1
|
Cai Q, Castagnola V, Boselli L, Moura A, Lopez H, Zhang W, de Araújo JM, Dawson KA. A microfluidic approach for synthesis and kinetic profiling of branched gold nanostructures. NANOSCALE HORIZONS 2022; 7:288-298. [PMID: 35119063 DOI: 10.1039/d1nh00540e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Automatized approaches for nanoparticle synthesis and characterization represent a great asset to their applicability in the biomedical field by improving reproducibility and standardization, which help to meet the selection criteria of regulatory authorities. The scaled-up production of nanoparticles with carefully defined characteristics, including intrinsic morphological features, and minimal intra-batch, batch-to-batch, and operator variability, is an urgent requirement to elevate nanotechnology towards more trustable biological and technological applications. In this work, microfluidic approaches were employed to achieve fast mixing and good reproducibility in synthesizing a variety of gold nanostructures. The microfluidic setup allowed exploiting spatial resolution to investigate the growth evolution of the complex nanoarchitectures. By physically isolating intermediate reaction fractions, we performed an advanced characterization of the shape properties during their growth, not possible with routine characterization methods. Employing an in-house developed method to assign a specific identity to shapes, we followed the particle growth/deformation process and identified key reaction parameters for more precise control of the generated morphologies. Besides, this investigation led to the optimization of a one-pot multi-size and multi-shape synthesis of a variety of gold nanoparticles. In summary, we describe an optimized platform for highly controlled synthesis and a novel approach for the mechanistic study of shape-evolving nanomaterials.
Collapse
Affiliation(s)
- Qi Cai
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Valentina Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Luca Boselli
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Alirio Moura
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Hender Lopez
- School of Physics and Optometric & Clinical Sciences, Technological University Dublin, Grangegorman, D07 XT95, Ireland
| | - Wei Zhang
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - João M de Araújo
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Mokkath JH, Muhammed MM, Chamkha AJ. Free Energy Surfaces and Barriers for Vacancy Diffusion on Al(100), Al(110), Al(111) Reconstructed Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:76. [PMID: 35010027 PMCID: PMC8746563 DOI: 10.3390/nano12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metadynamics is a popular enhanced sampling method based on the recurrent application of a history-dependent adaptive bias potential that is a function of a selected number of appropriately chosen collective variables. In this work, using metadynamics simulations, we performed a computational study for the diffusion of vacancies on three different Al surfaces [reconstructed Al(100), Al(110), and Al(111) surfaces]. We explored the free energy landscape of diffusion and estimated the barriers associated with this process on each surface. It is found that the surfaces are unique regarding vacancy diffusion. More specically, the reconstructed Al(110) surface presents four metastable states on the free energy surface having sizable and connected passage-ways with an energy barrier of height 0.55 eV. On the other hand, the reconstructed Al(100)/Al(111) surfaces exhibit two/three metastable states, respectively, with an energy barrier of height 0.33 eV. The findings in this study can help to understand surface vacancy diffusion in technologically relevant Al surfaces.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Kuwait City P.O. Box 27235, Kuwait
| | - Mufasila Mumthaz Muhammed
- School of Engineering & Computing, American International University, Saad Al Abdullah-East of Naseem, Block 3, Kuwait;
| | - Ali J. Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha 35004, Kuwait;
| |
Collapse
|
3
|
Griffiths J, Földes T, de Nijs B, Chikkaraddy R, Wright D, Deacon WM, Berta D, Readman C, Grys DB, Rosta E, Baumberg JJ. Resolving sub-angstrom ambient motion through reconstruction from vibrational spectra. Nat Commun 2021; 12:6759. [PMID: 34799553 PMCID: PMC8604935 DOI: 10.1038/s41467-021-26898-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Metal/organic-molecule interactions underpin many key chemistries but occur on sub-nm scales where nanoscale visualisation techniques tend to average over heterogeneous distributions. Single molecule imaging techniques at the atomic scale have found it challenging to track chemical behaviour under ambient conditions. Surface-enhanced Raman spectroscopy can optically monitor the vibrations of single molecules but understanding is limited by the complexity of spectra and mismatch between theory and experiment. We demonstrate that spectra from an optically generated metallic adatom near a molecule of interest can be inverted into dynamic sub-Å metal-molecule interactions using a comprehensive model, revealing anomalous diffusion of a single atom. Transient metal-organic coordination bonds chemically perturb molecular functional groups > 10 bonds away. With continuous improvements in computational methods for modelling large and complex molecular systems, this technique will become increasingly applicable to accurately tracking more complex chemistries.
Collapse
Affiliation(s)
- Jack Griffiths
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Tamás Földes
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Demelza Wright
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - William M Deacon
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Dénes Berta
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Charlie Readman
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Edina Rosta
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK.,Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
4
|
Hudry D, De Backer A, Popescu R, Busko D, Howard IA, Bals S, Zhang Y, Pedrazo-Tardajos A, Van Aert S, Gerthsen D, Altantzis T, Richards BS. Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104441. [PMID: 34697908 DOI: 10.1002/smll.202104441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Advances in controlling energy migration pathways in core-shell lanthanide (Ln)-based hetero-nanocrystals (HNCs) have relied heavily on assumptions about how optically active centers are distributed within individual HNCs. In this article, it is demonstrated that different types of interface patterns can be formed depending on shell growth conditions. Such interface patterns are not only identified but also characterized with spatial resolution ranging from the nanometer- to the atomic-scale. In the most favorable cases, atomic-scale resolved maps of individual particles are obtained. It is also demonstrated that, for the same type of core-shell architecture, the interface pattern can be engineered with thicknesses of just 1 nm up to several tens of nanometers. Total alloying between the core and shell domains is also possible when using ultra-small particles as seeds. Finally, with different types of interface patterns (same architecture and chemical composition of the core and shell domains) it is possible to modify the output color (yellow, red, and green-yellow) or change (improvement or degradation) the absolute upconversion quantum yield. The results presented in this article introduce an important paradigm shift and pave the way toward the emergence of a new generation of core-shell Ln-based HNCs with better control over their atomic-scale organization.
Collapse
Affiliation(s)
- Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Annick De Backer
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Yang Zhang
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Adrian Pedrazo-Tardajos
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sandra Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131, Karlsruhe, Germany
| | - Thomas Altantzis
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| |
Collapse
|
5
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Yang D, Phillips NW, Song K, Harder RJ, Cha W, Hofmann F. Annealing of focused ion beam damage in gold microcrystals: an in situ Bragg coherent X-ray diffraction imaging study. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:550-565. [PMID: 33650568 PMCID: PMC7941296 DOI: 10.1107/s1600577520016264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
Focused ion beam (FIB) techniques are commonly used to machine, analyse and image materials at the micro- and nanoscale. However, FIB modifies the integrity of the sample by creating defects that cause lattice distortions. Methods have been developed to reduce FIB-induced strain; however, these protocols need to be evaluated for their effectiveness. Here, non-destructive Bragg coherent X-ray diffraction imaging is used to study the in situ annealing of FIB-milled gold microcrystals. Two non-collinear reflections are simultaneously measured for two different crystals during a single annealing cycle, demonstrating the ability to reliably track the location of multiple Bragg peaks during thermal annealing. The thermal lattice expansion of each crystal is used to calculate the local temperature. This is compared with thermocouple readings, which are shown to be substantially affected by thermal resistance. To evaluate the annealing process, each reflection is analysed by considering facet area evolution, cross-correlation maps of the displacement field and binarized morphology, and average strain plots. The crystal's strain and morphology evolve with increasing temperature, which is likely to be caused by the diffusion of gallium in gold below ∼280°C and the self-diffusion of gold above ∼280°C. The majority of FIB-induced strains are removed by 380-410°C, depending on which reflection is being considered. These observations highlight the importance of measuring multiple reflections to unambiguously interpret material behaviour.
Collapse
Affiliation(s)
- David Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Nicholas W. Phillips
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Kay Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Ross J. Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Felix Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
7
|
Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat Commun 2021; 12:859. [PMID: 33558516 PMCID: PMC7870895 DOI: 10.1038/s41467-021-21017-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/08/2021] [Indexed: 11/08/2022] Open
Abstract
Alloying noble metals with non-noble metals enables high activity while reducing the cost of electrocatalysts in fuel cells. However, under fuel cell operating conditions, state-of-the-art oxygen reduction reaction alloy catalysts either feature high atomic percentages of noble metals (>70%) with limited durability or show poor durability when lower percentages of noble metals (<50%) are used. Here, we demonstrate a highly-durable alloy catalyst derived by alloying PtPd (<50%) with 3d-transition metals (Cu, Ni or Co) in ternary compositions. The origin of the high durability is probed by in-situ/operando high-energy synchrotron X-ray diffraction coupled with pair distribution function analysis of atomic phase structures and strains, revealing an important role of realloying in the compressively-strained single-phase alloy state despite the occurrence of dealloying. The implication of the finding, a striking departure from previous perceptions of phase-segregated noble metal skin or complete dealloying of non-noble metals, is the fulfilling of the promise of alloy catalysts for mass commercialization of fuel cells.
Collapse
|
8
|
Huang Y, Zeng L, Liu C, Zeng D, Liu Z, Liu X, Zhong X, Guo W, Li L. Laser Direct Writing of Heteroatom (N and S)-Doped Graphene from a Polybenzimidazole Ink Donor on Polyethylene Terephthalate Polymer and Glass Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803143. [PMID: 30284372 DOI: 10.1002/smll.201803143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/03/2018] [Indexed: 05/11/2023]
Abstract
In this paper, for the first time, a laser direct writing technique is reported to form S- and N-doped graphene patterns on thin (0.3 mm thickness) polyethylene terephthalate (PET) and glass substrates from a specially formulated organic polybenzimidazole (PBI) ink, without thermally affecting the substrates and without the need for a metallic precursor. Unlike standard graphene ink printing, postcuring at high temperatures is not needed here, thus avoiding potential substrate distortion and damages. A UV laser beam of 355 nm wavelength is used to generate photochemical reactions to break the CS bond (2.8 eV) from dimethyl sulfoxide (DMSO, a component of the PBI ink) and the CN bond (3.14 eV) of PBI and form N- and S-doped graphene on the substrates. The sheet resistance of the laser-induced graphene is as low as 12 Ω sq-1 on PET, matching that of indium-tin oxide (ITO). The laser-written doped graphene shows hydrophilic characteristics, unlike pristine graphene. The S- and N-doped graphene allows the tailoring of bandgaps and thus controlling electrical and chemical properties. The optical transparency of the written graphene is below 10% which could be improved in the future. Potential applications include printing of flexible circuits and sensors, and smart wearables.
Collapse
Affiliation(s)
- Yihe Huang
- Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Lei Zeng
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Chongguang Liu
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Desen Zeng
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Zhu Liu
- Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester, M13 9PL, UK
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Xuqing Liu
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiangli Zhong
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Wei Guo
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Lin Li
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Bragg Coherent Diffractive Imaging of Zinc Oxide Acoustic Phonons at Picosecond Timescales. Sci Rep 2017; 7:9823. [PMID: 28852007 PMCID: PMC5574892 DOI: 10.1038/s41598-017-09999-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/01/2017] [Indexed: 11/08/2022] Open
Abstract
Mesoscale thermal transport is of fundamental interest and practical importance in materials such as thermoelectrics. Coherent lattice vibrations (acoustic phonons) govern thermal transport in crystalline solids and are affected by the shape, size, and defect density in nanoscale materials. The advent of hard x-ray free electron lasers (XFELs) capable of producing ultrafast x-ray pulses has significantly impacted the understanding of acoustic phonons by enabling their direct study with x-rays. However, previous studies have reported ensemble-averaged results that cannot distinguish the impact of mesoscale heterogeneity on the phonon dynamics. Here we use Bragg coherent diffractive imaging (BCDI) to resolve the 4D evolution of the acoustic phonons in a single zinc oxide rod with a spatial resolution of 50 nm and a temporal resolution of 25 picoseconds. We observe homogeneous (lattice breathing/rotation) and inhomogeneous (shear) acoustic phonon modes, which are compared to finite element simulations. We investigate the possibility of changing phonon dynamics by altering the crystal through acid etching. We find that the acid heterogeneously dissolves the crystal volume, which will significantly impact the phonon dynamics. In general, our results represent the first step towards understanding the effect of structural properties at the individual crystal level on phonon dynamics.
Collapse
|
10
|
Nicklin C, Arnold T, Rawle J, Warne A. Diamond beamline I07: a beamline for surface and interface diffraction. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1245-53. [PMID: 27577783 PMCID: PMC5006655 DOI: 10.1107/s1600577516009875] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 05/22/2023]
Abstract
Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying.
Collapse
Affiliation(s)
- Chris Nicklin
- Beamline I07, Diamond Light Source Ltd, UK
- Correspondence e-mail:
| | - Tom Arnold
- Beamline I07, Diamond Light Source Ltd, UK
| | | | - Adam Warne
- Beamline I07, Diamond Light Source Ltd, UK
| |
Collapse
|