1
|
Genetic Variants Associated with Chronic Obstructive Pulmonary Disease Risk: Cumulative Epidemiological Evidence from Meta-Analyses and Genome-Wide Association Studies. Can Respir J 2022; 2022:3982335. [PMID: 35721789 PMCID: PMC9203202 DOI: 10.1155/2022/3982335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Last two decades, many association studies on genetic variants and chronic obstructive pulmonary disease (COPD) risk have been published. But results from different studies are inconsistent. Therefore, we performed this article to systematically evaluate results from previous meta-analyses and genome-wide association studies (GWASs). Material and Methods. Firstly, we retrieved meta-analyses in PubMed, Embase, and China National Knowledge Infrastructure and GWASs in PubMed and GWAS catalog on or before April 7th, 2022. Then, data were extracted and screened. Finally, two main methods—Venice criteria and false-positive report probability test—were used to evaluate significant associations. Results As a result, eighty-eight meta-analyses and 5 GWASs were deemed eligible for inclusion. Fifty variants in 26 genes obtained from meta-analyses were significantly associated with COPD risk. Cumulative epidemiological evidence of an association was graded as strong for 10 variants in 8 genes (GSTM1, CHRNA, ADAM33, SP-D, TNF-α, VDBP, HMOX1, and HHIP), moderate for 6 variants in 5 genes (PI, GSTM1, ADAM33, TNF-α, and VDBP), and weak for 40 variants in 23 genes. Five variants in 4 genes showed convincing evidence of no association with COPD risk in meta-analyses. Additionally, 29 SNPs identified in GWASs were proved to be noteworthy based on the FPRP test. Conclusion In summary, more than half (52.38%) of genetic variants reported in previous meta-analyses showed no association with COPD risk. However, 13 variants in 9 genes had moderate to strong evidence for an association. This article can serve as a useful reference for further studies.
Collapse
|
2
|
Guan Q, Tian Y, Zhang Z, Zhang L, Zhao P, Li J. Identification of Potential Key Genes in the Pathogenesis of Chronic Obstructive Pulmonary Disease Through Bioinformatics Analysis. Front Genet 2021; 12:754569. [PMID: 34804123 PMCID: PMC8595135 DOI: 10.3389/fgene.2021.754569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high morbidity and mortality. The etiology of COPD is complex, and the pathogenesis mechanisms remain unclear. In this study, we used rat and human COPD gene expression data from our laboratory and the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between individuals with COPD and healthy individuals. Then, protein–protein interaction (PPI) networks were constructed, and hub genes were identified. Cytoscape was used to construct the co-expressed network and competitive endogenous RNA (ceRNA) networks. A total of 198 DEGs were identified, and a PPI network with 144 nodes and 355 edges was constructed. Twelve hub genes were identified by the cytoHubba plugin in Cytoscape. Of these genes, CCR3, CCL2, COL4A2, VWF, IL1RN, IL2RA, and CCL13 were related to inflammation or immunity, or tissue-specific expression in lung tissue, and their messenger RNA (mRNA) levels were validated by qRT-PCR. COL4A2, VWF, and IL1RN were further verified by the GEO dataset GSE76925, and the ceRNA network was constructed with Cytoscape. These three genes were consistent with COPD rat model data compared with control data, and their dysregulation direction was reversed when the COPD rat model was treated with effective-component compatibility of Bufei Yishen formula III. This bioinformatics analysis strategy may be useful for elucidating novel mechanisms underlying COPD. We pinpointed three key genes that may play a role in COPD pathogenesis and therapy, which deserved to be further studied.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lanxi Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China.,Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Zhang J, Xu Q, Sun W, Zhou X, Fu D, Mao L. New Insights into the Role of NLRP3 Inflammasome in Pathogenesis and Treatment of Chronic Obstructive Pulmonary Disease. J Inflamm Res 2021; 14:4155-4168. [PMID: 34471373 PMCID: PMC8405160 DOI: 10.2147/jir.s324323] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by chronic airway obstruction and emphysema. Accumulating studies have shown that the onset and development of COPD are related to an aberrant immune response induced by the dysregulation of a number of genetic and environmental factors, while the exact pathogenesis of this disease is not well defined. Emerging studies based on tests on samples from COPD patients, animal models, pharmacological and genetic data suggest that the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation is required in the lung inflammatory responses in the development of COPD. Although the available clinical studies targeting the inflammasome effector cytokine, IL-1β, or IL-1 signaling do not show positive outcomes for COPD treatment, many alternative strategies have been proposed by recent emerging studies. Here, we highlight the recent progress in our understanding of the role of the NLRP3 inflammasome in COPD and propose possible future studies that may further elucidate the roles of the inflammasome in the pathogenesis or the intervention of this inflammatory lung disease.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China.,Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China.,Basic Medical Research Center, School of Medicine, Nantong University, Nantong, Jiangsu, 226019, People's Republic of China
| |
Collapse
|
4
|
Liu T. miR-937 serves as an inflammatory inhibitor in cigarette smoke extract-induced human bronchial epithelial cells by targeting IL1B and regulating TNF-α/IL-17 signaling pathway. Tob Induc Dis 2021; 19:55. [PMID: 34220411 PMCID: PMC8231861 DOI: 10.18332/tid/138227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION This study aimed to elucidate the biological implication of miR-937 in cigarette smoke extract (CSE)-induced human bronchial epithelial (HBE) cells and to further investigate its possible regulatory mechanism. METHODS Public datasets were downloaded to identify differentially expressed genes and subjected to Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis in chronic obstructive pulmonary disease (COPD). Online prediction site and luciferase reporter assay were applied to determine the target correlation between miR-937 and IL1B. RT-qPCR, Western blot and Enzyme-Linked Immunosorbent Assays (ELISA) analyses were used to evaluate the expressions of indicated molecules. HBE cells were exposed with CSE (20 μg/mL) to construct the in vitro COPD model. Cell proliferation and apoptosis were measured through cell counting kit 8 and Annexin-V/propidium iodide (PI) staining assays. RESULTS IL1B was found to be up-regulated in COPD samples compared with healthy controls and had a high correlation with the TNF and IL-17 pathways according to the data from GSE57148. Moreover, IL1B was predicted to be a target of miR-937, and it was negatively regulated by miR-937. CSE treatment reduced the miR-937 expression, meanwhile decreased the HBE cells proliferation, enhanced cells apoptosis, and elevated the expression of IL-6, IL-17, and TNF-α. Moreover, in the CSE model, upregulation of miR-937 promoted cells viability, restrained cells apoptosis, and decreased levels of IL-6, IL-17, and TNF-α were noted, which could be abolished by overexpression IL1B. In contrast, inhibiting miR-937 impeded cells proliferation, promoted cells apoptosis and elevated levels of IL-6, IL-17 and TNF-α, which could be rescued by IL1B-knockdown in CSE-induced HBEs. CONCLUSIONS These findings suggest that miR-937 plays a protective role on the HBEs after CSE damage, which may be achieved via targeting IL1B and inhibiting the TNF-α/IL-17 signaling pathway.
Collapse
Affiliation(s)
- Teng Liu
- Department of Respiratory Medicine, Shandong Provincial Chest Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Molecularly Distinct NLRP3 Inducers Mediate Diverse Ratios of Interleukin-1 β and Interleukin-18 from Human Monocytes. Mediators Inflamm 2020; 2020:4651090. [PMID: 33144845 PMCID: PMC7599400 DOI: 10.1155/2020/4651090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022] Open
Abstract
Inflammasomes cleave and activate interleukin- (IL-) 1β and IL-18 which have both shared and unique biological functions. IL-1β is an important mediator of the acute phase response to infections and tissue damage, whereas IL-18 takes part in activation and tailoring of the adaptive immune response. While IL-1β has served as the prototypic indicator of inflammasome activation, few studies have compared the potential differences in IL-1β and IL-18 production during inflammasome activation. Since these cytokines partake in different immune pathways, the involvement of inflammasome activity in different conditions needs to be described beyond IL-1β production alone. To address a potential heterogeneity in inflammasome functionality, ATP, chitosan, or silica oxide (SiO2) were used to induce NLRP3 inflammasome activation in THP-1 cells and the subsequent outcomes were quantified. Despite using doses of the inflammasome inducers yielding similar release of IL-1β, SiO2-stimulated cells showed a lower concentration of released IL-18 compared to ATP and chitosan. Hence, the cells stimulated with SiO2 responded with a distinctly different IL-18 : IL-1β ratio. The difference in the IL-18 : IL-1β ratio for SiO2 was constant over different doses. While all downstream responses were strictly dependent on a functional NLRP3 inflammasome, the differences did not depend on the level of gene expression, caspase-1 activity, or pyroptosis. We suggest that the NLRP3 inflammasome response should be considered a dynamic process, which can be described by taking the ratio between IL-1β and IL-18 into account and moving away from an on/off perspective of inflammasome activation.
Collapse
|
6
|
Korytina GF, Akhmadishina LZ, Kochetova OV, Aznabaeva YG, Izmailova SM, Zagidullin SZ, Victorova TV. Association of CRP, CD14, Pro-Inflammatory Cytokines and Their Receptors (TNFA, LTA, TNFRSF1A, TNFRSF1B, IL1B, and IL6) Genes with Chronic Obstructive Pulmonary Disease Development. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ahmadi A, Ghaedi H, Salimian J, Azimzadeh Jamalkandi S, Ghanei M. Association between chronic obstructive pulmonary disease and interleukins gene variants: A systematic review and meta-analysis. Cytokine 2019; 117:65-71. [PMID: 30826601 DOI: 10.1016/j.cyto.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
Abstract
Interleukins are cytokines involved in systemic inflammation and immune system regulation. Many studies have investigated the association between common genetic variations in interleukin-coding genes and COPD susceptibility. In this study, a systematic review and meta-analysis was performed to evaluate the association between interleukin gene variations and COPD pathogenesis. Association studies were retrieved from PubMed and Google Scholar databases using the standard systematic search strategy. A total of 26 different studies evaluating eight polymorphisms in four interleukin genes were included in this study. In overall comparisons, IL1β-rs16944, -rs1143627, -rs1143634, IL13-rs20541 polymorphisms were found not to be associated with the increased risk for developing COPD. However, IL1RN-rs2234663 and IL13-rs1800925 showed a strong association with COPD. We showed that the CC genotype carriers of the IL6-rs1800795 are at significantly higher risk of developing COPD (OR = 1.31, 95% CI: 1.04-1.64, P = 0.01) compared to GG carriers. In case of IL6-rs1800796, individuals with CC and CG genotypes showed a lower risk to develop COPD (OR = 0.46, 95%CI: 0.32-0.66, P > 0.00). This updated meta-analysis strongly supports the association of IL1RN-rs2234663, IL6-rs1800795, -rs1800795 and IL13-rs1800925 variants with COPD.
Collapse
Affiliation(s)
- Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells. Inflamm Res 2018; 67:539-551. [DOI: 10.1007/s00011-018-1145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
|
11
|
Singh DP, Bagam P, Sahoo MK, Batra S. Immune-related gene polymorphisms in pulmonary diseases. Toxicology 2017; 383:24-39. [PMID: 28366820 PMCID: PMC5464945 DOI: 10.1016/j.tox.2017.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/12/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
Between the DNA sequences of two randomly-selected human genomes, which consist of over 3 billion base pairs and twenty five thousand genes, there exists only 0.1% variation and 99.9% sequence identity. During the last couple of decades, extensive genome-wide studies have investigated the association between single-nucleotide polymorphisms (SNPs), the most common DNA variations, and susceptibility to various diseases. Because the immune system's primary function is to defend against myriad infectious agents and diseases, the large number of people who escape serious infectious diseases underscores the tremendous success of this system at this task. In fact, out of the third of the global human population infected with Mycobacterium tuberculosis during their lifetime, only a few people develop active disease, and a heavy chain smoker may inexplicably escape all symptoms of chronic obstructive pulmonary disease (COPD), lung cancer, and other smoke-associated lung diseases. This may be attributable to the genetic makeup of the individual(s), including their SNPs, which provide some resistance to the disease. Pattern recognition receptors (PRRs), transcription factors, cytokines and chemokines all play critical roles in orchestrating immune responses and their expression/activation is directly linked to human disease tolerance. Moreover, genetic variations present in the immune-response genes of various ethnicities may explain the huge differences in individual outcomes to various diseases and following exposure to infectious agents. The current review focuses on recent advances in our understanding of pulmonary diseases and the relationship of genetic variations in immune response genes to these conditions.
Collapse
Affiliation(s)
- Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94304, United States
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, United States.
| |
Collapse
|
12
|
Du W, Su J, Ye D, Wang Y, Huang Q, Gong X. Pinellia ternata Attenuates Mucus Secretion and Airway Inflammation after Inhaled Corticosteroid Withdrawal in COPD Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1027-41. [PMID: 27430907 DOI: 10.1142/s0192415x16500579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inhaled corticosteroids (ICS) are widely used to manage chronic obstructive pulmonary disease (COPD). However, withdrawal of ICS generally causes various adverse effects, warranting careful management of the ICS withdrawal. Pinellia ternata, a traditional Chinese herbal medicine, has been used to treat respiratory diseases in China for centuries. Here, we investigated its role in antagonizing ICS withdrawal-induced side effects, and explored the underlying mechanisms. The rat COPD model was established using a combination of passive cigarette smoking and intratracheal instillation of lipopolysaccharide (LPS). COPD rats were treated with saline or budesonide inhalation, or with budesonide inhalation followed by saline inhalation or Pinellia ternata gavage. The number of goblet cells and the level of mucin 5AC (MUC5AC) were enhanced by budesonide withdrawal. Pinellia ternata treatment significantly blocked these effects. Further, Pinellia ternata treatment reversed budesonide withdrawal-induced increase of interleukin 1[Formula: see text] (IL-1[Formula: see text] and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]) levels in bronchoalveolar lavage fluid (BALF). Extracellular signal-regulated kinase (ERK), but neither p38 nor c-Jun N-terminal kinase (JNK), was activated by budesonide withdrawal, and the activation was blocked by Pinellia ternata treatment. The MUC5AC expression was positively correlated with goblet cell number, IL-1[Formula: see text] and TNF-[Formula: see text] levels, and ERK activity. Pinellia ternata treatment protected the airway from ICS withdrawal-induced mucus hypersecretion and airway inflammation by inhibiting ERK activation. Pinellia ternata treatment may represent a novel therapeutic strategy to prevent ICS withdrawal-induced side effects in COPD patients.
Collapse
Affiliation(s)
- Wei Du
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,‡ Respiratory Diseases Group, the 6th Unit, Department of Internal Medicine, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Jinyu Su
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dan Ye
- § Hexian Memorial Hospital, Panyu, Guangzhou 511400, China
| | - Yuegang Wang
- † Department of Cardiovascular Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiaobing Huang
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaowei Gong
- * Department of Pathophysiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,¶ Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden
| |
Collapse
|
13
|
Cherubini E, Esposito MC, Scozzi D, Terzo F, Osman GA, Mariotta S, Mancini R, Bruno P, Ricci A. Genetic Polymorphism of CHRM2 in COPD: Clinical Significance and Therapeutic Implications. J Cell Physiol 2016; 231:1745-51. [DOI: 10.1002/jcp.25277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Emanuela Cherubini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Maria Cristina Esposito
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Davide Scozzi
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
| | - Fabrizio Terzo
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Giorgia Amira Osman
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Salvatore Mariotta
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Department of Surgery “Pietro Valdoni”; Sapienza University of Rome; Rome Italy
| | - Pierdonato Bruno
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine; Sapienza University of Rome; Rome Italy
- Division of Pulmonology; AO Sant’ Andrea; Rome Italy
| |
Collapse
|
14
|
Wang Y, Shumansky K, Sin DD, Man SFP, Akhabir L, Connett JE, Anthonisen NR, Paré PD, Sandford AJ, He JQ. Associations of interleukin-1 gene cluster polymorphisms with C-reactive protein concentration and lung function decline in smoking-induced chronic obstructive pulmonary disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13125-13135. [PMID: 26722511 PMCID: PMC4680456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE We reported association of haplotypes formed by IL-1b (IL1B)-511C/T (rs16944) and a variable number of tandem repeats (rs2234663) in intron 3 of IL-1 receptor antagonist (IL1RN) with rate of lung function decline in smoking-induced COPD. The aim of current study was to further investigate this association. METHODS We genotyped an additional 19 polymorphisms in IL1 cluster (including IL1A, IL1B and IL1RN) in non-Hispanic whites who had the fastest (n = 268) and the slowest (n = 292) decline of FEV1% predicted in the same study. We also analyzed the association of all 21 polymorphisms with serum CRP levels. RESULTS None of 21 polymorphisms showed significant association with rate of decline of lung function or CRP levels after adjusting for multiple comparisons. Before adjusting for multiple comparisons, only IL1RN_19327 (rs315949) showed significant association with lung function decline (P = 0.03, additive model). The frequencies of genotypes containing the IL1RN_19327A allele were 71.9% and 62.2%, respectively in the fast and slow decline groups (P = 0.02, odds ratio = 1.6, 95% confidence interval = 1.1-2.3); the IL1B_5200 (rs1143633) and rs2234663 in IL1RN were associated with serum CRP levels (P=0.04 and 0.03, respectively). CONCLUSIONS No single marker was significantly associated with either rate of lung function decline or serum CRP levels.
Collapse
Affiliation(s)
- Yu Wang
- Department of Respiratory and Critical Medicine, West China Hospital of Sichuan UniversityChengdu, Sichuan Province, China
| | - Karey Shumansky
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - SF Paul Man
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - Loubna Akhabir
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - John E Connett
- Division of Biostatistics, School of Public Health, University of MinnesotaMinneapolis, MN, USA
| | | | - Peter D Paré
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - Andrew J Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| | - Jian-Qing He
- Department of Respiratory and Critical Medicine, West China Hospital of Sichuan UniversityChengdu, Sichuan Province, China
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s HospitalVancouver, BC, Canada
| |
Collapse
|
15
|
Bagdonas E, Raudoniute J, Bruzauskaite I, Aldonyte R. Novel aspects of pathogenesis and regeneration mechanisms in COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:995-1013. [PMID: 26082624 PMCID: PMC4459624 DOI: 10.2147/copd.s82518] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a major cause of death and morbidity worldwide, is characterized by expiratory airflow limitation that is not fully reversible, deregulated chronic inflammation, and emphysematous destruction of the lungs. Despite the fact that COPD is a steadily growing global healthcare problem, the conventional therapies remain palliative, and regenerative approaches for disease management are not available yet. We aim to provide an overview of key reviews, experimental, and clinical studies addressing lung emphysema development and repair mechanisms published in the past decade. Novel aspects discussed herein include integral revision of the literature focused on lung microflora changes in COPD, autoimmune component of the disease, and environmental risk factors other than cigarette smoke. The time span of studies on COPD, including emphysema, chronic bronchitis, and asthmatic bronchitis, covers almost 200 years, and several crucial mechanisms of COPD pathogenesis are described and studied. However, we still lack the holistic understanding of COPD development and the exact picture of the time-course and interplay of the events during stable, exacerbated, corticosteroid-treated COPD states, and transitions in-between. Several generally recognized mechanisms will be discussed shortly herein, ie, unregulated inflammation, proteolysis/antiproteolysis imbalance, and destroyed repair mechanisms, while novel topics such as deviated microbiota, air pollutants-related damage, and autoimmune process within the lung tissue will be discussed more extensively. Considerable influx of new data from the clinic, in vivo and in vitro studies stimulate to search for novel concise explanation and holistic understanding of COPD nowadays.
Collapse
Affiliation(s)
- Edvardas Bagdonas
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Jovile Raudoniute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ieva Bruzauskaite
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|