1
|
Puente‐Sánchez F, Macías‐Pérez LA, Campbell KL, Royo‐Llonch M, Balagué V, Sánchez P, Tamames J, Mundy CJ, Pedrós‐Alió C. Bacterioplankton taxa compete for iron along the early spring-summer transition in the Arctic Ocean. Ecol Evol 2024; 14:e11546. [PMID: 38895568 PMCID: PMC11183961 DOI: 10.1002/ece3.11546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Microbial assemblages under the sea ice of the Dease Strait, Canadian Arctic, were sequenced for metagenomes of a small size fraction (0.2-3 μm). The community from early March was typical for this season, with Alpha- and Gammaproteobacteria as the dominant taxa, followed by Thaumarchaeota and Bacteroidetes. Toward summer, Bacteroidetes, and particularly the genus Polaribacter, became increasingly dominant, followed by the Gammaproteobacteria. Analysis of genes responsible for microbial acquisition of iron showed an abundance of ABC transporters for divalent cations and ferrous iron. The most abundant transporters, however, were the outer membrane TonB-dependent transporters of iron-siderophore complexes. The abundance of iron acquisition genes suggested this element was essential for the microbial assemblage. Interestingly, Gammaproteobacteria were responsible for most of the siderophore synthesis genes. On the contrary, Bacteroidetes did not synthesize siderophores but accounted for most of the transporters, suggesting a role as cheaters in the competition for siderophores as public goods. This cheating ability of the Bacteroidetes may have contributed to their dominance in the summer.
Collapse
Affiliation(s)
- Fernando Puente‐Sánchez
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
- Microbial Ecology Division, Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
- Present address:
Department of Aquatic Sciences and AssessmentSwedish University for Agricultural Sciences (SLU)UppsalaSweden
| | - Luis Alberto Macías‐Pérez
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
- Present address:
Department of Evolutionary and Integrative EcologyLeibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Karley L. Campbell
- UiT The Arctic University of NorwayTromsøNorway
- Centre for Earth Observation Science, University of ManitobaWinnipegManitobaCanada
- Present address:
UiT The Arctic University of NorwayTromsøNorway
| | - Marta Royo‐Llonch
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Pablo Sánchez
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar, CSICBarcelonaSpain
| | - Javier Tamames
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
| | | | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología, CSICMadridSpain
| |
Collapse
|
2
|
Krachler R, Krachler RF. Northern High-Latitude Organic Soils As a Vital Source of River-Borne Dissolved Iron to the Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9672-9690. [PMID: 34251212 DOI: 10.1021/acs.est.1c01439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic soils in the Arctic-boreal region produce small aquatic humic ligands (SAHLs), a category of naturally occurring complexing agents for iron. Every year, large amounts of SAHLs-loaded with iron mobilized in river basins-reach the oceans via river runoff. Recent studies have shown that a fraction of SAHLs belong to the group of strong iron-binding ligands in the ocean. That means, their Fe(III) complexes withstand dissociation even under the conditions of extremely high dilution in the open ocean. Fe(III)-loaded SAHLs are prone to UV-photoinduced ligand-to-metal charge-transfer which leads to disintegration of the complex and, as a consequence, to enhanced concentrations of bioavailable dissolved Fe(II) in sunlit upper water layers. On the other hand, in water depths below the penetration depth of UV, the Fe(III)-loaded SAHLs are fairly resistant to degradation which makes them ideally suited as long-lived molecular transport vehicles for river-derived iron in ocean currents. At locations where SAHLs are present in excess, they can bind to iron originating from various sources. For example, SAHLs were proposed to contribute substantially to the stabilization of hydrothermal iron in deep North Atlantic waters. Recent discoveries have shown that SAHLs, supplied by the Arctic Great Rivers, greatly improve dissolved iron concentrations in the Arctic Ocean and the North Atlantic Ocean. In these regions, SAHLs play a critical role in relieving iron limitation of phytoplankton, thereby supporting the oceanic sink for anthropogenic CO2. The present Critical Review describes the most recent findings and highlights future research directions.
Collapse
Affiliation(s)
- Regina Krachler
- Institute of Inorganic Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; http://anorg-chemie.univie.ac.at
| | - Rudolf F Krachler
- Institute of Inorganic Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria; http://anorg-chemie.univie.ac.at
| |
Collapse
|
3
|
A call for refining the role of humic-like substances in the oceanic iron cycle. Sci Rep 2020; 10:6144. [PMID: 32273548 PMCID: PMC7145848 DOI: 10.1038/s41598-020-62266-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Primary production by phytoplankton represents a major pathway whereby atmospheric CO2 is sequestered in the ocean, but this requires iron, which is in scarce supply. As over 99% of iron is complexed to organic ligands, which increase iron solubility and microbial availability, understanding the processes governing ligand dynamics is of fundamental importance. Ligands within humic-like substances have long been considered important for iron complexation, but their role has never been explained in an oceanographically consistent manner. Here we show iron co-varying with electroactive humic substances at multiple open ocean sites, with the ratio of iron to humics increasing with depth. Our results agree with humic ligands composing a large fraction of the iron-binding ligand pool throughout the water column. We demonstrate how maximum dissolved iron concentrations could be limited by the concentration and binding capacity of humic ligands, and provide a summary of the key processes that could influence these parameters. If this relationship is globally representative, humics could impose a concentration threshold that buffers the deep ocean iron inventory. This study highlights the dearth of humic data, and the immediate need to measure electroactive humics, dissolved iron and iron-binding ligands simultaneously from surface to depth, across different ocean basins.
Collapse
|
4
|
Laglera LM, Sukekava C, Slagter HA, Downes J, Aparicio-Gonzalez A, Gerringa LJA. First Quantification of the Controlling Role of Humic Substances in the Transport of Iron Across the Surface of the Arctic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13136-13145. [PMID: 31638387 DOI: 10.1021/acs.est.9b04240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the main reasons behind our current lack of understanding of iron cycling in the oceans is our inability to characterize the ligands that control iron solubility, photosensitivity, reactivity, and bioavailability. We currently lack consensus about the nature and origin of these ligands. Here, we present the first field application of a new methodological development that allows the selective quantification of the fraction of Fe complexed to humic substances (HS). In the HS-rich surface Arctic waters, including the Fe-rich Transpolar Drift (TPD), we found that HS iron binding groups were largely occupied by iron (49%). The overall contribution of Fe-HS complexes to DFe concentrations was substantial at 80% without significant differences between TPD and non-TPD waters. Stabilization and transport of large concentrations of DFe across the surface of the Arctic Ocean are due to the formation of high concentrations of Fe-HS complexes. Competition of Arctic Fe-HS complexes with desferrioxamine and EDTA indicated that their stability constants are considerably higher than the stability constants previously found for riverine HS in temperate estuaries and HS standard material. This is the first case of identification of the ligand-dominating iron speciation over a specific region of the global ocean.
Collapse
Affiliation(s)
| | | | - Hans A Slagter
- Department of Ocean Systems , NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University , Den Burg 1790 AB , The Netherlands
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute , University of Groningen , Groningen 9712 CP , The Netherlands
| | | | - Alberto Aparicio-Gonzalez
- Instituto Español de Oceanografía, Centre Oceanogràfic de Les Balears , Ecosystem Oceanography Group (GRECO) , Moll de Ponent S/n , Palma de Mallorca 07015 , Spain
| | - Loes J A Gerringa
- Department of Ocean Systems , NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University , Den Burg 1790 AB , The Netherlands
| |
Collapse
|
5
|
Mineral Phase-Element Associations Based on Sequential Leaching of Ferromanganese Crusts, Amerasia Basin Arctic Ocean. MINERALS 2018. [DOI: 10.3390/min8100460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferromanganese (FeMn) crusts from Mendeleev Ridge, Chukchi Borderland, and Alpha Ridge, in the Amerasia Basin, Arctic Ocean, are similar based on morphology and chemical composition. The crusts are characterized by a two- to four-layered stratigraphy. The chemical composition of the Arctic crusts differs significantly from hydrogenetic crusts from elsewhere of global ocean by high mean Fe/Mn ratios, high As, Li, V, Sc, and Th concentrations, and high detrital contents. Here, we present element distributions through crust stratigraphic sections and element phase association using several complementary techniques such as SEM-EDS, LA-ICP-MS, and sequential leaching, a widely employed method of element phase association that dissolves mineral phases of different stability step-by-step: Exchangeable cations and Ca carbonates, Mn-oxides, Fe-hydroxides, and residual fraction. Sequential leaching shows that the Arctic crusts have higher contents of most elements characteristic of the aluminosilicate phase than do Pacific crusts. Elements have similar distributions between the hydrogenetic Mn and Fe phases in all the Arctic and Pacific crusts. The main host phases for the elements enriched in the Arctic crusts over Pacific crusts (Li, As, Th, and V) are the Mn-phase for Li and Fe-phase for As, Th, and V; those elements also have higher contents in the residual aluminosilicate phase. Thus, higher concentrations of Li, As, Th, and V likely occur in the dissolved and particulate phases in bottom waters where the Arctic crusts grow, which has been shown to be true for Sc, also highly enriched in the crusts. The phase distributions of elements within the crust layers is mostly consistent among the Arctic crusts, being somewhat different in element concentrations in the residual phase.
Collapse
|
6
|
Chen M, Jung J, Lee YK, Hur J. Surface accumulation of low molecular weight dissolved organic matter in surface waters and horizontal off-shelf spreading of nutrients and humic-like fluorescence in the Chukchi Sea of the Arctic Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:624-632. [PMID: 29803036 DOI: 10.1016/j.scitotenv.2018.05.205] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Polar regions play unique roles in global overturning circulation, carbon cycling, and climate change. In this study, seawater dissolved organic matter (DOM) was characterized for the Chukchi Sea in the Arctic Ocean in the summer season. The seawater generally contains high concentrations of dissolved organic carbon (DOC, up to 92 μM C) and tyrosine-like fluorescence (up to 0.21 RU), and it was enriched with heteroatomic molecular formula with nitrogen-containing and sulfur-containing formulas counting 2246 (~41% of total identified molecular formula) and 1838 (~34%), respectively. Significant correlations were observed between salinity and the absorption coefficient at 254 nm, between chlorophyll-a and DOC as well as the tyrosine-like component, C270/302 (Cex/em maxima), and between biological index and two protein-like components, C275/338 and C305/344. A comparison between surface waters and close-to-seafloor deep waters suggested a trend of the accumulation of low molecular weight (LMW) fraction (~54-74%, nominal average molecular weight Mn < ~350 Da) in the surface waters. Another interesting finding from spatial data was an obvious horizontal off-shelf spreading of nutrients and humic-like fluorescence. This study sheds novel insights of DOM characteristics and dynamics in the highly productive polar sea.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea; Environmental Program, Guangdong Technion - Israel Institute of Technology, Shantou 515063, China
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
7
|
Mehrshad M, Rodriguez-Valera F, Amoozegar MA, López-García P, Ghai R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. THE ISME JOURNAL 2018; 12:655-668. [PMID: 29208946 PMCID: PMC5864207 DOI: 10.1038/s41396-017-0009-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/21/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
The dark ocean microbiota represents the unknown majority in the global ocean waters. The SAR202 cluster belonging to the phylum Chloroflexi was the first microbial lineage discovered to specifically inhabit the aphotic realm, where they are abundant and globally distributed. The absence of SAR202 cultured representatives is a significant bottleneck towards understanding their metabolic capacities and role in the marine environment. In this work, we use a combination of metagenome-assembled genomes from deep-sea datasets and publicly available single-cell genomes to construct a genomic perspective of SAR202 phylogeny, metabolism and biogeography. Our results suggest that SAR202 cluster members are medium sized, free-living cells with a heterotrophic lifestyle, broadly divided into two distinct clades. We present the first evidence of vertical stratification of these microbes along the meso- and bathypelagic ocean layers. Remarkably, two distinct species of SAR202 cluster are highly abundant in nearly all deep bathypelagic metagenomic datasets available so far. SAR202 members metabolize multiple organosulfur compounds, many appear to be sulfite-oxidizers and are predicted to play a major role in sulfur turnover in the dark water column. This concomitantly suggests an unsuspected availability of these nutrient sources to allow for the high abundance of these microbes in the deep sea.
Collapse
Affiliation(s)
- Maliheh Mehrshad
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | | | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Purificación López-García
- Ecologie, Systématique, Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| |
Collapse
|
8
|
Mendoza WG, Weiss EL, Schieber B, Greg Mitchell B. Controls on the distribution of fluorescent dissolved organic matter during an under-ice algal bloom in the western Arctic Ocean. GLOBAL BIOGEOCHEMICAL CYCLES 2017; 31:1118-1140. [PMID: 28989231 PMCID: PMC5606507 DOI: 10.1002/2016gb005569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
In this study we used fluorescence excitation and emission matrix spectroscopy, hydrographic data, and a self-organizing map (SOM) analysis to assess the spatial distribution of labile and refractory fluorescent dissolved organic matter (FDOM) for the Chukchi and Beaufort Seas at the time of a massive under-ice phytoplankton bloom during early summer 2011. Biogeochemical properties were assessed through decomposition of water property classes and sample classification that employed a SOM neural network-based analysis which classified 10 clusters from 269 samples and 17 variables. The terrestrial, humic-like component FDOM (ArC1, 4.98 ± 1.54 Quinine Sulfate Units (QSU)) and protein-like component FDOM (ArC3, 1.63 ± 0.88 QSU) were found to have elevated fluorescence in the Lower Polar Mixed Layer (LPML) (salinity ~29.56 ± 0.76). In the LPML water mass, the observed contribution of meteoric water fraction was 17%, relative to a 12% contribution from the sea ice melt fraction. The labile ArC3-protein-like component (2.01 ± 1.92 QSU) was also observed to be elevated in the Pacific Winter Waters mass, where the under-ice algal bloom was observed (~40-50 m). We interpreted these relationships to indicate that the accumulation and variable distribution of the protein-like component on the shelf could be influenced directly by sea ice melt, transport, and mixing processes and indirectly by the in situ algal bloom and microbial activity. ArC5, corresponding to what is commonly considered marine humic FDOM, indicated a bimodal distribution with high values in both the freshest and saltiest waters. The association of ArC5 with deep, dense salty water is consistent with this component as refractory humic-like FDOM, whereas our evidence of a terrestrial origin challenges this classic paradigm for this component.
Collapse
Affiliation(s)
- Wilson G. Mendoza
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Atlantic Ecology Division, NHEERLU.S. Environmental Protection AgencyNarragansettRhode IslandUSA
| | - Elliot L. Weiss
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Brian Schieber
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - B. Greg Mitchell
- Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
9
|
Chen M, Kim JH, Nam SI, Niessen F, Hong WL, Kang MH, Hur J. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Sci Rep 2016; 6:39213. [PMID: 27982085 PMCID: PMC5159788 DOI: 10.1038/srep39213] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/21/2016] [Indexed: 11/09/2022] Open
Abstract
Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p < 0.0001), suggesting a link to organic matter degradation. This inference was supported by the positive correlation (R2 > 0.95, p < 0.0001) between the net production of FDOM and the modeled degradation rates of particulate organic carbon sulfate reduction. The production of FDOM was more pronounced in a shallow shelf site S1 with a total net production ranging from 17.9 to 62.3 RU for different FDOM components above the SMTZ depth of ca. 4.1 mbsf, which presumably underwent more accumulation of particulate organic matter than the other three deeper sites. The sediments were generally found to be the sources of CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.
Collapse
Affiliation(s)
- Meilian Chen
- Department of Environment &Energy, Sejong University, Seoul 05006, South Korea
| | - Ji-Hoon Kim
- Petroleum &Marine Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea
| | - Seung-Il Nam
- Division of Polar Paleoenvironment Korea Polar Research Institute, Incheon 21990, South Korea
| | - Frank Niessen
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Alten Hafen 26, 27568 Bremerhaven, Germany
| | - Wei-Li Hong
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Moo-Hee Kang
- Petroleum &Marine Division, Korea Institute of Geoscience and Mineral Resources, 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea
| | - Jin Hur
- Department of Environment &Energy, Sejong University, Seoul 05006, South Korea
| |
Collapse
|
10
|
Tanaka K, Takesue N, Nishioka J, Kondo Y, Ooki A, Kuma K, Hirawake T, Yamashita Y. The conservative behavior of dissolved organic carbon in surface waters of the southern Chukchi Sea, Arctic Ocean, during early summer. Sci Rep 2016; 6:34123. [PMID: 27658444 PMCID: PMC5034254 DOI: 10.1038/srep34123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/02/2016] [Indexed: 11/24/2022] Open
Abstract
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation.
Collapse
Affiliation(s)
- Kazuki Tanaka
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Takesue
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Pan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Jun Nishioka
- Pan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Yoshiko Kondo
- National Institute of Polar Research, Tokyo, Japan.,Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Ooki
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Kenshi Kuma
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Toru Hirawake
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Youhei Yamashita
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan.,Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|