1
|
Tsai YC, Huang SM, Peng HH, Lin SW, Lin SR, Chin TY, Huang SM. Imbalance of synaptic and extrasynaptic NMDA receptors induced by the deletion of CRMP1 accelerates age-related cognitive decline in mice. Neurobiol Aging 2024; 135:48-59. [PMID: 38176125 DOI: 10.1016/j.neurobiolaging.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age. Here we investigated whether CRMP1 is involved in age-related cognitive decline in WT and crmp1 KO mice at adult, middle-aged and older stages. The results revealed that cognitive dysfunction in the Morris water maze task became more severe and decreased glutamate and glutamine level in middle-aged crmp1 KO mice. Additionally, increasing levels of extrasynaptic NMDA receptors and phosphorylation of Tau were observed in middle-aged crmp1 KO mice, leading to synaptic and neuronal loss in the CA3 regions of hippocampus. These findings suggest that deletion of CRMP1 accelerates age-related cognitive decline by disrupting the balance between synaptic and extrasynaptic NMDA receptors, resulting in the loss of synapses and neurons.
Collapse
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Roos A, van der Ven PFM, Alrohaif H, Kölbel H, Heil L, Della Marina A, Weis J, Aßent M, Beck-Wödl S, Barresi R, Töpf A, O’Connor K, Sickmann A, Kohlschmidt N, El Gizouli M, Meyer N, Daya N, Grande V, Bois K, Kaiser FJ, Vorgerd M, Schröder C, Schara-Schmidt U, Gangfuss A, Evangelista T, Röbisch L, Hentschel A, Grüneboom A, Fuerst DO, Kuechler A, Tzschach A, Depienne C, Lochmüller H. Bi-allelic variants of FILIP1 cause congenital myopathy, dysmorphism and neurological defects. Brain 2023; 146:4200-4216. [PMID: 37163662 PMCID: PMC10545528 DOI: 10.1093/brain/awad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.
Collapse
Affiliation(s)
- Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Hadil Alrohaif
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
- Kuwait Medical Genetics Center, Sabah Hospital, Kuwait City, Kuwait
| | - Heike Kölbel
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Marvin Aßent
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Kaela O’Connor
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | | | - Magdeldin El Gizouli
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nancy Meyer
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Nassam Daya
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Valentina Grande
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Karin Bois
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Luisa Röbisch
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Andreas Hentschel
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Anika Grüneboom
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Dieter O Fuerst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Andreas Tzschach
- Medical Center, Faculty of Medicine, Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hanns Lochmüller
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8L1, Canada
| |
Collapse
|
3
|
Grande V, Schuld J, van der Ven PFM, Gruss OJ, Fürst DO. Filamin-A-interacting protein 1 (FILIP1) is a dual compartment protein linking myofibrils and microtubules during myogenic differentiation and upon mechanical stress. Cell Tissue Res 2023:10.1007/s00441-023-03776-4. [PMID: 37178194 DOI: 10.1007/s00441-023-03776-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Variations in the gene encoding filamin-A-interacting protein 1 (FILIP1) were identified to be associated with a combination of neurological and muscular symptoms. While FILIP1 was shown to regulate motility of brain ventricular zone cells, a process important for corticogenesis, the function of the protein in muscle cells has been less well characterized. The expression of FILIP1 in regenerating muscle fibres predicted a role in early muscle differentiation. Here we analysed expression and localization of FILIP1 and its binding partners filamin-C (FLNc) and microtubule plus-end-binding protein EB3 in differentiating cultured myotubes and adult skeletal muscle. Prior to the development of cross-striated myofibrils, FILIP1 is associated with microtubules and colocalizes with EB3. During further myofibril maturation its localization changes, and FILIP1 localizes to myofibrillar Z-discs together with the actin-binding protein FLNc. Forced contractions of myotubes by electrical pulse stimulation (EPS) induce focal disruptions in myofibrils and translocation of both proteins from Z-discs to these lesions, suggesting a role in induction and/or repair of these structures. The immediate proximity of tyrosylated, dynamic microtubules and EB3 to lesions implies that also these play a role in these processes. This implication is supported by the fact that in nocodazole-treated myotubes that lack functional microtubules, the number of lesions induced by EPS is significantly reduced. In summary, we here show that FILIP1 is a cytolinker protein that is associated with both microtubules and actin filaments, and might play a role in the assembly of myofibrils and their stabilization upon mechanical stress to protect them from damage.
Collapse
Affiliation(s)
- Valentina Grande
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Julia Schuld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Oliver J Gruss
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany.
| |
Collapse
|
4
|
Phldb2 is essential for regulating hippocampal dendritic spine morphology through drebrin in an adult-type isoform-specific manner. Neurosci Res 2022; 185:1-10. [PMID: 36162735 DOI: 10.1016/j.neures.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP3. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover. Drebrin is one of the most abundant neuron-specific F-actin-binding proteins that are pivotal for synaptic morphology and plasticity. We observed that Phldb2 bound to drebrin A (adult-type drebrin), but not to drebrin E (embryonic-type drebrin). In the absence of Phldb2, the subcellular localization of drebrin A in the hippocampal spines and its distribution in the hippocampus were altered. Immature spines, such as the filopodium type, increased relatively in the CA1 regions of the hippocampus, whereas mushroom spines, a typical mature type, decreased in Phldb2-/- mice. Phldb2 suppressed the formation of an abnormal filopodium structure induced by drebrin A overexpression. Taken together, these findings demonstrate that Phldb2 is pivotal for dendritic spine morphology and possibly for synaptic plasticity in mature animals by regulating drebrin A localization.
Collapse
|
5
|
Berto S, Treacher AH, Caglayan E, Luo D, Haney JR, Gandal MJ, Geschwind DH, Montillo AA, Konopka G. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nat Commun 2022; 13:3328. [PMID: 35680911 PMCID: PMC9184501 DOI: 10.1038/s41467-022-31053-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Gene expression covaries with brain activity as measured by resting state functional magnetic resonance imaging (MRI). However, it is unclear how genomic differences driven by disease state can affect this relationship. Here, we integrate from the ABIDE I and II imaging cohorts with datasets of gene expression in brains of neurotypical individuals and individuals with autism spectrum disorder (ASD) with regionally matched brain activity measurements from fMRI datasets. We identify genes linked with brain activity whose association is disrupted in ASD. We identified a subset of genes that showed a differential developmental trajectory in individuals with ASD compared with controls. These genes are enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-inhibition imbalance in ASD. We further assessed differences at the regional level showing that the primary visual cortex is the most affected region in ASD. Our results link disrupted brain expression patterns of individuals with ASD to brain activity and show developmental, cell type, and regional enrichment of activity linked genes.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alex H Treacher
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Danni Luo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jillian R Haney
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Gandal
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel H Geschwind
- Program in Neurobehavioral Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Albert A Montillo
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
6
|
Shalev I, Somekh J, Eran A. Multimodal bioinformatic analyses of the neurodegenerative disease-associated TECPR2 gene reveal its diverse roles. J Med Genet 2021; 59:1002-1009. [PMID: 34933910 DOI: 10.1136/jmedgenet-2021-108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Loss of tectonin β-propeller repeat-containing 2 (TECPR2) function has been implicated in an array of neurodegenerative disorders, yet its physiological function remains largely unknown. Understanding TECPR2 function is essential for developing much needed precision therapeutics for TECPR2-related diseases. METHODS We leveraged considerable amounts of functional data to obtain a comprehensive perspective of the role of TECPR2 in health and disease. We integrated expression patterns, population variation, phylogenetic profiling, protein-protein interactions and regulatory network data for a minimally biased multimodal functional analysis. Genes and proteins linked to TECPR2 via multiple lines of evidence were subject to functional enrichment analyses to identify molecular mechanisms involving TECPR2. RESULTS TECPR2 was found to be part of a tight neurodevelopmental gene expression programme that includes KIF1A, ATXN1, TOM1L2 and FA2H, all implicated in neurological diseases. Functional enrichment analyses of TECPR2-related genes converged on a role in late autophagy and ribosomal processes. Large-scale population variation data demonstrated that this role is non-redundant. CONCLUSIONS TECPR2 might serve as an indicator for the energy balance between protein synthesis and autophagy, and a marker for diseases associated with their imbalance, such as Alzheimer's disease and Huntington's disease. Specifically, we speculate that TECPR2 plays an important role as a proteostasis regulator during synaptogenesis, highlighting its importance in developing neurons. By advancing our understanding of TECPR2 function, this work provides an essential stepping stone towards the development of precision diagnostics and targeted treatment options for TECPR2-related disorders.
Collapse
Affiliation(s)
- Ido Shalev
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Alal Eran
- Zlotowsky Center for Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Conventional and Non-Conventional Roles of Non-Muscle Myosin II-Actin in Neuronal Development and Degeneration. Cells 2020; 9:cells9091926. [PMID: 32825197 PMCID: PMC7566000 DOI: 10.3390/cells9091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022] Open
Abstract
Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.
Collapse
|
8
|
Yagi H, Takabayashi T, Xie MJ, Kuroda K, Sato M. Subcellular distribution of non-muscle myosin IIb is controlled by FILIP through Hsc70. PLoS One 2017; 12:e0172257. [PMID: 28234934 PMCID: PMC5325215 DOI: 10.1371/journal.pone.0172257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
The neuronal spine is a small, actin-rich dendritic or somatic protrusion that serves as the postsynaptic compartment of the excitatory synapse. The morphology of the spine reflects the activity of the synapse and is regulated by the dynamics of the actin cytoskeleton inside, which is controlled by actin binding proteins such as non-muscle myosin. Previously, we demonstrated that the subcellular localization and function of myosin IIb are regulated by its binding partner, filamin-A interacting protein (FILIP). However, how the subcellular distribution of myosin IIb is controlled by FILIP is not yet known. The objective of this study was to identify potential binding partners of FILIP that contribute to its regulation of non-muscle myosin IIb. Pull-down assays detected a 70-kDa protein that was identified by mass spectrometry to be the chaperone protein Hsc70. The binding of Hsc70 to FILIP was controlled by the adenosine triphosphatase (ATPase) activity of Hsc70. Further, FILIP bound to Hsc70 via a domain that was not required for binding non-muscle myosin IIb. Inhibition of ATPase activity of Hsc70 impaired the effect of FILIP on the subcellular distribution of non-muscle myosin IIb. Further, in primary cultured neurons, an inhibitor of Hsc70 impeded the morphological change in spines induced by FILIP. Collectively, these results demonstrate that Hsc70 interacts with FILIP to mediate its effects on non-muscle myosin IIb and to regulate spine morphology.
Collapse
Affiliation(s)
- Hideshi Yagi
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, Hyogo, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Min-Jue Xie
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kazuki Kuroda
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Makoto Sato
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Arnold N, Girke T, Sureshchandra S, Messaoudi I. Acute Simian Varicella Virus Infection Causes Robust and Sustained Changes in Gene Expression in the Sensory Ganglia. J Virol 2016; 90:10823-10843. [PMID: 27681124 PMCID: PMC5110160 DOI: 10.1128/jvi.01272-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV), a neurotropic alphaherpesvirus, results in varicella. VZV establishes latency in the sensory ganglia and can reactivate later in life to cause herpes zoster. The relationship between VZV and its host during acute infection in the sensory ganglia is not well understood due to limited access to clinical specimens. Intrabronchial inoculation of rhesus macaques with simian varicella virus (SVV) recapitulates the hallmarks of VZV infection in humans. We leveraged this animal model to characterize the host-pathogen interactions in the ganglia during both acute and latent infection by measuring both viral and host transcriptomes on days postinfection (dpi) 3, 7, 10, 14, and 100. SVV DNA and transcripts were detected in sensory ganglia 3 dpi, before the appearance of rash. CD4 and CD8 T cells were also detected in the sensory ganglia 3 dpi. Moreover, lung-resident T cells isolated from the same animals 3 dpi also harbored SVV DNA and transcripts, suggesting that T cells may be responsible for trafficking SVV to the ganglia. Transcriptome sequencing (RNA-Seq) analysis showed that cessation of viral transcription 7 dpi coincides with a robust antiviral innate immune response in the ganglia. Interestingly, a significant number of genes that play a critical role in nervous system development and function remained downregulated into latency. These studies provide novel insights into host-pathogen interactions in the sensory ganglia during acute varicella and demonstrate that SVV infection results in profound and sustained changes in neuronal gene expression. IMPORTANCE Many aspects of VZV infection of sensory ganglia remain poorly understood, due to limited access to human specimens and the fact that VZV is strictly a human virus. Infection of rhesus macaques with simian varicella virus (SVV), a homolog of VZV, provides a robust model of the human disease. Using this model, we show that SVV reaches the ganglia early after infection, most likely by T cells, and that the induction of a robust innate immune response correlates with cessation of virus transcription. We also report significant changes in the expression of genes that play an important role in neuronal function. Importantly, these changes persist long after viral replication ceases. Given the homology between SVV and VZV, and the genetic and physiological similarities between rhesus macaques and humans, our results provide novel insight into the interactions between VZV and its human host and explain some of the neurological consequences of VZV infection.
Collapse
Affiliation(s)
- Nicole Arnold
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
| | - Thomas Girke
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California, USA
| | - Suhas Sureshchandra
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
| | - Ilhem Messaoudi
- Graduate Program in Microbiology, University of California-Riverside, Riverside, California, USA
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California-Riverside, Riverside, California, USA
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
10
|
Yagi H, Oka Y, Komada M, Xie MJ, Noguchi K, Sato M. Filamin A interacting protein plays a role in proper positioning of callosal projection neurons in the cortex. Neurosci Lett 2016; 612:18-24. [DOI: 10.1016/j.neulet.2015.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/07/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022]
|
11
|
Bu Y, Wang N, Wang S, Sheng T, Tian T, Chen L, Pan W, Zhu M, Luo J, Lu W. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity. J Biol Chem 2015; 290:25395-410. [PMID: 26330558 DOI: 10.1074/jbc.m115.644229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.
Collapse
Affiliation(s)
- Yunfei Bu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Ning Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Shaoli Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tao Sheng
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tian Tian
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Linlin Chen
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Weiwei Pan
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Minsheng Zhu
- the Key Laboratory of Model Animal for Disease Study of the Ministry of Education of China, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province 210063, China, and
| | - Jianhong Luo
- the Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Wei Lu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China, the Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China,
| |
Collapse
|