focused on the analysis of actin cytoskeleton dynamics as a major determinant of mechanotransduction mechanisms in cells. We seeded primary human umbilical vein endothelial cells onto stripe-like cell-adhesive micro-patterns with varying widths and then monitored and quantified the dynamic reorganization of actin stress fibers, including fiber velocities, orientation and density, within these live cells using the cell permeable F-actin marker SiR-actin. Although characteristic parameters describing the overall stress fiber architecture (average orientation and density) were nearly constant throughout the observation time interval of 60 min, we observed permanent transport and turnover of individual actin stress fibers. Stress fibers were more strongly oriented along stripe direction with decreasing stripe width, (5° on 20 μm patterns and 10° on 40 μm patterns), together with an overall narrowing of the distribution of fiber orientation. Fiber dynamics was characterized by a directed movement from the cell edges towards the cell center, where fiber dissolution frequently took place. By kymograph analysis, we found median fiber velocities in the range of 0.2 μm/min with a weak dependence on pattern width. Taken together, these data suggest that cell geometry determines actin fiber orientation, while it also affects actin fiber transport and turnover.
Collapse
Affiliation(s)
- Andreas Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Sandra Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Veselin Nasufovic
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Hohe Str. 6, Dresden, Germany
| |
Collapse
|
13
|
Abstract
In native tissues, various cell types organize and spatiotemporally function and communicate with neighboring or remote cells in a highly regulated way. How can we replicate these amazing functional structures in vitro? From the view of a chemist, the heterogeneous cells and extracellular matrix (ECM) could be regarded as various chemical substrate materials for "synthetic" reactions during tissue engineering. But how can we accelerate these reactions? Microfluidics provides ideal solutions. Microfluidics could be metaphorically regarded as a miniature "biofactory", whereas the on-chip critical chemical cues such as biomolecule gradients and physical cues such as geometrical confinement, topological guidance, and mechanical stimulations, along with the external stimulations such as light, electricity, acoustics, and magnetics, could be regarded as "catalytic cues" which can accelerate the "synthetic reactions" by precisely and effectively manipulating a series of cell behaviors including cell adhesion, migration, growth, proliferation, differentiation, cell-cell interaction, and cell-matrix interaction to reduce activation energy of the "synthetic reactions". Thus, on the microfluidics platform, the "biofactory", various "synthetic" reactions take place to change the substrate materials (cells and ECM) into products (tissues) in a nonlinear way, which is a typical feature of a biological process. By precisely organizing the substrate materials and spatiotemporally controlling the activity of the products, as a "biofactory", the microfluidics system can not only "synthesize" living tissues but also recreate physiological or pathophysiological processes such as immune responses, angiogenesis, wound healing, and tumor metastasis in vitro to bring insights into the mechanisms underlying these processes taking place in vivo. In this Account, we borrow the concept of chemical "synthesis" to describe how to "synthesize" artificial tissues using microfluidics from a chemist's view. Accelerated by the built-in physiochemical cues on microfluidics and external stimulations, various tissues could be "synthesized" on a microfluidics platform. We summarize that there are "step-by-step synthesis" and "one-step synthesis" on microfluidics for creating desired tissues with unprecedented precision, accuracy, and speed. In recent years, researchers developed various microfluidic techniques including creating adhesive domains for mediating reverse and precise adhesion, chemical gradients for directing cell growth, geometrical confinements and topological cues for manipulating cell migration, and mechanics for stimulating cell differentiation. By employing and orchestrating these on-chip tissue "synthetic" conditions, "step-by-step synthesis" could be realized on chips to develop multilayered tissues such as blood vessels. "One-step synthesis" on chips could develop functional three-dimensional tissue structures such as neural networks or nephron-like structures. Based on these on-chip studies, many critical physiological and pathophysiological processes such as wound healing, tumor metastasis, and atherosclerosis could be deeply investigated, and the drugs or therapeutic approaches could also be evaluated or screened conveniently. The "synthetic tissues on microfluidics" system would pave an avenue for precise creation of artificial tissues for not only fundamental research but also biomedical applications such as tissue engineering.
Collapse
Affiliation(s)
- Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- The University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Zhu Y, Li X, Janairo RRR, Kwong G, Tsou AD, Chu JS, Wang A, Yu J, Wang D, Li S. Matrix stiffness modulates the differentiation of neural crest stem cells in vivo. J Cell Physiol 2018; 234:7569-7578. [PMID: 30368818 DOI: 10.1002/jcp.27518] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Stem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis. After 3 months, NCSCs differentiated into smooth muscle cells (SMCs) near the outer surface of the polymer grafts; in contrast, NCSCs differentiated into glial cells in the most part of the hydrogel. Atomic force microscopy demonstrated a stiffer matrix near the polymer surface but much lower stiffness away from the polymer graft. Consistently, in vitro studies confirmed that stiff surface induced SMC genes whereas soft surface induced glial genes. These results suggest that the scaffold's mechanical properties play an important role in directing stem cell differentiation in vivo, which has important implications in biomaterials design for stem cell delivery and tissue engineering.
Collapse
Affiliation(s)
- Yiqian Zhu
- Department of Bioengineering, University of California, Berkeley, California.,Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, China
| | - Xian Li
- Department of Bioengineering, University of California, Berkeley, California.,Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | | | - George Kwong
- Department of Bioengineering, University of California, Berkeley, California
| | - Anchi D Tsou
- Department of Bioengineering, University of California, Berkeley, California
| | - Julia S Chu
- Department of Bioengineering, University of California, Berkeley, California
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Sacramento, California
| | - Jian Yu
- Department of Bioengineering, University of California, Berkeley, California.,Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, China
| | - Dong Wang
- Department of Bioengineering, University of California, Los Angeles, California
| | - Song Li
- Department of Bioengineering, University of California, Berkeley, California.,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
15
|
Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Sci Rep 2018; 8:9788. [PMID: 29955093 PMCID: PMC6023913 DOI: 10.1038/s41598-018-27948-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.
Collapse
|
16
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
17
|
Xie X, Deliorman M, Qasaimeh MA, Percipalle P. The relative composition of actin isoforms regulates cell surface biophysical features and cellular behaviors. Biochim Biophys Acta Gen Subj 2018; 1862:1079-1090. [PMID: 29410074 DOI: 10.1016/j.bbagen.2018.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell surface mechanics is able to physically and biomechanically affect cell shape and motility, vesicle trafficking and actin dynamics. The biophysical properties of cell surface are strongly influenced by cytoskeletal elements. In mammals, tissue-specific expression of six actin isoforms is thought to confer differential biomechanical properties. However, the relative contribution of actin isoforms to cell surface properties is not well understood. Here, we sought to investigate whether and how the composition of endogenous actin isoforms directly affects the biomechanical features of cell surface and cellular behavior. METHODS We used fibroblasts isolated from wild type (WT), heterozygous (HET) and from knockout (KO) mouse embryos where both β-actin alleles are not functional. We applied a combination of genome-wide analysis and biophysical methods such as RNA-seq and atomic force microscopy. RESULTS We found that endogenous β-actin levels are essential in controlling cell surface stiffness and pull-off force, which was not compensated by the up-regulation of other actin isoforms. The variations of surface biophysical features and actin contents were associated with distinct cell behaviors in 2D and 3D WT, HET and KO cell cultures. Since β-actin in WT cells and smooth muscle α-actin up-regulated in KO cells showed different organization patterns, our data support the differential localization and organization as a mechanism to regulate the biophysical properties of cell surface by actin isoforms. CONCLUSIONS We propose that variations in actin isoforms composition impact on the biophysical features of cell surface and cause the changes in cell behavior.
Collapse
Affiliation(s)
- Xin Xie
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Muhammedin Deliorman
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Engineering Division, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Mechanical and Aerospace Engineering, New York University, USA
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, United Arab Emirates; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
18
|
Hu S, Chen TH, Zhao Y, Wang Z, Lam RHW. Protein-Substrate Adhesion in Microcontact Printing Regulates Cell Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1750-1759. [PMID: 29304548 DOI: 10.1021/acs.langmuir.7b02935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microcontact printing (μCP) is widely used to create patterns of biomolecules essential for studies of cell mechanics, migration, and tissue engineering. However, different types of μCPs may create micropatterns with varied protein-substrate adhesion, which may change cell behaviors and pose uncertainty in result interpretation. Here, we characterize two μCP methods for coating extracellular matrix (ECM) proteins (stamp-off and covalent bond) and demonstrate for the first time the important role of protein-substrate adhesion in determining cell behavior. We found that, as compared to cells with weaker traction force (e.g., endothelial cells), cells with strong traction force (e.g., vascular smooth muscle cells) may delaminate the ECM patterns, which reduced cell viability as a result. Importantly, such ECM delamination was observed on patterns by stamp-off but not on the patterns by covalent bonds. Further comparisons of the displacement of the ECM patterns between the normal VSMCs and the force-reduced VSMCs suggested that the cell traction force plays an essential role in this ECM delamination. Together, our results indicated that μCPs with insufficient adhesion may lead to ECM delamination and cause cell death, providing new insight for micropatterning in cell-biomaterial interaction on biointerfaces.
Collapse
Affiliation(s)
- Shuhuan Hu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
| | - Ting-Hsuan Chen
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| | - Yanhua Zhao
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| | - Raymond H W Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong , Hong Kong
- City University of Hong Kong, Shenzhen Research Institute , Shenzhen, China
| |
Collapse
|
19
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
20
|
Liu X, Liu Y, Zhao F, Hun T, Li S, Wang Y, Sun W, Wang W, Sun Y, Fan Y. Regulation of cell arrangement using a novel composite micropattern. J Biomed Mater Res A 2017; 105:3093-3101. [DOI: 10.1002/jbm.a.36157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Shan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yuguang Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Weijie Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Wei Wang
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated System; Beijing 100871 China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 People's Republic of China
| |
Collapse
|
21
|
Can the Drosophila model help in paving the way for translational medicine in heart failure? Biochem Soc Trans 2017; 44:1549-1560. [PMID: 27911738 DOI: 10.1042/bst20160017c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
Chronic heart failure is a common consequence of various heart diseases. Mechanical force is known to play a key role in heart failure development through regulating cardiomyocyte hypertrophy. In order to understand the complex disease mechanism, this article discussed a multi-disciplinary approach that may aid the illustration of heart failure molecular process.
Collapse
|
22
|
Abstract
The radius of curvature affects cell body characteristics on microfabricated concave microgrooves.
Collapse
Affiliation(s)
- Baoce Sun
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- Centre for Biosystems, Neuroscience and Nanotechnology
- City University of Hong Kong
| | - Kai Xie
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
| | - Ting-Hsuan Chen
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- City University of Hong Kong Shenzhen Research Institute
- Shenzhen
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- China
- Centre for Biosystems, Neuroscience and Nanotechnology
- City University of Hong Kong
| |
Collapse
|
23
|
Gtf2ird1-Dependent Mohawk Expression Regulates Mechanosensing Properties of the Tendon. Mol Cell Biol 2016; 36:1297-309. [PMID: 26884464 PMCID: PMC4836271 DOI: 10.1128/mcb.00950-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Mechanoforces experienced by an organ are translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called tenocytes orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon-specific transcription factor, is essential in mechanoresponsive tenogenesis through regulation of its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin both in vivo and in vitro Wild-type (WT) mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas in Mkx(-/-) mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of the Mkx promoter region identified several upstream transcription factors that regulate Mkx In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes translocated into the nucleus upon mechanical stretching to activate the Mkx promoter through chromatin regulation. Here, we demonstrate that Gtf2ird1 is essential for Mkx transcription, while also linking mechanical forces to Mkx-mediated tendon homeostasis and regeneration.
Collapse
|
24
|
Serbo JV, Kuo S, Lewis S, Lehmann M, Li J, Gracias DH, Romer LH. Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton. Adv Healthc Mater 2016; 5:146-58. [PMID: 26033825 PMCID: PMC5817161 DOI: 10.1002/adhm.201500030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022]
Abstract
Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.
Collapse
Affiliation(s)
- Janna V. Serbo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Lehmann
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiuru Li
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis H. Romer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc Natl Acad Sci U S A 2015; 113:E32-40. [PMID: 26699462 DOI: 10.1073/pnas.1513189113] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior.
Collapse
|
26
|
Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci U S A 2015; 112:12705-10. [PMID: 26417073 DOI: 10.1073/pnas.1508073112] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Single cardiomyocytes contain myofibrils that harbor the sarcomere-based contractile machinery of the myocardium. Cardiomyocytes differentiated from human pluripotent stem cells (hPSC-CMs) have potential as an in vitro model of heart activity. However, their fetal-like misalignment of myofibrils limits their usefulness for modeling contractile activity. We analyzed the effects of cell shape and substrate stiffness on the shortening and movement of labeled sarcomeres and the translation of sarcomere activity to mechanical output (contractility) in live engineered hPSC-CMs. Single hPSC-CMs were cultured on polyacrylamide substrates of physiological stiffness (10 kPa), and Matrigel micropatterns were used to generate physiological shapes (2,000-µm(2) rectangles with length:width aspect ratios of 5:1-7:1) and a mature alignment of myofibrils. Translation of sarcomere shortening to mechanical output was highest in 7:1 hPSC-CMs. Increased substrate stiffness and applied overstretch induced myofibril defects in 7:1 hPSC-CMs and decreased mechanical output. Inhibitors of nonmuscle myosin activity repressed the assembly of myofibrils, showing that subcellular tension drives the improved contractile activity in these engineered hPSC-CMs. Other factors associated with improved contractility were axially directed calcium flow, systematic mitochondrial distribution, more mature electrophysiology, and evidence of transverse-tubule formation. These findings support the potential of these engineered hPSC-CMs as powerful models for studying myocardial contractility at the cellular level.
Collapse
|
27
|
Harkness T, McNulty JD, Prestil R, Seymour SK, Klann T, Murrell M, Ashton RS, Saha K. High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics. Biotechnol J 2015; 10:1555-67. [PMID: 26097126 DOI: 10.1002/biot.201400756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/24/2015] [Accepted: 06/11/2015] [Indexed: 01/14/2023]
Abstract
Understanding the mechanisms underpinning cellular responses to microenvironmental cues requires tight control not only of the complex milieu of soluble signaling factors, extracellular matrix (ECM) connections and cell-cell contacts within cell culture, but also of the biophysics of human cells. Advances in biomaterial fabrication technologies have recently facilitated detailed examination of cellular biophysics and revealed that constraints on cell geometry arising from the cellular microenvironment influence a wide variety of human cell behaviors. Here, we create an in vitro platform capable of precise and independent control of biochemical and biophysical microenvironmental cues by adapting microcontact printing technology into the format of standard six- to 96-well plates to create MicroContact Printed Well Plates (μCP Well Plates). Automated high-content imaging of human cells seeded on μCP Well Plates revealed tight, highly consistent control of single-cell geometry, cytoskeletal organization, and nuclear elongation. Detailed subcellular imaging of the actin cytoskeleton and chromatin within live human fibroblasts on μCP Well Plates was then used to describe a new relationship between cellular geometry and chromatin dynamics. In summary, the μCP Well Plate platform is an enabling high-content screening technology for human cell biology and cellular engineering efforts that seek to identify key biochemical and biophysical cues in the cellular microenvironment.
Collapse
Affiliation(s)
- Ty Harkness
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D McNulty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Prestil
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie K Seymour
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler Klann
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Murrell
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, Yale University, CT, USA.,Systems Biology Institute, Yale University, CT, USA
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y, Zhou S. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B 2015; 3:9011-9022. [DOI: 10.1039/c5tb01682g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamically tunable geometric microwells have great capacity to regulate the cytoskeletal structure and differentiation of mesenchymal stem cells along adipogenesis and osteogenesis pathways.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
29
|
Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, Chang J, Lin K. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B 2015; 3:968-976. [DOI: 10.1039/c4tb01838a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HAp bioceramics with micropatterned surfaces significantly enhance cell responses.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Na Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Bing Fang
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|