1
|
You Z, Zhang J, Xu Y, Lu J, Zhang R, Zhu Z, Wang Y, Hao Y. Identification of the Biomarkers for Chronic Gastritis with TCM Damp Phlegm Pattern by Using Tongue Coating Metabolomics. J Inflamm Res 2024; 17:8027-8045. [PMID: 39507266 PMCID: PMC11539634 DOI: 10.2147/jir.s480307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to establish a model for identifying chronic gastritis with the traditional Chinese medicine damp phlegm pattern by examining metabolite changes in the tongue coating of patients. It also explored the role of metabolic pathways in the pathogenesis of this condition. Methods This cross-sectional study involved 300 patients diagnosed with chronic gastritis. Of these, 200 patients exhibited the damp phlegm pattern, while 100 did not. Metabolomic methods employing GC-TOF-MS and UHPLC-QE-MS were utilized to identify various metabolites in the tongue coating of patients. An identification model for chronic gastritis with the damp phlegm pattern was created based on ROC curves derived from differential biomarkers. Additionally, 50 samples not included in model construction were collected for external validation. Results Comparison of the damp phlegm pattern group with the non-damp phlegm pattern group revealed a total of 116 differential metabolites. Among these, lipids and lipid-like compounds were most abundant, comprising 27 types, which included four lipid metabolites related to sphingomyelin metabolism. The ROC model, which included phenol, 2.6-diaminoheptanedioic acid, and N-hexadecanoyl pyrrolidine, demonstrated the highest accuracy, with accuracy, sensitivity, and specificity metrics of 94.0%, 91.0%, and 87.0%, respectively. Furthermore, external validation using tongue coating metabolites from 50 patients revealed accuracy, sensitivity, and specificity in the validation set of 93.9%, 90.6%, and 83.3%, respectively. Conclusion Differential metabolites between patients with the damp phlegm pattern and those without are primarily lipids and lipid-like compounds. N-hexadecanoyl pyrrolidine, phenol, and 2.6-diaminoheptanedioic acid may serve as potential biomarkers for chronic gastritis characterized by the damp phlegm pattern.
Collapse
Affiliation(s)
- Zhiyuan You
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jialin Zhang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yifeng Xu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Junhong Lu
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Renling Zhang
- Gastroenterology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhujing Zhu
- Rheumatology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yiqin Wang
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yiming Hao
- Shanghai Key Laboratory of Health Identification and Assessment/Laboratory of TCM Four Diagnostic Information, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
2
|
D'Mello R, Hüttmann N, Minic Z, V Berezovski M. Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer. Metabolomics 2024; 20:123. [PMID: 39487276 DOI: 10.1007/s11306-024-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis. OBJECTIVE We aim to study metabolites in small EVs to find biomarkers for BC diagnosis. METHODS In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line. RESULTS Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers. CONCLUSION Metabolites from sEVs may be used for BC diagnosis.
Collapse
Affiliation(s)
- Rochelle D'Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Luo G, Wang S, Lu W, Ju W, Li J, Tan X, Zhao H, Han W, Yang X. Application of metabolomics in oral squamous cell carcinoma. Oral Dis 2024; 30:3719-3731. [PMID: 38376209 DOI: 10.1111/odi.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent malignancy affecting the head and neck region. The prognosis for OSCC patients remains unfavorable due to the absence of precise and efficient early diagnostic techniques. Metabolomics offers a promising approach for identifying distinct metabolites, thereby facilitating early detection and treatment of OSCC. OBJECTIVE This review aims to provide a comprehensive overview of recent advancements in metabolic marker identification for early OSCC diagnosis. Additionally, the clinical significance and potential applications of metabolic markers for the management of OSCC are discussed. RESULTS This review summarizes metabolic changes during the occurrence and development of oral squamous cell carcinoma and reviews prospects for the clinical application of characteristic, differential metabolites in saliva, serum, and OSCC tissue. In this review, the application of metabolomic technology in OSCC research was summarized, and future research directions were proposed. CONCLUSION Metabolomics, detection technology that is the closest to phenotype, can efficiently identify differential metabolites. Combined with statistical data analyses and artificial intelligence technology, it can rapidly screen characteristic biomarkers for early diagnosis, treatment, and prognosis evaluations.
Collapse
Affiliation(s)
- Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuai Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Ju
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianhong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Tan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Saravanan C, S M N Mydin RB, Mohamed Sheriff NR, Kaur G, Singh Dhaliwal S, Musa MY. Salivaomics in head and neck cancer. Clin Chim Acta 2024; 565:119952. [PMID: 39216814 DOI: 10.1016/j.cca.2024.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Salivaomics is a promising method for the early detection and monitoring of head and neck cancer (HNC). By analyzing salivary proteomics, RNA, and DNA, it identifies biomarkers that distinguish HNC patients from healthy individuals. Saliva's non-invasive, easily collectible nature and affordability make it an advantageous screening tool. Multiomics approaches, which explore genetic mutations, gene expression patterns, protein profiles, and metabolite levels, provide a comprehensive molecular perspective that enhances clinical applicability. The approaches enhance the precision of diagnoses, enable the development and application of targeted therapies, and contribute to the overall advancement of personalized medicine. Despite its potential, larger-scale studies are essential for validating biomarkers, and assessing sensitivity, accuracy, and specificity in detecting HNC. This review highlights salivaomics' potential as a non-invasive, accessible biological sample for early disease detection in HNC and underscores the value of multiomics in advancing this research. Salivaomics offers significant insights into the underlying mechanisms of HNC, enabling the discovery of robust, non-invasive biomarkers for improved disease management.
Collapse
Affiliation(s)
- Chandrarohini Saravanan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Rabiatul Basria S M N Mydin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM), 13200 Kepala Batas, Pulau Pinang, Malaysia.
| | - Nur Rizikin Mohamed Sheriff
- School of Distance Education, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Division of Research & Innovation, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Satvinder Singh Dhaliwal
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Australia; Duke-NUS Medical School, National University of Singapore, Queenstown, Singapore; Singapore University of Social Sciences, 463 Clementi Road, Clementi 599494, Singapore
| | - Muhamad Yusri Musa
- Department of Clinical Medicine, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; Pusat Perubatan, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang 84001, Malaysia
| |
Collapse
|
5
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Sun S, Zhang H, Ye L, Huang L, Du J, Liang X, Zhang X, Chen J, Jiang Y, Chen L. Combined analysis of the microbiome and metabolome to reveal the characteristics of saliva from different diets: a comparison among vegans, seafood-based omnivores, and red meat (beef and lamb) omnivores. Front Microbiol 2024; 15:1419686. [PMID: 39077734 PMCID: PMC11284149 DOI: 10.3389/fmicb.2024.1419686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Revealing individual characteristics is supportive for identifying individuals in forensic crime. As saliva is one of the most common biological samples used in crime scenes, it is important to make full use of the rich individual information contained in saliva. The aim of this study was to explore the application of the microbiome in forensic science by analysing differences in the salivary microbiome and metabolome of healthy individuals with different dietary habits. Methods We performed 16S rDNA sequencing analysis based on oral saliva samples collected from 12 vegetarians, 12 seafood omnivores and 12 beef and lamb omnivores. Non-targeted metabolomics analyses were also performed based on saliva samples from healthy individuals. Results The results showed that the dominant flora of vegetarians was dominated by Neisseria (belonging to the phylum Proteobacteria), while seafood omnivores and beef and lamb omnivores were dominated by Streptococcus (belonging to the phylum Firmicutes). NDMS-based and cluster analyses showed that vegetarian dieters were significantly differentiated from meat dieters (seafood omnivores and beef and lamb omnivores), which may be related to the fact that high-fiber diets can create a different salivary flora structure. Variants were also detected in salivary metabolic pathways, including positive correlations with Lipid metabolism, Amino acid metabolism, Carbohydrate metabolism, and Nucleotide metabolism in vegetarians, and correlations in seafood omnivores. In order to select salivary microorganisms and metabolic markers that can distinguish different dietary profiles, a random forest classifier model was constructed in this study, and the results showed that individuals with different dietary profiles could be successfully distinguished based on the core genera and metabolites such as Streptococcus, Histidinyl-Valine. Conclusion Our study provides a supportive basis for the application of salivary polyomics in order to reveal the dietary characteristics of individuals for forensic investigation and crime solving.
Collapse
Affiliation(s)
- Shiyu Sun
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Huiqiong Zhang
- Department of Pediatrics, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Linying Ye
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Litao Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jieyu Du
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaomin Liang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaxing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yingping Jiang
- Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ling Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Park YN, Ryu JK, Ju Y. The Potential MicroRNA Diagnostic Biomarkers in Oral Squamous Cell Carcinoma of the Tongue. Curr Issues Mol Biol 2024; 46:6746-6756. [PMID: 39057044 PMCID: PMC11276561 DOI: 10.3390/cimb46070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) of the tongue is a common type of head and neck malignancy with a poor prognosis, underscoring the urgency for early detection. MicroRNAs (miRNAs) have remarkable stability and are easily measurable. Thus, miRNAs may be a promising biomarker candidate among biomarkers in cancer diagnosis. Biomarkers have the potential to facilitate personalized medicine approaches by guiding treatment decisions and optimizing therapy regimens for individual patients. Utilizing data from The Cancer Genome Atlas, we identified 13 differentially expressed upregulated miRNAs in OSCC of the tongue. Differentially expressed miRNAs were analyzed by enrichment analysis to reveal underlying biological processes, pathways, or functions. Furthermore, we identified miRNAs associated with the progression of OSCC of the tongue, utilizing receiver operating characteristic analysis to evaluate their potential as diagnostic biomarkers. A total of 13 upregulated miRNAs were identified as differentially expressed in OSCC of the tongue. Five of these miRNAs had high diagnostic power. In particular, miR-196b has the potential to serve as one of the most effective diagnostic biomarkers. Then, functional enrichment analysis for the target gene of miR-196b was performed, and a protein-protein interaction network was constructed. This study assessed an effective approach for identifying miRNAs as early diagnostic markers for OSCC of the tongue.
Collapse
Affiliation(s)
- Young-Nam Park
- Department of Dental Hygiene, Gimcheon University, Gimcheon 39528, Republic of Korea;
| | - Jae-Ki Ryu
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 39528, Republic of Korea;
| | - Yeongdon Ju
- Department of Biomedical Laboratory Science, Gimcheon University, Gimcheon 39528, Republic of Korea;
| |
Collapse
|
8
|
Mojumdar A, B S U, Packirisamy G. A simple and effective method for smartphone-based detection of polyamines in oral cancer. Biomed Mater 2024; 19:045044. [PMID: 38871001 DOI: 10.1088/1748-605x/ad581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Oral cancer accounts for 50%-70% of all cancer-related deaths in India and ranks sixth among the most frequent cancers globally. Roughly 90% of oral malignancies are histologically arise from squamous cells and are therefore called oral squamous cell carcinoma. Organic polycations known as biogenic polyamines, for example, putrescine (Put), spermidine (Spd), and spermine (Spm), are vital for cell proliferation, including gene expression control, regulation of endonuclease-mediated fragmentation of DNA, and DNA damage inhibition. Higher Spm and Spd levels have been identified as cancer biomarkers for detecting tumour development in various cancers. The current study utilises tannic acid, a polyphenolic compound, as a reducing and capping agent to fabricate AuNPs via a one-step microwave-assisted synthesis. The fabricated TA@AuNPs were utilised as a nanoprobe for colourimetric sensing of polyamines in PBS. When TA@AuNPs are added to the polyamine, the amine groups in polyamines interact with the phenolic groups of TA@AuNPs via hydrogen bonding or electrostatic interactions. These interactions cause the aggregation of TA@AuNPs, resulting in a red shift of the Surface Plasmon Resonance band of TA@AuNPs from 530 nm to 560 nm. The nanoprobe was found to be highly specific for Spm at low concentrations. TA@AuNPs were able to detect Spm successfully in artificial saliva samples. On recording the RGB values of the sensing process using a smartphone app, it was found that as the nanoparticles aggregated due to the presence of Spm, the intensity of theR-value decreased, indicating the aggregation of TA@AuNPs due to interaction with the polyamine.
Collapse
Affiliation(s)
- Asmita Mojumdar
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Unnikrishnan B S
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
10
|
Dickey BL, Putney RM, Schell MJ, Berglund AE, Amelio AL, Caudell JJ, Chung CH, Giuliano AR. Identification of a Biomarker Panel from Genome-Wide Methylation to Detect Early HPV-Associated Oropharyngeal Cancer. Cancer Prev Res (Phila) 2024; 17:169-176. [PMID: 38286404 PMCID: PMC10987272 DOI: 10.1158/1940-6207.capr-23-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
As oropharyngeal cancer (OPC) associated with human papillomavirus (HPV) increases in men, the need for a screening test to diagnose OPC early is crucial. This study agnostically identified differentially methylated CpG sites to identify additional biomarkers to improve screening for early OPC.DNA was extracted from oral gargles of 89 early cases and 108 frequency matched healthy controls, and processed for genome-wide methylation using the Illumina Infinium MethylationEPIC BeadChip. Selected sites were combined with our prior methylation data in the EPB41L3 gene (CpG sites 438, 427, and 425) and oral HPV16 and HPV18 status were considered as binary variables (positive/negative). Lasso regression identified CpG sites strongly associated with early OPC. ROC curves with AUC were generated. The panel was validated utilizing bootstrap resampling.Machine learning analyses identified 14 markers that are significantly associated with early OPC, including one EPB41L3 CpG site (438) and oral HPV16 status. A final model was trained on all available samples using the discovered panel and was able to predict early OPC compared with controls with an AUC of 0.970 on the training set. In the bootstrap validation sets, the average AUC was 0.935, indicating adequate internal validity.Our data suggest that this panel can detect OPC early, however external validation of this panel is needed. Further refinement of a panel of biomarkers to diagnose OPC earlier is urgently needed to prevent complex treatment of OPC and associated comorbidities, while reducing risk of recurrence. PREVENTION RELEVANCE This study identified biomarkers using genome-wide methylation to create a panel capable of discerning early oropharyngeal cancer (OPC) from those without OPC. Such a biomarker panel would be an effective tool to detect OPC early and prevent complications of treatment associated with later diagnosis.
Collapse
Affiliation(s)
- Brittney L. Dickey
- Center for Immunization and infection Research in Cancer and the Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida USA
| | - Ryan M Putney
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michael J. Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Antonio L. Amelio
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jimmy J. Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Anna R. Giuliano
- Center for Immunization and infection Research in Cancer and the Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida USA
| |
Collapse
|
11
|
Gupta N, Bhargava A, Saigal S, Mehta V. Nanoparticle-based immunosensors for enhanced DNA analysis in oral cancer: A systematic review. J Oral Maxillofac Pathol 2024; 28:284-292. [PMID: 39157838 PMCID: PMC11329074 DOI: 10.4103/jomfp.jomfp_345_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 08/20/2024] Open
Abstract
To investigate the diagnostic and therapeutic potential of nanoparticle (NP)-based immunosensors in the field of oral cancer. PubMed, Embase, Scopus, Web of Science, and Google Scholar databases were explored for NP applications in oral cancer. Data extraction in terms and quality assessment of all the articles were done. Out of 147, 17 articles were included in this review. A majority of the studies showed improved sensitivity and specificity for saliva analysis using an enzyme-linked immunosorbent assay based on gold NPs, improving early identification. Additionally, novel therapeutic approaches, utilising NP-based immunosensors, demonstrated targeted drug delivery, coupled chemo-photothermal therapy, and gene silencing. Imaging methods have made it possible to distinguish between malignant and healthy states, such as surface-enhanced Raman scattering and optical coherence tomography. The reviews' findings highlight the transformational potential of NP-based immunosensors in addressing the difficulties associated with diagnosing and treating oral cancer. However, for an accurate interpretation and application of NP-based solutions in clinical practise, it is essential to be thoroughly aware of the intricacies involved, and the synthesised data in this review support the continued investigation and improvement of NP-based therapies in the ongoing effort to improve the management of oral cancer.
Collapse
Affiliation(s)
- Neha Gupta
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Ankur Bhargava
- Department of Oral Pathology and Microbiology, Hazaribag College of Dental Sciences and Hospital, Hazaribag, Jharkhand, India
| | - Sonal Saigal
- Department of Oral Pathology, Microbiology and Forensic Odontology, Dental College, Rajendra Institute of Medical Sciences (RIMS), Ranchi, India
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
12
|
Li ZC, Wang J, Liu HB, Zheng YM, Huang JH, Cai JB, Zhang L, Liu X, Du L, Yang XT, Chai XQ, Jiang YH, Ren ZG, Zhou J, Fan J, Yu DC, Sun HC, Huang C, Liu F. Proteomic and metabolomic features in patients with HCC responding to lenvatinib and anti-PD1 therapy. Cell Rep 2024; 43:113877. [PMID: 38421869 DOI: 10.1016/j.celrep.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.
Collapse
Affiliation(s)
- Zhong-Chen Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - He-Bin Liu
- Shanghai Omicsolution Co., Ltd., 28 Yuanwen Road, Shanghai 201199, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian-Hang Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, China
| | - Ling Du
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xue-Ting Yang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Zheng-Gang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - De-Cai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Belibasakis GN, Senevirantne CJ, Jayasinghe RD, Vo PTD, Bostanci N, Choi Y. Bacteriome and mycobiome dysbiosis in oral mucosal dysplasia and oral cancer. Periodontol 2000 2024. [PMID: 38501658 DOI: 10.1111/prd.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
It has long been considered that the oral microbiome is tightly connected to oral health and that dysbiotic changes can be detrimental to the occurrence and progression of dysplastic oral mucosal lesions or oral cancer. Improved understanding of the concepts of microbial dysbiosis together with advances in high-throughput molecular sequencing of these pathologies have charted in greater microbiological detail the nature of their clinical state. This review discusses the bacteriome and mycobiome associated with oral mucosal lesions, oral candidiasis, and oral squamous cell carcinoma, aiming to delineate the information available to date in pursuit of advancing diagnostic and prognostic utilities for oral medicine.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ruwan Duminda Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Phuc Thi-Duy Vo
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry, Seoul, Korea
| |
Collapse
|
14
|
Nandangiri R, T N S, Raj AK, Lokhande KB, Khunteta K, Hebale A, Kothari H, Patel V, Sarode SC, Sharma NK. Secretion of Sphinganine by Drug-Induced Cancer Cells and Modified Mimetic Sphinganine (MMS) as c-Src Kinase Inhibitor. Asian Pac J Cancer Prev 2024; 25:433-446. [PMID: 38415528 PMCID: PMC11077104 DOI: 10.31557/apjcp.2024.25.2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cancer cells exhibit selective metabolic reprogramming to promote proliferation, invasiveness, and metastasis. Sphingolipids such as sphingosine and sphinganine have been reported to modulate cell death processes in cancer cells. However, the potential of extracellular sphinganine and its mimetic compounds as inducers of cancer cell death has not been thoroughly investigated. METHODS We obtained extracellular conditioned medium from HCT-116 cells treated with the previously reported anticancer composition, goat urine DMSO fraction (GUDF). The extracellular metabolites were purified using a novel and in-house developed vertical tube gel electrophoresis (VTGE) technique and identified through LC-HRMS. Extracellular metabolites such as sphinganine, sphingosine, C16 sphinganine, and phytosphingosine were screened for their inhibitory role against intracellular kinases using molecular docking. Molecular dynamics (MD) simulations were performed to study the inhibitory potential of a novel designed modified mimetic sphinganine (MMS) (Pubchem CID: 162625115) upon c-Src kinase. Furthermore, inhibitory potential and ADME profile of MMS was compared with luteolin, a known c-Src kinase inhibitor. RESULTS Data showed accumulation of sphinganine and other sphingolipids such as C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0) in the extracellular compartment of GUDF-treated HCT-116 cells. Molecular docking projected c-Src kinase as an inhibitory target of sphinganine. MD simulations projected MMS with strong (-7.1 kcal/mol) and specific (MET341, ASP404) binding to the inhibitory pocket of c-Src kinase. The projected MMS showed comparable inhibitory role and acceptable ADME profile over known inhibitors. CONCLUSION In summary, our findings highlight the significance of extracellular sphinganine and other sphingolipids, including C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0), in the context of drug-induced cell death in HCT-116 cancer cells. Furthermore, we demonstrated the importance of extracellular sphinganine and its modified mimetic sphinganine (MMS) as a potential inhibitor of c-Src kinase. These findings suggest that MMS holds promise for future applications in targeted and combinatorial anticancer therapy.
Collapse
Affiliation(s)
- Rasika Nandangiri
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Seethamma T N
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Ajay Kumar Raj
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Kiran B. Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India.
| | - Kratika Khunteta
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Ameya Hebale
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Haet Kothari
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Vaidehi Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| |
Collapse
|
15
|
LaCasse Z, Chivte P, Kress K, Seethi VDR, Bland J, Alhoori H, Kadkol SS, Gaillard ER. Enhancing saliva diagnostics: The impact of amylase depletion on MALDI-ToF MS profiles as applied to COVID-19. J Mass Spectrom Adv Clin Lab 2024; 31:59-71. [PMID: 38323116 PMCID: PMC10846328 DOI: 10.1016/j.jmsacl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Human saliva contains a wealth of proteins that can be monitored for disease diagnosis and progression. Saliva, which is easy to collect, has been extensively studied for the diagnosis of numerous systemic and infectious diseases. However, the presence of amylase, the most abundant protein in saliva, can obscure the detection of low-abundance proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS), thus reducing its diagnostic utility. Objectives In this study, we used a device to deplete salivary amylase from water-gargle samples by affinity adsorption. Following depletion, saliva proteome profiling was performed using MALDI-ToF MS on gargle samples from individuals confirmed to have COVID-19 based on nasopharyngeal (NP) swab reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results The depletion of amylase led to increased signal intensities of various peaks and the detection of previously unobserved peaks in the MALDI-ToF MS spectra. The overall specificity and sensitivity after amylase depletion were 100% and 85.17%, respectively, for detecting COVID-19. Conclusion This simple, rapid, and inexpensive technique for depleting salivary amylase can reveal spectral diversity in saliva using MALDI-ToF MS, expose low-abundance proteins, and assist in establishing novel biomarkers for diseases.
Collapse
Affiliation(s)
- Zane LaCasse
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Prajkta Chivte
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Kari Kress
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Thermo Fisher Scientific, Rockford, IL 61101, USA
| | | | - Joshua Bland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hamed Alhoori
- Departments of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shrihari S. Kadkol
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Elizabeth R. Gaillard
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
16
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung GC, Najarzadegan F, Wong DT, Ton-That H, Wang CY, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2023:10.1111/prd.12542. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Pachiyappan Kamarajan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Alex Cho
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Sandy Wang
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Guo-Chin Hung
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Fereshteh Najarzadegan
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - David T Wong
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Hung Ton-That
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Cun-Yu Wang
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Yvonne L Kapila
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
17
|
Greenfield E, Alves MDS, Rodrigues F, Nogueira JO, da Silva L, de Jesus HP, Cavalcanti DR, Carvalho BFDC, Almeida JD, Mendes MA, Oliveira Alves MG. Preliminary Findings on the Salivary Metabolome of Hookah and Cigarette Smokers. ACS OMEGA 2023; 8:36845-36855. [PMID: 37841134 PMCID: PMC10569005 DOI: 10.1021/acsomega.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
The aim of the study was to evaluate the salivary metabolomic profile of patients who habitually smoke hookah and cigarettes. The groups consisted of 33 regular and exclusive hookah smokers, 26 regular and exclusive cigarette smokers, and 30 nonsmokers. Unstimulated whole saliva was collected for the measurement of salivary metabolites by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The MetaboAnalyst software was used for statistical analysis and evaluation of biomarkers. 11 smoking salivary biomarkers were identified using the area under receiving-operator curver criterion and threshold of 0.9. Xylitol and octadecanol were higher in cigarette smokers compared to controls; arabitol and maltose were higher in controls compared to cigarette smokers; octadecanol and tyramine were higher in hookah smokers compared to controls; phenylalanine was higher in controls compared to hookah smokers; and fructose, isocitric acid, glucuronic acid, tryptamine, maltose, tyramine, and 3-hydroxyisolvaleric acid were higher in hookah smokers compared to cigarettes smokers. Conclusions: The evaluation of the salivary metabolome of hookah smokers, showing separation between the groups, especially between the control versus hookah groups and cigarette versus hookah groups, and it seems to demonstrate that the use of hookah tobacco is more damaging to health.
Collapse
Affiliation(s)
- Ellen Greenfield
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | - Mariana de Sá Alves
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Fernanda Rodrigues
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | | | | | | | | | - Bruna Fernandes do Carmo Carvalho
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Janete Dias Almeida
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Maria Anita Mendes
- Dempster
MS Lab, Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| |
Collapse
|
18
|
Fonseca AU, Felix JP, Pinheiro H, Vieira GS, Mourão ÝC, Monteiro JCG, Soares F. An Intelligent System to Improve Diagnostic Support for Oral Squamous Cell Carcinoma. Healthcare (Basel) 2023; 11:2675. [PMID: 37830712 PMCID: PMC10572543 DOI: 10.3390/healthcare11192675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most-prevalent cancer types worldwide, and it poses a serious threat to public health due to its high mortality and morbidity rates. OSCC typically has a poor prognosis, significantly reducing the chances of patient survival. Therefore, early detection is crucial to achieving a favorable prognosis by providing prompt treatment and increasing the chances of remission. Salivary biomarkers have been established in numerous studies to be a trustworthy and non-invasive alternative for early cancer detection. In this sense, we propose an intelligent system that utilizes feed-forward artificial neural networks to classify carcinoma with salivary biomarkers extracted from control and OSCC patient samples. We conducted experiments using various salivary biomarkers, ranging from 1 to 51, to train the model, and we achieved excellent results with precision, sensitivity, and specificity values of 98.53%, 96.30%, and 97.56%, respectively. Our system effectively classified the initial cases of OSCC with different amounts of biomarkers, aiding medical professionals in decision-making and providing a more-accurate diagnosis. This could contribute to a higher chance of treatment success and patient survival. Furthermore, the minimalist configuration of our model presents the potential for incorporation into resource-limited devices or environments.
Collapse
Affiliation(s)
- Afonso U. Fonseca
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Juliana P. Felix
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Hedenir Pinheiro
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| | - Gabriel S. Vieira
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
- Federal Institute Goiano, Computer Vision Lab, Urutaí 75790-000, GO, Brazil
| | | | | | - Fabrizzio Soares
- Institute of Informatics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (J.P.F.); (H.P.); (G.S.V.); (F.S.)
| |
Collapse
|
19
|
Liu B, Si W, Wei B, Zhang X, Chen P. PTP4A1 promotes oral squamous cell carcinoma (OSCC) metastasis through altered mitochondrial metabolic reprogramming. Cell Death Discov 2023; 9:360. [PMID: 37773151 PMCID: PMC10541904 DOI: 10.1038/s41420-023-01657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
PTP4A1 (Protein tyrosine phosphatase 4A1) is a protein tyrosine phosphatase that regulates a range of pro-oncogenic signaling pathways. Here, we report a novel role for PTP4A1 in oral squamous cell carcinoma (OSCC) growth and development. We show that PTP4A1 is frequently overexpressed in OSCC cells and tissues compared to adjacent non-tumor tissue. In OSCC, the overexpression of PTP4A1 increased cell growth and invasion in vitro, and enhanced tumor progression in vivo. At the molecular level, PTP4A1 was found to regulate mitochondrial metabolic reprogramming to enhance the invasive capacity of OSCC cells. Mechanistically, these effects were mediated through binding to pyruvate kinase isoenzyme M2 (PKM2) to promote its expression and aconitase 2 (ACO2) to enhance its degradation. Together, these data reveal PTP4A1 as a viable target for OSCC therapeutics.
Collapse
Affiliation(s)
- Bing Liu
- Department of Stomatology, Air Force Medical Center of Chinese PLA, Beijing, 100142, China
| | - Wen Si
- Department of Medical Oncology, Beijing Shijitan Hospital affiliated to Capital Medical University, Beijing, 100038, China
| | - Bo Wei
- Department of Stomatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuan Zhang
- Hospital Management Research Institute, Innovative Medicine Department Chinese PLA General Hospital, Beijing, 100853, China.
| | - Peng Chen
- Department of Stomatology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
20
|
Kumar BS. Recent Advances and Applications of Ambient Mass Spectrometry Imaging in Cancer Research: An Overview. Mass Spectrom (Tokyo) 2023; 12:A0129. [PMID: 37789912 PMCID: PMC10542858 DOI: 10.5702/massspectrometry.a0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Cancer metabolic variability has a significant impact on both diagnosis and treatment outcomes. The discovery of novel biological indicators and metabolic dysregulation, can significantly rely on comprehension of the modified metabolism in cancer, is a research focus. Tissue histology is a critical feature in the diagnostic testing of many ailments, such as cancer. To assess the surgical margin of the tumour on patients, frozen section histology is a tedious, laborious, and typically arbitrary method. Concurrent monitoring of ion images in tissues facilitated by the latest advancements in mass spectrometry imaging (MSI) is far more efficient than optical tissue image analysis utilized in conventional histopathology examination. This article focuses on the "desorption electrospray ionization (DESI)-MSI" technique's most recent advancements and uses in cancer research. DESI-MSI can provide wealthy information based on the variances in metabolites and lipids in normal and cancerous tissues by acquiring ion images of the lipid and metabolite variances on biopsy samples. As opposed to a systematic review, this article offers a synopsis of the most widely employed cutting-edge DESI-MSI techniques in cancer research.
Collapse
Affiliation(s)
- Bharath S. Kumar
- Correspondence to: Bharath S. Kumar, 21, B2, 27th Street, Nanganallur, Chennai, India, e-mail:
| |
Collapse
|
21
|
Chuchueva N, Carta F, Nguyen HN, Luevano J, Lewis IA, Rios-Castillo I, Fanos V, King E, Swistushkin V, Reshetov I, Rusetsky Y, Shestakova K, Moskaleva N, Mariani C, Castillo-Carniglia A, Grapov D, Fahrmann J, La Frano MR, Puxeddu R, Appolonova SA, Brito A. Metabolomics of head and neck cancer in biofluids: an integrative systematic review. Metabolomics 2023; 19:77. [PMID: 37644353 DOI: 10.1007/s11306-023-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Head and neck cancer (HNC) is the fifth most common cancer globally. Diagnosis at early stages are critical to reduce mortality and improve functional and esthetic outcomes associated with HNC. Metabolomics is a promising approach for discovery of biomarkers and metabolic pathways for risk assessment and early detection of HNC. OBJECTIVES To summarize and consolidate the available evidence on metabolomics and HNC in plasma/serum, saliva, and urine. METHODS A systematic search of experimental research was executed using PubMed and Web of Science. Available data on areas under the curve was extracted. Metabolic pathway enrichment analysis were performed to identify metabolic pathways altered in HNC. Fifty-four studies were eligible for data extraction (33 performed in plasma/serum, 15 in saliva and 6 in urine). RESULTS Metabolites with high discriminatory performance for detection of HNC included single metabolites and combination panels of several lysoPCs, pyroglutamate, glutamic acid, glucose, tartronic acid, arachidonic acid, norvaline, linoleic acid, propionate, acetone, acetate, choline, glutamate and others. The glucose-alanine cycle and the urea cycle were the most altered pathways in HNC, among other pathways (i.e. gluconeogenesis, glycine and serine metabolism, alanine metabolism, etc.). Specific metabolites that can potentially serve as complementary less- or non-invasive biomarkers, as well as metabolic pathways integrating the data from the available studies, are presented. CONCLUSION The present work highlights utility of metabolite-based biomarkers for risk assessment, early detection, and prognostication of HNC, as well as facilitates incorporation of available metabolomics studies into multi-omics data integration and big data analytics for personalized health.
Collapse
Affiliation(s)
- Natalia Chuchueva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Central State Medical Academy, Moscow, Russia
| | - Filippo Carta
- Unit of Otorhinolaryngology, Department of Surgery, Azienda Ospedaliero-Universitaria Di Cagliari, University of Cagliari, Cagliari, Italy
| | - Hoang N Nguyen
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jennifer Luevano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Isaiah A Lewis
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Vassilios Fanos
- Department of Pediatrics and Clinical Medicine, Section of Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Azienda Ospedaliero-Universitaria Di Cagliari, Cagliari University, Cagliari, Italy
| | - Emma King
- Cancer Research Center, University of Southampton, Southampton, UK
- Department of Otolaryngology, Poole Hospital National Health Service Foundation Trust, Longfleet Road, Poole, UK
| | | | - Igor Reshetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yury Rusetsky
- Central State Medical Academy, Moscow, Russia
- Otorhinolaryngological Surgical Department With a Group of Head and Neck Diseases, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ksenia Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Cinzia Mariani
- Unit of Otorhinolaryngology, Department of Surgery, Azienda Ospedaliero-Universitaria Di Cagliari, University of Cagliari, Cagliari, Italy
| | - Alvaro Castillo-Carniglia
- Society and Health Research Center, Facultad de Ciencias Sociales y Artes, Universidad Mayor, Santiago, Chile
- Millennium Nucleus for the Evaluation and Analysis of Drug Policies (nDP) and Millennium Nucleus on Sociomedicine (SocioMed), Santiago, Chile
| | | | | | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
- Roy J.Carver Metabolomics Core Facility, University of Illinois, Urbana-Champaign, IL, USA
| | - Roberto Puxeddu
- King's College Hospital London, Dubai, United Arab Emirates
- Section of Otorhinolaryngology, Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- Russian Center of Forensic-Medical Expertise of Ministry of Health, Moscow, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
22
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
23
|
Bel’skaya LV, Sarf EA, Loginova AI. Diagnostic Value of Salivary Amino Acid Levels in Cancer. Metabolites 2023; 13:950. [PMID: 37623893 PMCID: PMC10456731 DOI: 10.3390/metabo13080950] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
This review analyzed 21 scientific papers on the determination of amino acids in various types of cancer in saliva. Most of the studies are on oral cancer (8/21), breast cancer (4/21), gastric cancer (3/21), lung cancer (2/21), glioblastoma (2/21) and one study on colorectal, pancreatic, thyroid and liver cancer. The amino acids alanine, valine, phenylalanine, leucine and isoleucine play a leading role in the diagnosis of cancer via the saliva. In an independent version, amino acids are rarely used; the authors combine either amino acids with each other or with other metabolites, which makes it possible to obtain high values of sensitivity and specificity. Nevertheless, a logical and complete substantiation of the changes in saliva occurring in cancer, including changes in salivary amino acid levels, has not yet been formed, which makes it important to continue research in this direction.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14 Tukhachevsky Str., 644043 Omsk, Russia;
| | - Elena A. Sarf
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 14 Tukhachevsky Str., 644043 Omsk, Russia;
| | - Alexandra I. Loginova
- Clinical Oncology Dispensary, 9/1 Zavertyayeva Str., 644013 Omsk, Russia;
- Department of Oncology, Omsk State Medical University, 12 Lenina Str., 644099 Omsk, Russia
| |
Collapse
|
24
|
Alapati S, Fortuna G, Ramage G, Delaney C. Evaluation of Metabolomics as Diagnostic Targets in Oral Squamous Cell Carcinoma: A Systematic Review. Metabolites 2023; 13:890. [PMID: 37623834 PMCID: PMC10456490 DOI: 10.3390/metabo13080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
In recent years, high-throughput technologies have facilitated the widespread use of metabolomics to identify biomarkers and targets for oral squamous cell carcinoma (OSCC). As a result, the primary goal of this systematic review is to identify and evaluate metabolite biomarkers and their pathways for OSCC that featured consistently across studies despite methodological variations. Six electronic databases (Medline, Cochrane, Web of Science, CINAHL, ProQuest, and Embase) were reviewed for the longitudinal studies involving OSCC patients and metabolic marker analysis (in accordance with PRISMA 2020). The studies included ranged from the inception of metabolomics in OSCC (i.e., 1 January 2007) to 30 April 2023. The included studies were then assessed for their quality using the modified version of NIH quality assessment tool and QUADOMICS. Thirteen studies were included after screening 2285 studies. The majority of the studies were from South Asian regions, and metabolites were most frequently derived from saliva. Amino acids accounted for more than quarter of the detected metabolites, with glutamate and methionine being the most prominent. The top dysregulated metabolites indicated dysregulation of six significantly enriched pathways including aminoacyl-tRNA biosynthesis, glutathione metabolism and arginine biosynthesis with the false discovery rate (FDR) <0.05. Finally, this review highlights the potential of metabolomics for early diagnosis and therapeutic targeting of OSCC. However, larger studies and standardized protocols are needed to validate these findings and make them a clinical reality.
Collapse
Affiliation(s)
- Susanth Alapati
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Giulio Fortuna
- Department of Oral Medicine, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK; (S.A.)
| |
Collapse
|
25
|
Castell A, Arroyo-Manzanares N, Guerrero-Núñez Y, Campillo N, Viñas P. Headspace with Gas Chromatography-Mass Spectrometry for the Use of Volatile Organic Compound Profile in Botanical Origin Authentication of Honey. Molecules 2023; 28:molecules28114297. [PMID: 37298771 DOI: 10.3390/molecules28114297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The botanical origin of honey determines its composition and hence properties and product quality. As a highly valued food product worldwide, assurance of the authenticity of honey is required to prevent potential fraud. In this work, the characterisation of Spanish honeys from 11 different botanical origins was carried out by headspace gas chromatography coupled with mass spectrometry (HS-GC-MS). A total of 27 volatile compounds were monitored, including aldehydes, alcohols, ketones, carboxylic acids, esters and monoterpenes. Samples were grouped into five categories of botanical origins: rosemary, orange blossom, albaida, thousand flower and "others" (the remaining origins studied, due to the limitation of samples available). Method validation was performed based on linearity and limits of detection and quantification, allowing the quantification of 21 compounds in the different honeys studied. Furthermore, an orthogonal partial least squares-discriminant analysis (OPLS-DA) chemometric model allowed the classification of honey into the five established categories, achieving a 100% and 91.67% classification and validation success rate, respectively. The application of the proposed methodology was tested by analysing 16 honey samples of unknown floral origin, classifying 4 as orange blossom, 4 as thousand flower and 8 as belonging to other botanical origins.
Collapse
Affiliation(s)
- Ana Castell
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Yolanda Guerrero-Núñez
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
26
|
Hyvärinen E, Kashyap B, Kullaa AM. Oral Sources of Salivary Metabolites. Metabolites 2023; 13:metabo13040498. [PMID: 37110157 PMCID: PMC10145445 DOI: 10.3390/metabo13040498] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The oral cavity is very diverse, where saliva plays an important role in maintaining oral health. The metabolism of saliva has been used to investigate oral diseases as well as general diseases, mainly to detect diagnostic biomarkers. There are many sources of salivary metabolites in the mouth. The online English language search and PubMed databases were searched to retrieve relevant studies on oral salivary metabolites. The physiological balance of the mouth is influenced by many factors that are reflected in the salivary metabolite profile. Similarly, the dysbiosis of microbes can alter the salivary metabolite profile, which may express oral inflammation or oral diseases. This narrative review highlights the factors to be considered when examining saliva and its use as a diagnostic biofluid for different diseases. Salivary metabolites, mainly small molecular metabolites may enter the bloodstream and cause illness elsewhere in the body. The importance of salivary metabolites produced in the oral cavity as risk factors for general diseases and their possible relationship to the body’s function are also discussed.
Collapse
|
27
|
Saliva Metabolomic Profile in Dental Medicine Research: A Narrative Review. Metabolites 2023; 13:metabo13030379. [PMID: 36984819 PMCID: PMC10052075 DOI: 10.3390/metabo13030379] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Metabolomic research tends to increase in popularity over the years, leading to the identification of new biomarkers related to specific health disorders. Saliva is one of the most newly introduced and systematically developed biofluids in the human body that can serve as an informative substance in the metabolomic profiling armamentarium. This review aims to analyze the current knowledge regarding the human salivary metabolome, its alterations due to physiological, environmental and external factors, as well as the limitations and drawbacks presented in the most recent research conducted, focusing on pre—analytical and analytical workflows. Furthermore, the use of the saliva metabolomic profile as a promising biomarker for several oral pathologies, such as oral cancer and periodontitis will be investigated.
Collapse
|
28
|
Moreau C, El Habnouni C, Lecron JC, Morel F, Delwail A, Le Gall-Ianotto C, Le Garrec R, Misery L, Piver E, Vaillant L, Lefevre A, Emond P, Blasco H, Samimi M. Salivary metabolome indicates a shift in tyrosine metabolism in patients with burning mouth syndrome: a prospective case-control study. Pain 2023; 164:e144-e156. [PMID: 35916738 DOI: 10.1097/j.pain.0000000000002733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The pathophysiology of primary burning mouth syndrome (BMS) remains controversial. Targeted analyses or "omics" approach of saliva provide diagnostic or pathophysiological biomarkers. This pilot study's primary objective was to explore the pathophysiology of BMS through a comparative analysis of the salivary metabolome among 26 BMS female cases and 25 age- and sex-matched control subjects. Secondary objectives included comparative analyses of inflammatory cytokines, neuroinflammatory markers, and steroid hormones among cases and control subjects, and among BMS patients according to their clinical characteristics. Salivary metabolome, neuroinflammatory markers, cytokines, and steroids were, respectively, analysed by liquid chromatography coupled with mass spectrometry, ELISA and protease activity assay, and multiparametric Luminex method. Among the 166 detected metabolites, univariate analysis did not find any discriminant metabolite between groups. Supervised multivariate analysis divided patients into 2 groups with an accuracy of 60% but did not allow significant discrimination (permutation test, P = 0.35). Among the metabolites contributing to the model, 3 belonging to the tyrosine pathway ( l -dopa, l -tyrosine, and tyramine) were involved in the discrimination between cases and control subjects, and among BMS patients according to their levels of pain. Among the detectable molecules, levels of cytokines, steroid hormones, and neuroinflammatory markers did not differ between cases and control subjects and were not associated with characteristics of BMS patients. These results do not support the involvement of steroid hormones, inflammatory cytokines, or inflammatory neurogenic mediators in the pathophysiology of pain in BMS, whereas the observed shift in tyrosine metabolism may indicate an adaptative response to chronic pain or an impaired dopaminergic transmission.
Collapse
Affiliation(s)
- Charlotte Moreau
- University François Rabelais, Tours, France
- Department of Dermatology, University Hospital of Tours, Tours Cedex, France
| | - Chakib El Habnouni
- University François Rabelais, Tours, France
- Department of Dermatology, University Hospital of Tours, Tours Cedex, France
| | - Jean-Claude Lecron
- Laboratory Inflammation, Tissus Epithéliaux et Cytokines, Poitiers University and Immunology/inflammation Laboratory, Poitiers University Hospital, Poitiers, France
| | - Franck Morel
- Laboratory Inflammation, Tissus Epithéliaux et Cytokines, Poitiers University and Immunology/inflammation Laboratory, Poitiers University Hospital, Poitiers, France
| | - Adriana Delwail
- ImageUP, Plate-forme d'Imagerie and Laboratoire Signalisation et Transport Ioniques Membranaires ERL CNRS 7003/EA 7349, Poitiers University, Poitiers, France
| | | | - Raphaele Le Garrec
- Univ Brest, LIEN (Laboratoire Interactions Epithelium Neurones), Brest, France
| | - Laurent Misery
- Univ Brest, LIEN (Laboratoire Interactions Epithelium Neurones), Brest, France
| | - Eric Piver
- Department of Biochemistry and Molecular Biology, University Hospital of Tours, Tours Cedex, France
- Inserm UMR 1259-Morphogenèse et antigénicité du VIH et des virus des hépatites (MAVIVH)
| | - Loïc Vaillant
- University François Rabelais, Tours, France
- Department of Dermatology, University Hospital of Tours, Tours Cedex, France
| | | | - Patrick Emond
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
- Department of In Vitro Nuclear Medicine, University Hospital of Tours, Tours Cedex, France
| | - Hélène Blasco
- Department of Biochemistry and Molecular Biology, University Hospital of Tours, Tours Cedex, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| | - Mahtab Samimi
- University François Rabelais, Tours, France
- Department of Dermatology, University Hospital of Tours, Tours Cedex, France
- BIP, 1282 INRA University of Tours, Tours, France
| |
Collapse
|
29
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
30
|
Sowmya SV, Augustine D, Prabhu S, Patil S. Nanomaterials-based Bioanalytical Sensors for the Detection of Oral Cancer Biomarkers. J Contemp Dent Pract 2023; 24:69-70. [PMID: 37272136 DOI: 10.5005/jp-journals-10024-3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- S V Sowmya
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India, Phone: +91 9945784509, e-mail:
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Sonia Prabhu
- Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States of America; Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
31
|
Huang Z, Yang X, Huang Y, Tang Z, Chen Y, Liu H, Huang M, Qing L, Li L, Wang Q, Jie Z, Jin X, Jia B. Saliva - a new opportunity for fluid biopsy. Clin Chem Lab Med 2023; 61:4-32. [PMID: 36285724 DOI: 10.1515/cclm-2022-0793] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
Saliva is a complex biological fluid with a variety of biomolecules, such as DNA, RNA, proteins, metabolites and microbiota, which can be used for the screening and diagnosis of many diseases. In addition, saliva has the characteristics of simple collection, non-invasive and convenient storage, which gives it the potential to replace blood as a new main body of fluid biopsy, and it is an excellent biological diagnostic fluid. This review integrates recent studies and summarizes the research contents of salivaomics and the research progress of saliva in early diagnosis of oral and systemic diseases. This review aims to explore the value and prospect of saliva diagnosis in clinical application.
Collapse
Affiliation(s)
- Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaoxia Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhuye Jie
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, P.R. China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Genomics, BGI-Shenzhen, Shenzhen, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
32
|
Wang S, Yang M, Li R, Bai J. Current advances in noninvasive methods for the diagnosis of oral squamous cell carcinoma: a review. Eur J Med Res 2023; 28:53. [PMID: 36707844 PMCID: PMC9880940 DOI: 10.1186/s40001-022-00916-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 01/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of cancers worldwide, is diagnosed mainly through tissue biopsy. However, owing to the tumor heterogeneity and other drawbacks, such as the invasiveness of the biopsy procedure and high cost and limited usefulness of longitudinal surveillance, there has been a focus on adopting more rapid, economical, and noninvasive screening methods. Examples of these include liquid biopsy, optical detection systems, oral brush cytology, microfluidic detection, and artificial intelligence auxiliary diagnosis, which have their own strengths and weaknesses. Extensive research is being performed on various liquid biopsy biomarkers, including novel microbiome components, noncoding RNAs, extracellular vesicles, and circulating tumor DNA. The majority of these elements have demonstrated encouraging clinical outcomes in early OSCC detection. This review summarizes the screening methods for OSCC with a focus on providing new guiding strategies for the diagnosis of the disease.
Collapse
Affiliation(s)
- Shan Wang
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China ,grid.443397.e0000 0004 0368 7493Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216 People’s Republic of China
| | - Mao Yang
- grid.13291.380000 0001 0807 1581West China School of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Ruiying Li
- grid.443397.e0000 0004 0368 7493Department of Oral Pathology, School of Stomatology, Hainan Medical College, Haikou, 571199 People’s Republic of China
| | - Jie Bai
- grid.13402.340000 0004 1759 700XDepartment of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000 People’s Republic of China
| |
Collapse
|
33
|
Zhang X, Li B. Updates of liquid biopsy in oral cancer and multiomics analysis. Oral Dis 2023; 29:51-61. [PMID: 34716963 DOI: 10.1111/odi.14064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
Liquid biopsy is a method sampled from body fluids, such as blood, saliva, urine, pleural effusion, cerebrospinal fluid, and so on. It is minimally invasive and reproducible and therefore can build a dynamic, real-time monitoring of oral squamous cell carcinoma patient's conditions and treatment responses. Circulating tumor cells, circulating tumor DNA and exosomes are three main detection objects of liquid biopsy, having different detection methods and features involving cost, sensitivity, specificity and output. Blood and saliva are the options of liquid biopsy in oral cancer. Then we reviewed the studies of liquid biopsy in oral cancer, integrating multiomics analysis of these results. The multiomics analysis of genomics, transcriptomics, proteomics, metabolomics, and DNA methylation have shown potential for the early screening, diagnosis, staging, prognosis, personalized medicine therapy, and monitoring of recurrence (minimal residual disease). Besides, we concluded some problems to be solved, such as the lack of the standard of the measurement methods and procedures of samples, the insufficient connection among different omics, and how to improve the sensitivity and specificity. And we also put up rough assumptions to these problems. However, the analysis of multiomics of liquid biopsy in oral cancer still shows great clinical value in the diagnosis and treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Xinning Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
34
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
35
|
Atallah R, Olschewski A, Heinemann A. Succinate at the Crossroad of Metabolism and Angiogenesis: Roles of SDH, HIF1α and SUCNR1. Biomedicines 2022; 10:3089. [PMID: 36551845 PMCID: PMC9775124 DOI: 10.3390/biomedicines10123089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Angiogenesis is an essential process by which new blood vessels develop from existing ones. While adequate angiogenesis is a physiological process during, for example, tissue repair, insufficient and excessive angiogenesis stands on the pathological side. Fine balance between pro- and anti-angiogenic factors in the tissue environment regulates angiogenesis. Identification of these factors and how they function is a pressing topic to develop angiogenesis-targeted therapeutics. During the last decade, exciting data highlighted non-metabolic functions of intermediates of the mitochondrial Krebs cycle including succinate. Among these functions is the contribution of succinate to angiogenesis in various contexts and through different mechanisms. As the concept of targeting metabolism to treat a wide range of diseases is rising, in this review we summarize the mechanisms by which succinate regulates angiogenesis in normal and pathological settings. Gaining a comprehensive insight into how this metabolite functions as an angiogenic signal will provide a useful approach to understand diseases with aberrant or excessive angiogenic background, and may provide strategies to tackle them.
Collapse
Affiliation(s)
- Reham Atallah
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Akos Heinemann
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
36
|
Rahadiani N, Habiburrahman M, Handjari D, Stephanie M, Krisnuhoni E. Clinicopathological characteristics predicting advanced stage and surgical margin invasion of oral squamous cell carcinoma: A single‑center study on 10 years of cancer registry data. Oncol Lett 2022; 24:364. [PMID: 36238853 PMCID: PMC9494421 DOI: 10.3892/ol.2022.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The incidence profile of oral squamous cell carcinoma (OSCC) has not previously been comprehensively reported in Indonesia. The present study aimed to identify clinicopathological characteristics of patients with OSCC according to sex and age, to analyze histological differentiation patterns specific to tumor subsites, to highlight the role of lymphovascular invasion (LVI) in metastasis, and to develop a model to predict advanced stage and margin invasion. A retrospective cross-sectional study was performed using 581 medical records and pathological specimens from cancer registry data in the Dr Cipto Mangunkusumo Hospital (Jakarta, Indonesia), between January 2011 and December 2020. Clinicopathological characteristics were analyzed using parametric and non-parametric tests. Multivariate logistic regression analyses were performed for eligible parameters, identified using bivariate analysis, to predict advanced stage and margin invasion. Calibration of the prediction model was evaluated using the Hosmer-Lemeshow test, its discrimination value assessed using the receiver operating characteristic and area under the receiver operating characteristic curve (AUC). Sex-specific patterns in tumor subsites and differences in clinical staging according to age were demonstrated in the patients with OSCC. The proportion of well-differentiated cases was significantly higher in most tumor subsites, except in the buccal mucosa (more moderately differentiated cases) and floor of the mouth (well and moderately differentiated cases being equal). LVI was significantly associated with nodal metastasis but not distant metastasis. Multivariate analysis demonstrated that age ≤45 years [odds ratio (OR), 2.26] and LVI (OR, 8.42) predicted patients having advanced-stage OSCC among general populations (AUC, 0.773); however, LVI (OR, 8.28) was the sole predictor of advanced stage amongst young patients (AUC, 0.737). Margin invasion was predicted solely by tumor subsite, including mouth not otherwise specified (OR, 3.04) and palate (OR, 6.13), in the general population (AUC, 0.711). Furthermore, margin invasion was predicted by the palate subsite (OR, 38.77) and LVI (OR, 11.61) in young patients (AUC, 0.762). Investigating young patients thoroughly when finding SCC in the mouth and palate, and assessing LVI, especially among young patients, is critical to prevent advanced staging and margin invasion.
Collapse
Affiliation(s)
- Nur Rahadiani
- Department of Anatomical Pathology, Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Central Jakarta, Jakarta 10430, Republic of Indonesia
| | - Muhammad Habiburrahman
- Faculty of Medicine, Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Central Jakarta, Jakarta 10430, Republic of Indonesia
| | - Diah Handjari
- Department of Anatomical Pathology, Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Central Jakarta, Jakarta 10430, Republic of Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Central Jakarta, Jakarta 10430, Republic of Indonesia
| | - Ening Krisnuhoni
- Department of Anatomical Pathology, Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Central Jakarta, Jakarta 10430, Republic of Indonesia
| |
Collapse
|
37
|
Panneerselvam K, Ishikawa S, Krishnan R, Sugimoto M. Salivary Metabolomics for Oral Cancer Detection: A Narrative Review. Metabolites 2022; 12:metabo12050436. [PMID: 35629940 PMCID: PMC9144467 DOI: 10.3390/metabo12050436] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
The development of low- or non-invasive screening tests for cancer is crucial for early detection. Saliva is an ideal biofluid containing informative components for monitoring oral and systemic diseases. Metabolomics has frequently been used to identify and quantify numerous metabolites in saliva samples, serving as novel biomarkers associated with various conditions, including cancers. This review summarizes the recent applications of salivary metabolomics in biomarker discovery in oral cancers. We discussed the prevalence, epidemiologic characteristics, and risk factors of oral cancers, as well as the currently available screening programs, in India and Japan. These data imply that the development of biomarkers by itself is inadequate in cancer detection. The use of current diagnostic methods and new technologies is necessary for efficient salivary metabolomics analysis. We also discuss the gap between biomarker discovery and nationwide screening for the early detection of oral cancer and its prevention.
Collapse
Affiliation(s)
- Karthika Panneerselvam
- Department of Oral Pathology and Microbiology, Karpaga Vinayaga Institute of Dental Sciences, GST Road, Chinna Kolambakkam, Palayanoor PO, Madurantagam Taluk, Kancheepuram 603308, Tamil Nadu, India;
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Rajkumar Krishnan
- Department of Oral Pathology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai 600089, Tamil Nadu, India;
| | - Masahiro Sugimoto
- Institute of Medical Research, Tokyo Medical University, Tokyo 160-0022, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0811, Japan
- Correspondence: ; Tel.: +81-235-29-0528
| |
Collapse
|
38
|
Saxena R, Prasoodanan P K V, Gupta SV, Gupta S, Waiker P, Samaiya A, Sharma AK, Sharma VK. Assessing the Effect of Smokeless Tobacco Consumption on Oral Microbiome in Healthy and Oral Cancer Patients. Front Cell Infect Microbiol 2022; 12:841465. [PMID: 35433507 PMCID: PMC9009303 DOI: 10.3389/fcimb.2022.841465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Oral cancer is a globally widespread cancer that features among the three most prevalent cancers in India. The risk of oral cancer is elevated by factors such as tobacco consumption, betel-quid chewing, excessive alcohol consumption, unhygienic oral condition, sustained viral infections, and also due to dysbiosis in microbiome composition of the oral cavity. Here, we performed an oral microbiome study of healthy and oral cancer patients to decipher the microbial dysbiosis due to the consumption of smokeless-tobacco-based products and also revealed the tobacco-associated microbiome. The analysis of 196 oral microbiome samples from three different oral sites of 32 healthy and 34 oral squamous cell carcinoma (OSCC) patients indicated health status, site of sampling, and smokeless tobacco consumption as significant covariates associated with oral microbiome composition. Significant similarity in oral microbiome composition of smokeless-tobacco-consuming healthy samples and OSCC samples inferred the possible role of smokeless tobacco consumption in increasing inflammation-associated species in oral microbiome. Significantly higher abundance of Streptococcus was found to adequately discriminate smokeless-tobacco-non-consuming healthy samples from smokeless-tobacco-consuming healthy samples and contralateral healthy site of OSCC samples from the tumor site of OSCC samples. Comparative analysis of oral microbiome from another OSCC cohort also confirmed Streptococcus as a potential marker for healthy oral microbiome. Gram-negative microbial genera such as Prevotella, Capnocytophaga, and Fusobacterium were found to be differentially abundant in OSCC-associated microbiomes and can be considered as potential microbiome marker genera for oral cancer. Association with lipopolysaccharide (LPS) biosynthesis pathway further confirms the differential abundance of Gram-negative marker genera in OSCC microbiomes.
Collapse
Affiliation(s)
- Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sonia Vidushi Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudheer Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, India
| | - Ashok K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- *Correspondence: Vineet K. Sharma,
| |
Collapse
|
39
|
Nijakowski K, Gruszczyński D, Kopała D, Surdacka A. Salivary Metabolomics for Oral Squamous Cell Carcinoma Diagnosis: A Systematic Review. Metabolites 2022; 12:metabo12040294. [PMID: 35448481 PMCID: PMC9029144 DOI: 10.3390/metabo12040294] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer in which the consumption of tobacco and alcohol is considered to be the main aetiological factor. Salivary metabolome profiling could identify novel biochemical pathways involved in the pathogenesis of various diseases. This systematic review was designed to answer the question “Are salivary metabolites reliable for the diagnosis of oral squamous cell carcinoma?”. Following the inclusion and exclusion criteria, nineteen studies were included (according to PRISMA statement guidelines). In all included studies, the diagnostic material was unstimulated whole saliva, whose metabolome changes were determined by different spectroscopic methods. At the metabolic level, OSCC patients differed significantly not only from healthy subjects but also from patients with oral leukoplakia, lichen planus or other oral potentially malignant disorders. Among the detected salivary metabolites, there were the indicators of the impaired metabolic pathways, such as choline metabolism, amino acid pathways, polyamine metabolism, urea cycle, creatine metabolism, glycolysis or glycerolipid metabolism. In conclusion, saliva contains many potential metabolites, which can be used reliably to early diagnose and monitor staging in patients with OSCC. However, further investigations are necessary to confirm these findings and to identify new salivary metabolic biomarkers.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Correspondence:
| | - Dawid Gruszczyński
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (D.G.); (D.K.)
| | - Dariusz Kopała
- Student’s Scientific Group, Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (D.G.); (D.K.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
40
|
Wang Y, Zhang X, Wang S, Li Z, Hu X, Yang X, Song Y, Jing Y, Hu Q, Ni Y. Identification of Metabolism-Associated Biomarkers for Early and Precise Diagnosis of Oral Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12030400. [PMID: 35327590 PMCID: PMC8945702 DOI: 10.3390/biom12030400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
The 5-year survival rate for oral squamous cell carcinoma (OSCC), one of the most common head and neck cancers, has not improved in the last 20 years. Poor prognosis of OSCC is the result of failure in early and precise diagnosis. Metabolic reprogramming, including the alteration of the uptake and utilisation of glucose, amino acids and lipids, is an important feature of OSCC and can be used to identify its biomarkers for early and precise diagnosis. In this review, we summarise how recent findings of rewired metabolic networks in OSCC have facilitated early and precise diagnosis of OSCC.
Collapse
Affiliation(s)
- Yuhan Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Shuai Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Zihui Li
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 210008, China;
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence: (Q.H.); (Y.N.)
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China; (Y.W.); (X.Z.); (S.W.); (Z.L.); (X.H.); (Y.S.); (Y.J.)
- Correspondence: (Q.H.); (Y.N.)
| |
Collapse
|
41
|
Development of a method for dansylation of metabolites using organic solvent-compatible buffer systems for amine/phenol submetabolome analysis. Anal Chim Acta 2022; 1189:339218. [PMID: 34815039 DOI: 10.1016/j.aca.2021.339218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
Metabolomics, which serves as a readout of biological processes and diseases monitoring, is an informative research area for disease biomarker discovery and systems biology studies. In particular, reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) has become a powerful and popular tool for metabolomics analysis, enabling the detection of most metabolites. Very polar and ionic metabolites, however, are less easily detected because of their poor retention in RP columns. Dansylation of metabolites simplifies the sub-metabolome analysis by reducing its complexity and increasing both hydrophobicity and ionization ability. However, the various metabolite concentrations in clinical samples have a wide dynamic range with highly individual variation in total metabolite amount, such as in saliva. The bicarbonate buffer typically used in dansylation labeling reactions induces solvent stratification, resulting in poor reproducibility, selective sample loss and an increase in false-determined metabolite peaks. In this study, we optimized the dansylation protocol for samples with wide concentration range of metabolites, utilizing diisopropylethylamine (DIPEA) or tri-ethylamine (TEA) in place of bicarbonate buffer, and presented the results of a systemic investigation of the influences of individual processes involved on the overall performance of the protocol. In addition to achieving high reproducibility, substitution of DIPEA or TEA buffer resulted in similar labeling efficiency of most metabolites and more efficient labeling of some metabolites with a higher pKa. With this improvement, compounds that are only present in samples in trace amounts can be detected, and more comprehensive metabolomics profiles can be acquired for biomarker discovery or pathway analysis, making it possible to analyze clinical samples with limited amounts of metabolites.
Collapse
|
42
|
Saxena R, Prasoodanan P K V, Gupta SV, Gupta S, Waiker P, Samaiya A, Sharma AK, Sharma VK. Assessing the Effect of Smokeless Tobacco Consumption on Oral Microbiome in Healthy and Oral Cancer Patients. Front Cell Infect Microbiol 2022. [PMID: 35433507 DOI: 10.3389/fcimb.2022.841465/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Oral cancer is a globally widespread cancer that features among the three most prevalent cancers in India. The risk of oral cancer is elevated by factors such as tobacco consumption, betel-quid chewing, excessive alcohol consumption, unhygienic oral condition, sustained viral infections, and also due to dysbiosis in microbiome composition of the oral cavity. Here, we performed an oral microbiome study of healthy and oral cancer patients to decipher the microbial dysbiosis due to the consumption of smokeless-tobacco-based products and also revealed the tobacco-associated microbiome. The analysis of 196 oral microbiome samples from three different oral sites of 32 healthy and 34 oral squamous cell carcinoma (OSCC) patients indicated health status, site of sampling, and smokeless tobacco consumption as significant covariates associated with oral microbiome composition. Significant similarity in oral microbiome composition of smokeless-tobacco-consuming healthy samples and OSCC samples inferred the possible role of smokeless tobacco consumption in increasing inflammation-associated species in oral microbiome. Significantly higher abundance of Streptococcus was found to adequately discriminate smokeless-tobacco-non-consuming healthy samples from smokeless-tobacco-consuming healthy samples and contralateral healthy site of OSCC samples from the tumor site of OSCC samples. Comparative analysis of oral microbiome from another OSCC cohort also confirmed Streptococcus as a potential marker for healthy oral microbiome. Gram-negative microbial genera such as Prevotella, Capnocytophaga, and Fusobacterium were found to be differentially abundant in OSCC-associated microbiomes and can be considered as potential microbiome marker genera for oral cancer. Association with lipopolysaccharide (LPS) biosynthesis pathway further confirms the differential abundance of Gram-negative marker genera in OSCC microbiomes.
Collapse
Affiliation(s)
- Rituja Saxena
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sonia Vidushi Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sudheer Gupta
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Prashant Waiker
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, India
| | - Ashok K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
- Department of Gastroenterology, Inflammatory Bowel & Immunology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
43
|
Tantray S, Sharma S, Prabhat K, Nasrullah N, Gupta M. Salivary metabolite signatures of oral cancer and leukoplakia through gas chromatography-mass spectrometry. J Oral Maxillofac Pathol 2022; 26:31-37. [PMID: 35571322 PMCID: PMC9106257 DOI: 10.4103/jomfp.jomfp_335_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 11/04/2022] Open
Abstract
Background Saliva contains a large array of metabolites, many of which can be informative for the detection of diseases. Gas chromatography-mass spectrometry (GC-MS) is a system that has long been used for metabolite profiling owing to its sensitivity, specificity, reproducibility and synchronized analysis; it has relatively broad coverage of compound classes including sugars, sugar alcohols, glycosides and lipophilic compounds. Aim and Objectives The present study was conducted to explore the use of GC-MS in assessing variation in salivary metabolites and to recognize the metabolites which can be used as disease diagnostic tools and metabolite markers for detection of oral squamous cell carcinoma. Materials and Methods The present study included clinically and histopathologically confirmed oral squamous cell carcinoma (OSCC) and oral leukoplakia patients (OLK) and the control group. Patients were divided into three groups: OSCC (n = 30), OLK (n = 30) and healthy individuals as controls (n = 30). Patients were refrained from eating, drinking, smoking or oral hygiene procedures for at least 1.5 h before the collection. Saliva was collected between 9.00 and 10.00 am. Samples were stored at -80°C. Filtered samples were used for GC-MS. Results Fifteen compounds differed significantly between control, OLK and OSCC. These metabolites were decanedioic acid, 2-methyloctacosane, eicosane, octane, 3,5-dimethyl, pentadecane, hentriacontane, 5, 5-diethylpentadecane, nonadecane, oxalic acid, 6-phenylundecanea, l-proline, 2-furancarboxamide, 2-isopropyl-5-methyl-1-heptanol, pentanoic acid, Docosane. Conclusion The findings of the study suggest the application of salivary metabolomics as a promising tool in the identification of tumor-specific biomarkers in early diagnosis and prediction of OSCC and oral leukoplakia. In future, standardizing the protocol for salivary analysis and overcoming some of the limitations will be helpful to establish salivary metabolomics as a reliable, the highly sensitive and specific method for clinical use as an independent diagnostic aid.
Collapse
Affiliation(s)
- Shoborose Tantray
- Department of Oral and Maxillofacial Pathology and Microbiology, Santosh Dental College and Hospital, Santosh University, Ghaziabad, Uttar Pradesh, India
| | - Seema Sharma
- Department of Oral and Maxillofacial Pathology and Microbiology, Santosh Dental College and Hospital, Santosh University, Ghaziabad, Uttar Pradesh, India
| | - Kanika Prabhat
- Department of Oral and Maxillofacial Pathology and Microbiology, Santosh Dental College and Hospital, Santosh University, Ghaziabad, Uttar Pradesh, India
| | | | - Manu Gupta
- Department of Oral and Maxillofacial Pathology and Microbiology, Santosh Dental College and Hospital, Santosh University, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
44
|
Janse van Rensburg HJ, Spiliopoulou P, Siu LL. OUP accepted manuscript. Oncologist 2022; 27:352-362. [PMID: 35285488 PMCID: PMC9074993 DOI: 10.1093/oncolo/oyac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Circulating biomarkers have emerged as valuable surrogates for evaluating disease states in solid malignancies. Their relative ease of access and rapid turnover has bolstered clinical applications in monitoring treatment efficacy and cancer progression. In this review, the roles of various circulating biomarkers in monitoring treatment response are described. Non-specific markers of disease burden, tumor markers (eg CA 125, CEA, PSA, etc.), circulating tumor cells, nucleic acids, exosomes, and metabolomic arrays are highlighted. Specifically, the discovery of each of these markers is reviewed, with examples illustrating their use in influencing treatment decisions, and barriers to their application noted where these exist. Finally, opportunities for future work using these circulating biomarkers are discussed.
Collapse
Affiliation(s)
| | | | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Corresponding author: Lillian L. Siu, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, ON, Canada M5G 1Z5. Tel: +1 416 946 2911;
| |
Collapse
|
45
|
Kumar G, Jena S, Jnaneswar A, Jha K, Suresan V, Singh A. Advancements in diagnostic techniques for oral cancer detection. Minerva Dent Oral Sci 2021; 71:192-198. [PMID: 34851069 DOI: 10.23736/s2724-6329.21.04637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oral malignancy is among the highest prevalent malignancies all over the world. In comparison to systemic malignancies such as lung cancer and colon cancer, they are frequently overlooked by the general public. Nevertheless, they can be exceedingly lethal if left ignored, regardless at the early stage of the condition. Dentists are the finest qualified healthcare specialists in this sector and are responsible for detecting benign and potentially malignant oral conditions such as oral cancers. Oral carcinoma's high prevalence and delayed appearance are serious international medical concerns. Early detection and management of oral carcinoma are the key goals of the World Health Organization (WHO). The identification of key clinical manifestations during the preliminary oral examination can enhance the patient's likelihood of living. Unfortunately, the conventional technology's practical value is limited by a number of drawbacks. Current advancements in optical scanning techniques, such as tissue-fluorescence imaging and optical coherence tomography, have proven to be quite effective. In particular, nanoparticle-based immunosensors, genomics, and salivary biomarkers, epigenetics and microarray have all received a lot of attention. Raising awareness about frequent dental examinations and using noninvasive, effective, and cost-effective screening tools would improve initial stage detection of oral carcinoma and improve patients' longevity.
Collapse
Affiliation(s)
- Gunjan Kumar
- Department of Public Health Dentistry, Kalinga Institute of Dental Science, KIIT Deemed to be University, Bhubaneswar, India
| | - Samikshya Jena
- Department of Public Health Dentistry, Kalinga Institute of Dental Science, KIIT Deemed to be University, Bhubaneswar, India -
| | - Avinash Jnaneswar
- Department of Public Health Dentistry, Kalinga Institute of Dental Science, KIIT Deemed to be University, Bhubaneswar, India
| | - Kunal Jha
- Department of Public Health Dentistry, Kalinga Institute of Dental Science, KIIT Deemed to be University, Bhubaneswar, India
| | - Vinay Suresan
- Department of Public Health Dentistry, Kalinga Institute of Dental Science, KIIT Deemed to be University, Bhubaneswar, India
| | - Arpita Singh
- KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
46
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
47
|
Yamamoto K, Momonoki YS. Identification and molecular characterization of propionylcholinesterase, a novel pseudocholinesterase in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1961062. [PMID: 34334124 PMCID: PMC8525928 DOI: 10.1080/15592324.2021.1961062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Cholinesterase is consisting of acetylcholinesterase (AChE) and pseudocholinesterase in vertebrates and invertebrates. AChE gene has been identified in several plant species, while pseudocholinesterase gene has not yet been found in any plant species. In this study, we report that the AChE gene paralog encodes propionylcholinesterase (PChE), a pseudocholinesterase in rice. PChE was found to be located adjacent to AChE (Os07g0586200) on rice chromosome 7 and designated as Os07g0586100. Phylogenetic tree analysis showed a close relationship between rice AChE and PChE. PChE-overexpressing rice had higher hydrolytic activity toward propionylthiocholine than acetylthiocholine and showed extremely low activity against butyrylthiocholine. Therefore, the PChE gene product was characterized as a propionylcholinesterase, a pseudocholinesterase. The rice PChE displayed lower sensitivity to the cholinesterase inhibitor, neostigmine bromide, than electric eel, maize, and rice AChEs. The recombinant PChE functions as a 171 kDa homotetramer. PChE was expressed during the later developmental stage, and it was found be localized in the extracellular spaces of the rice leaf tissue. These results suggest that the rice plant possesses PChE, which functions in the extracellular spaces at a later developmental stage. To the best of our knowledge, this study provides the first direct evidence and molecular characterization of PChE in plants.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
48
|
Identification of Possible Salivary Metabolic Biomarkers and Altered Metabolic Pathways in South American Patients Diagnosed with Oral Squamous Cell Carcinoma. Metabolites 2021; 11:metabo11100650. [PMID: 34677365 PMCID: PMC8537096 DOI: 10.3390/metabo11100650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The search for specific biomarkers for OSCC is a very active field of research contributing to establishing early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique. Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid, lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our findings regarding these metabolic changes are important in discovering salivary biomarkers of OSCC patients. However, additional work needs to be performed considering larger populations to validate our results.
Collapse
|
49
|
Salivary Metabolomics for Diagnosis and Monitoring Diseases: Challenges and Possibilities. Metabolites 2021; 11:metabo11090587. [PMID: 34564402 PMCID: PMC8469343 DOI: 10.3390/metabo11090587] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Saliva is a useful biological fluid and a valuable source of biological information. Saliva contains many of the same components that can be found in blood or serum, but the components of interest tend to be at a lower concentration in saliva, and their analysis demands more sensitive techniques. Metabolomics is starting to emerge as a viable method for assessing the salivary metabolites which are generated by the biochemical processes in elucidating the pathways underlying different oral and systemic diseases. In oral diseases, salivary metabolomics has concentrated on periodontitis and oral cancer. Salivary metabolites of systemic diseases have been investigated mostly in the early diagnosis of different cancer, but also neurodegenerative diseases. This mini-review article aims to highlight the challenges and possibilities of salivary metabolomics from a clinical viewpoint. Furthermore, applications of the salivary metabolic profile in diagnosis and prognosis, monitoring the treatment success, and planning of personalized treatment of oral and systemic diseases are discussed.
Collapse
|
50
|
Nabi MM, Mamun MA, Islam A, Hasan MM, Waliullah ASM, Tamannaa Z, Sato T, Kahyo T, Setou M. Mass spectrometry in the lipid study of cancer. Expert Rev Proteomics 2021; 18:201-219. [PMID: 33793353 DOI: 10.1080/14789450.2021.1912602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer is a heterogeneous disease that exploits various metabolic pathways to meet the demand for increased energy and structural components. Lipids are biomolecules that play essential roles as high energy sources, mediators, and structural components of biological membranes. Accumulating evidence has established that altered lipid metabolism is a hallmark of cancer.Areas covered: Mass spectrometry (MS) is a label-free analytical tool that can simultaneously identify and quantify hundreds of analytes. To date, comprehensive lipid studies exclusively rely on this technique. Here, we reviewed the use of MS in the study of lipids in various cancers and discuss its instrumental limitations and challenges.Expert opinion: MS and MS imaging have significantly contributed to revealing altered lipid metabolism in a variety of cancers. Currently, a single MS approach cannot profile the entire lipidome because of its lack of sensitivity and specificity for all lipid classes. For the metabolic pathway investigation, lipid study requires the integration of MS with other molecular approaches. Future developments regarding the high spatial resolution, mass resolution, and sensitivity of MS instruments are warranted.
Collapse
Affiliation(s)
- Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, Bangladesh
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Shizuoka, Japan
| |
Collapse
|