1
|
Liu Z, Wang W, Zong Y, Li M, Gao Y, Xin X, Zhu T, Wang L, Song L. Norepinephrine regulates TNF expression via the A1AR-p38 MAPK-Relish pathway in granulocytes of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105217. [PMID: 38901503 DOI: 10.1016/j.dci.2024.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuqian Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Xin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Ting Zhu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Fabbri E, Balbi T, Canesi L. Neuroendocrine functions of monoamines in invertebrates: Focus on bivalve molluscs. Mol Cell Endocrinol 2024; 588:112215. [PMID: 38548145 DOI: 10.1016/j.mce.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.
Collapse
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Sant'Alberto 163, 48123, Ravenna, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
3
|
de Abreu Mello A, Motta Portal T, Allodi S, Nunes da Fonseca R, Monteiro de Barros C. Adrenoreceptor phylogeny and novel functions of nitric oxide in ascidian immune cells. J Invertebr Pathol 2024; 203:108057. [PMID: 38176675 DOI: 10.1016/j.jip.2023.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Nitric oxide (NO) is a simple molecule involved in many biological processes and functions in the cardiovascular, neural, and immune systems. In recent years, NO has also been recognized as a crucial messenger in communication between the nervous and immune systems. Together with NO, catecholamines are the main group of neurotransmitters involved in cross-talk between the nervous and immune systems. Catecholamines such as noradrenaline, can act on immune cells through adrenoreceptors (ARs) present on the cell surface, and NO can cross the cell membrane and interact with secondary messengers, modulating catecholamine production. Here, we analyzed the mutual modulation by noradrenaline and NO in Phallusia nigra immune cells for specific subtypes of ARs. We also investigated the involvement of protein kinases A and C as secondary messengers to these specific subtypes of ARs in the adrenergic signaling pathway that culminates in NO modulation, and the phylogenetic distribution of ARs in deuterostome genomes. This analysis provided evidence for single-copy orthologs of α1, α2 and β-AR in ascidian genomes, suggesting that NO and NA act on a less diverse set of ARs in urochordates. Pharmacological assays showed that high levels of NO can induce ascidian immune cells to produce catecholamines. We also observed that protein kinases A and C are the secondary messengers involved in downstream modulation of NO production through an ancestral β-AR. Taken together, these results provide new information on NO as a modulator of immune cells, and reveal the molecules involved in the signaling pathway of ARs. The results also indicate that ARs may participate in NO modulation. Finally, our results suggest that the common ancestor of urochordates possessed a less complex system of ARs required for immune action and diverse pharmacological responses, since the α-ARs are phylogenetically more related to D1-receptors than are the β-ARs.
Collapse
Affiliation(s)
- Andressa de Abreu Mello
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil; Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade- NUPEM, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, RJ, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, UFRJ, Macaé, RJ, Brazil.
| |
Collapse
|
4
|
Moraes RM, Garcia MT, Stossi F, de Barros PP, Junqueira JC, Anbinder AL. Effects of α and β-adrenergic signaling on innate immunity and Porphyromonas gingivalis virulence in an invertebrate model. Virulence 2022; 13:1614-1630. [PMID: 36121102 PMCID: PMC9487758 DOI: 10.1080/21505594.2022.2123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To investigate the role of adrenergic signalling (AS) in the host immune response and Porphyromonas gingivalis virulence, we compared norepinephrine (NE) and isoproterenol (ISO) responses in Galleria mellonella. P. gingivalis infection was evaluated by survival; humoral immune responses (i.e. melanization and cecropin and gloverin mRNA expression); cellular immune responses (i.e. haemocyte count, nodulation by histology); and P. gingivalis recovery (CFU/mL). P. gingivalis was cultivated in the presence of ISO (PgISO) or NE and injected into the larvae for survival evaluation. Finally, we co-injected ISO and PgISO to evaluate the concomitant effects on the immune response and bacterial virulence. None of the ligands were toxic to the larvae; ISO increased haemocyte number, even after P. gingivalis infection, by mobilizing sessile haemocytes in a β-adrenergic-specific manner, while NE showed the opposite effect. ISO treatment reduced larval mortality and the number of recovered bacteria, while NE increased mortality and showed no effect on bacterial recovery. ISO and NE had similar effects on melanization and decreased the expression of cecropin. Although co-cultivation with NE and ISO increased the gene expression of bacterial virulence factors in vitro, only the injection of PgISO increased larval death, which was partially reversed by circulating ISO. Therefore, α- and β-adrenergic signalling had opposite effects after P. gingivalis infection. Ultimately, the catecholamine influence on the immune response overcame the effect of more virulent strains. The effect of AS directly on the pathogen found in vitro did not translate to the in vivo setting.
Collapse
Affiliation(s)
- Renata Mendonça Moraes
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Maíra Terra Garcia
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Patrícia Pimentel de Barros
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil.,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caicó, RN, Brazil
| | - Juliana Campos Junqueira
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Ana Lia Anbinder
- Institute of Science and Technology, Biosciences and Diagnosis Department, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| |
Collapse
|
5
|
Balakrishnan S, Singh ISB, Puthumana J. Status in molluscan cell line development in last one decade (2010–2020): impediments and way forward. Cytotechnology 2022; 74:433-457. [PMID: 36110153 PMCID: PMC9374870 DOI: 10.1007/s10616-022-00539-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the attempts that have started since the 1960s, not even a single cell line of marine molluscs is available. Considering the vast contribution of marine bivalve aquaculture to the world economy, the prevailing viral threats, and the dismaying lack of advancements in molluscan virology, the requirement of a marine molluscan cell line is indispensable. This synthetic review discusses the obstacles in developing a marine molluscan cell line concerning the choice of species, the selection of tissue and decontamination, and cell culture media, with emphasis given on the current decade 2010-2020. Detailed accounts on the experiments on the virus cultivation in vitro and molluscan cell immortalization, with a brief note on the history and applications of the molluscan cell culture, are elucidated to give a holistic picture of the current status and future trends in molluscan cell line development. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00539-x.
Collapse
|
6
|
The Evolution of Nitric Oxide Function: From Reactivity in the Prebiotic Earth to Examples of Biological Roles and Therapeutic Applications. Antioxidants (Basel) 2022; 11:antiox11071222. [PMID: 35883712 PMCID: PMC9311577 DOI: 10.3390/antiox11071222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/01/2022] Open
Abstract
Nitric oxide was once considered to be of marginal interest to the biological sciences and medicine; however, there is now wide recognition, but not yet a comprehensive understanding, of its functions and effects. NO is a reactive, toxic free radical with numerous biological targets, especially metal ions. However, NO and its reaction products also play key roles as reductant and oxidant in biological redox processes, in signal transduction, immunity and infection, as well as other roles. Consequently, it can be sensed, metabolized and modified in biological systems. Here, we present a brief overview of the chemistry and biology of NO—in particular, its origins in geological time and in contemporary biology, its toxic consequences and its critical biological functions. Given that NO, with its intrinsic reactivity, appeared in the early Earth’s atmosphere before the evolution of complex lifeforms, we speculate that the potential for toxicity preceded biological function. To examine this hypothesis, we consider the nature of non-biological and biological targets of NO, the evolution of biological mechanisms for NO detoxification, and how living organisms generate this multifunctional gas.
Collapse
|
7
|
Jiang K, Nie H, Yin Z, Yan X, Li Q. Apextrin from Ruditapes philippinarum functions as pattern recognition receptor and modulates NF-κB pathway. Int J Biol Macromol 2022; 214:33-44. [PMID: 35697169 DOI: 10.1016/j.ijbiomac.2022.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/28/2022]
Abstract
Apextrin belongs to ApeC-containing proteins (ACPs) and features a signal-peptide, an N-terminal membrane attack complex component/perforin (MACPF) domain, and a C-terminal ApeC domain. Recently, apextrin-like proteins were identified as pattern recognition receptor (PRR), which recognize the bacterial cell wall component and participate in innate immunity. Here, an apextrin (Rpape) was identified and characterized in Ruditapes philippinarum. Our results showed that Rpape mRNA was significantly induced under bacterial challenges. The Rpape recombinant protein exhibited a significant inhibitory effect on gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and bound with Vibrio anguillarum, S. aureus and B. subtilis. We found Rpape protein positively activated the NF-κB signaling cascade and increased the activity of Nitric oxide (NO). This study revealed the immunity role of apextrin in R. philippinarum and provided a reference for further study on the role of apextrin in bivalves.
Collapse
Affiliation(s)
- Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhihui Yin
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zheng L, Cao H, Qiu J, Chi C. Inhibitory Effect of FMRFamide on NO Production During Immune Defense in Sepiella japonica. Front Immunol 2022; 13:825634. [PMID: 35572529 PMCID: PMC9095972 DOI: 10.3389/fimmu.2022.825634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide), specifically existing in invertebrates, plays pivotal roles in various physiological processes. The involvement in neuroendocrine-immune regulation was explored in recent years, and it could modulate nitric oxide (NO) production under immune stress. However, detailed knowledge is still little known. In this study, we identified FMRFamide as an inhibitory factor on NO production in the immune reaction of Sepiella japonica. Firstly, Vibrio harveyi incubation caused significantly upregulated expression of FMRFamide precursor and NO synthase (NOS) in just hatched cuttlefish with quantitative Real-time PCR (qRT-PCR), which indicated that both were likely to be involved in the immune defense. The whole-mount in situ hybridization (ISH) detected FMRFamide precursor and NOS-positive signals appeared colocalization, suggesting that at histological and anatomical levels FMRFamide might interact with NOS. Next, NOS mRNA was highly significantly upregulated at 72 h when FMRFamide precursor mRNA was knocked down effectively with the RNA interference (RNAi) method; the results hinted that FMRFamide was likely to regulate NO production. Continuously, the inflammatory model was constructed in RAW 264.7 cells induced by lipopolysaccharide (LPS), FMRFamide administration resulted in a highly significant reduction of the NO level in dose- and time-response manners. Although the addition of the selected inducible NOS (iNOS) inhibitor had inhibited the NO production induced by LPS, the additional FMRFamide could still furtherly sharpen the process. Collectively, it was concluded that neuropeptide FMRFamide could indeed inhibit NO production to serve as feedback regulation at the late stage of immune response to protect hosts from excessive immune cytotoxicity. The inhibitory effect on NO production could not only be mediated by the NOS pathway but also be implemented through other pathways that needed to be furtherly explored. The results will provide data for comparing the structure and immune function of neuroendocrine-immune system (NEIS) between "advanced" cephalopods and other invertebrates and will provide new information for understanding the NEIS of cephalopods.
Collapse
Affiliation(s)
| | | | | | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
9
|
Han Z, Li J, Wang W, Li J, Zhao Q, Li M, Wang L, Song L. A calmodulin targeted by miRNA scaffold659_26519 regulates IL-17 expression in the early immune response of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104180. [PMID: 34171368 DOI: 10.1016/j.dci.2021.104180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Calmodulin (CaM) is a highly conserved second messenger protein transducing calcium signals by binding and modulating intracellular calcium ions (Ca2+), and involves in the Ca2+-dependent physical processes including host defense in vertebrates. In the present study, a CaM homologue (designated as CgCaM) was identified from Pacific oyster Crassostrea gigas. The open reading frame of CgCaM cDNA was of 471 bp encoding a polypeptide of 156 amino acid residues. There were four EFh domains predicted in CgCaM, which shared high homologies with those in CaMs from oyster C. virginica and other invertebrates. The mRNA transcripts of CgCaM were constitutively expressed in all the tested tissues including labellum, mantle, gonad, gills, adductor muscle, haemocytes and hepatopancreas, with the highest expression level in haemocytes. The mRNA expression level of CgCaM in haemocytes decreased significantly (0.31-fold of that in blank, p < 0.05) at 3 h after LPS stimulation, while the intracellular Ca2+ (1.57-fold of that in blank, p < 0.05) and the mRNA expression of cytokine CgIL17-1 (4.87-fold of that in blank, p < 0.05) both increased in haemocytes. Meanwhile, an oyster miRNA scaffold659_26519 was identified, and it was proved to target the 3'-untranslated regions (3'-UTR) of CgCaM mRNA by luciferase reporter assay. The expression of scaffold659_26519 increased significantly at 3 h (43.523-fold of that of blank, p < 0.05) and 6 h (55.91-fold of that of blank, p < 0.05) after LPS stimulation. When the expression of scaffold659_26519 was inhibited by transfection with its inhibitor in vitro, the expression of CgIL17-1 declined significantly to 0.58-fold of that in LPS stimulation group. These findings indicated that the miRNA scaffold659_26519 targeted CaM was involved in the early inflammatory response of oyster immunity, and provided a new evidence for CaM-mediated immune mechanism in molluscs.
Collapse
Affiliation(s)
- Zirong Han
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jialuo Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiaxin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
10
|
Zhao Q, Wang W, Li JX, Yuan P, Liu Y, Li Y, Wang L, Song L. The DNA cytosine-5-methyltransferase 3 (DNMT3) involved in regulation of CgIL-17 expression in the immune response of oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104092. [PMID: 33819545 DOI: 10.1016/j.dci.2021.104092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
DNA methyltransferase, a key enzyme mediating DNA methylation, is involved in numerous processes including genomic imprinting, X chromosome inactivation, transposable element suppression, and immune defense in vertebrates. In the present study, a DNA cytosine-5-methyltransferase 3 was identified from oyster Crassostrea gigas (designed as CgDNMT3). There were a PWWP domain, a PHD domain and a DNA-methylase domain in the deduced amino acid sequences of CgDNMT3, and the conserved motifs I, IV, VI, Ⅷ, IX and X were identified in its C-terminal catalytic DNA-methylase domain. The mRNA transcripts of CgDNMT3 were detected in haemocytes, mantle, gill, adductor muscle, digestive gland and labial palp, with higher expression level in haemocytes (6.54 folds of those in gill, p < 0.01). The expression level of CgDNMT3 mRNA in haemocytes increased significantly after LPS primed (2.87 folds of that in control group, p < 0.05) in vitro or Vibrio splendidus challenging (1.94 folds of that in control group, p < 0.05) in vivo. Immunocytochemical analysis revealed that CgDNMT3 protein was distributed mainly in cytoplasm and partial in nucleus of oyster haemocytes. After CgDNMT3 was transfected and expressed in HEK293T cells, the DNA 5-methylcytosine (5-mc) level in the transfected group was significantly increased, which was 1.22 folds (p < 0.05) of the pcDNA-3.1 group. The expressions of oyster CgIL17-1, CgIL17-2 and CgIL17-5 in haemocytes increased (13.05 folds, 4.78 folds and 9.41 folds of that in control group, respectively) at 12 h after V. splendidus challenging, but the increase were significantly inhibited when the oysters were pre-treated with DNA methyltransferase inhibitor 5-Azacytidine, which were 9 folds, 1.93 folds and 3.22 folds of that in control group, respectively. These results collectively suggested that CgDNMT3 was a conserved member of DNA methyltransferase 3 family in oyster, and participated in regulating the expression of cytokines during immune response.
Collapse
Affiliation(s)
- Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jia Xin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
Li J, Wang W, Zhao Q, Fan S, Li Y, Yuan P, Wang L, Song L. A haemocyte-expressed Methyltransf_FA domain containing protein (MFCP) exhibiting microbe binding activity in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104137. [PMID: 34023375 DOI: 10.1016/j.dci.2021.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The Methyltransf_FA domain is well-known as a key protein domain of enzyme synthesizing juvenile hormone, and Methyltransf_FA domain containing proteins (MFCPs) are widely existed in vertebrates and invertebrates. In the present study, a CgMFCP with a single Methyltransf_FA domain was screened from oyster Crassostrea gigas, and its open reading frame of CgMFCP was of 1128 bp, encoding a polypeptide of 376 amino acids with a signal peptide, a Methyltransf_FA domain and a transmembrane region. CgMFCP was clustered with FAMeTs from insecta and crustacea of arthropod. The mRNA transcripts of CgMFCP were detected in different tissues, with the extremely high expression level in haemocytes, which was 131.36-fold (p < 0.05) of that in gills. The expression level of CgMFCP protein was verified to be highly expressed in haemocytes. The expression level of CgMFCP mRNA in primarily cultured haemocytes significantly up-regulated at 3 h, 24 h and 48 h post LPS stimulation, which was 3.25-fold (p < 0.01), 2.04-fold (p < 0.05) and 3.59-fold (p < 0.01) compared to that in blank group. After the oysters were stimulated with Vibrio splendidus in vivo, the expression level of CgMFCP mRNA in haemocytes was also significantly up-regulated at 3 h, 12 h, and 24 h, which was 4.22-fold (p < 0.05), 4.39-fold (p < 0.05) and 6.35-fold (p < 0.01) of that in control group, respectively. By flow cytometry analysis, anti-rCgMFCP can label 95% of oyster haemocytes. And by fluorescence microscope analysis, CgMFCP was mainly distributed in cytomembrane of haemocytes. The recombinant CgMFCP (rCgMFCP) exhibited higher affinity towards MAN and LPS in a dose-dependent manner, while relatively lower affinity to PGN and poly (I:C). rCgMFCP also displayed binding activities towards Gram-negative bacteria (Vibrio anguillarum and V. splendidus), Gram-positive bacteria (Staphylococcu aureu) and fungi (Pichia pastoris). These results collectively indicated that CgMFCP specifically expressed in haemocytes and functioned as a pattern recognition receptor by binding to various microbes in oyster C. gigas, which provided insight into the function of Methyltransf_FA domain containing proteins.
Collapse
Affiliation(s)
- Jiaxin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Fan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
12
|
Liu Z, Zhou Z, Wang L, Zhang Y, Zong Y, Zheng Y, Li M, Wang W, Song L. A Signaling Pathway to Mediate the Combined Immunomodulation of Acetylcholine and Enkephalin in Oyster Crassostrea gigas. Front Immunol 2020; 11:616. [PMID: 32362893 PMCID: PMC7180215 DOI: 10.3389/fimmu.2020.00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Molluscs have evolved a primitive but complete neuroendocrine-immune (NEI) system with a vast array of neurotransmitters to conduct both humoral and cellular immunomodulation. Previous studies have illustrated the immune functions of several key neurotransmitters. However, the combined effects of multiple neurotransmitters and the signaling pathway to mediate such immunomodulation have not been well-understood. In the present study, iTRAQ and LC-ESI-MS/MS approaches were employed to investigate the combined immunomodulation functions of two crucial neurotransmitters, acetylcholine (ACh), and [Met5]-enkephalin (ENK), in oyster Crassostrea gigas. A total number of 5,379 proteins were identified from hemocytes of oysters after the treatments with Ach and ENK separately or simultaneously, and 1,475 of them were found to be significantly up-regulated, while 1,115 of them were significantly down-regulated. The protein expression patterns in the groups treated by ACh and ENK separately were quite similar, which were dramatically different from that in the group treated by ACh+ENK. One hundred seventy-two proteins were found to be differentially expressed in all the three neurotransmitter treatment groups. Functional validation suggested that ACh and ENK possibly modulate the immune response in oyster hemocytes by enhancing pathogen recognition, cell apoptosis, and the enzyme activities of superoxide dismutase (SOD). Moreover, GO enrichment and co-expression network analyses implied that the combined immunomodulation of ACh and ENK might be mediated by p53, EGF-R–ErbB, and Fc gamma R (FcγR) signaling pathways. These results collectively indicated that multiple neurotransmitters executed a combined and ordered immune regulation through common signaling cascades in molluscs, which was under delicate control to maintain the homeostasis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| |
Collapse
|
13
|
Mello ADA, Geihs MA, Nogueira TDS, Allodi S, Vargas MA, de Barros CM. Oxidative stress: Noradrenaline as an integrator of responses in the neuroendocrine and immune systems of the ascidian Phallusia nigra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103573. [PMID: 31918205 DOI: 10.1016/j.dci.2019.103573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmitters play key roles in regulating the homeostasis of organisms in stressful environments. Noradrenaline (NA) is the main neurotransmitter known to modulate immunological parameters, and is important in the crosstalk between the neuroendocrine and immune systems. In this study, using the ascidian Phallusia nigra, we analyzed the level of catecholamines (CA) in the plasma after mechanical stress, and the effect of NA on the oxidative stress (OS) displayed by immune cells. We measured the concentration of reactive oxygen species (ROS), and analyzed whether α- and/or β-adrenoreceptors (ARs) are involved in ROS modulation, lipid peroxidation (LPO), antioxidant capacity against peroxyl radicals (ACAP), and activity of the enzymes catalase (CAT) and glutathione S transferase (GST) in immune cells after incubation with different concentrations of NA, with or without zymosan (ZnA) challenge. The results showed that NA reduced ROS production, even in immune cells challenged with ZnA, and that this modulation occurred through α1-and β1-ARs. ACAP levels showed different responses, depending on whether immune cells were challenged or not with ZnA, and also depending on the NA concentration: 1.0 μM NA increased ACAP levels, but 10.0 μM reduced ACAP levels. NA enhanced the activity of CAT and GST in ZnA-challenged and non-challenged immune cells, while 1.0 and 10.0 μM NA effectively reduced LPO. Taken together, these results show that NA can protect cells from ROS damage, decreasing ROS production and LPO, and enhancing ACAP as well as the activity of CAT and GST. The approach used here with this model contributes to understanding the relationship between the neuroendocrine and immune systems, revealing new effects of NA on OS regulation in ascidians.
Collapse
Affiliation(s)
- Andressa de Abreu Mello
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Márcio Alberto Geihs
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Thuany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo Alves Vargas
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil.
| |
Collapse
|
14
|
Xu L, Pan L, Zhang X, Wei C. Crustacean hyperglycemic hormone (CHH) affects hemocyte intracellular signaling pathways to regulate exocytosis and immune response in white shrimp Litopenaeus vannamei. Peptides 2019; 116:30-41. [PMID: 31034862 DOI: 10.1016/j.peptides.2019.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Recombinant Litopenaeus vannamei CHH (rLvCHH) was obtained from a bacterial expression system and the intracellular signaling pathways involved in exocytosis and immune response after rLvCHH injection (0.2 and 2 μg/shrimp) was investigated in this study. The results showed that CHH contents increased 51.4%-110.2% (0.2 μg/shrimp) and 65.0%-211.3% (2 μg/shrimp) of the control level. And the contents of three biogenic amines in hemolymph presented a similar variation pattern after rLvCHH injection, but reached the highest level at different time points. Furthermore, the mRNA expression levels of membrane-bound guanylyl cyclase (mGC) (1.20-1.93 fold) and biogenic amine receptors, including type 2 dopamine receptor (DA2R) (0.72-0.89 fold), α2 adrenergic receptor (α2-AR) (0.72-0.91 fold) and 5-HT7 receptor (5-HT7R) (1.37-3.49 fold) in hemocytes were changed consistently with their ligands. In addition, the second messenger and protein kinases shared a similar trend and reached the maximum at the same time respectively. The expression levels of nuclear transcription factor (cAMP response element-binding protein, CREB) and exocytosis-related proteins transcripts were basically overexpressed after rLvCHH stimulation, which reached the peaks at 1 h or 3 h. Eventually, the phenoloxidase (PO) activity (37.4%-158.5%) and antibacterial activity (31.8%-122.3%) in hemolymph were dramatically enhanced within 6 h, while the proPO activity in hemocytes significantly decreased (11.2%-62.6%). Collectively, these results indicate that shrimps L. vannamei could carry out a simple but 'smart' NEI regulation by releasing different neuroendocrine factors at different stages after rLvCHH stimulation, which could couple with their receptors and trigger the downstream signaling pathways during the immune responses in hemocytes.
Collapse
Affiliation(s)
- Lijun Xu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| | - Cun Wei
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China; Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China
| |
Collapse
|
15
|
Role of Nitric Oxide in the Cardiovascular and Renal Systems. Int J Mol Sci 2018; 19:ijms19092605. [PMID: 30177600 PMCID: PMC6164974 DOI: 10.3390/ijms19092605] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The gasotransmitters are a family of gaseous signaling molecules which are produced endogenously and act at specific receptors to play imperative roles in physiologic and pathophysiologic processes. As a well-known gasotransmitter along with hydrogen sulfide and carbon monoxide, nitric oxide (NO) has earned repute as a potent vasodilator also known as endothelium-derived vasorelaxant factor (EDRF). NO has been studied in greater detail, from its synthesis and mechanism of action to its physiologic, pathologic, and pharmacologic roles in different disease states. Different animal models have been applied to investigate the beneficial effects of NO as an antihypertensive, renoprotective, and antihypertrophic agent. NO and its interaction with different systems like the renin–angiotensin system, sympathetic nervous system, and other gaseous transmitters like hydrogen sulfide are also well studied. However, links that appear to exist between the endocannabinoid (EC) and NO systems remain to be fully explored. Experimental approaches using modulators of its synthesis including substrate, donors, and inhibitors of the synthesis of NO will be useful for establishing the relationship between the NO and EC systems in the cardiovascular and renal systems. Being a potent vasodilator, NO may be unique among therapeutic options for management of hypertension and resulting renal disease and left ventricular hypertrophy. Inclusion of NO modulators in clinical practice may be useful not only as curatives for particular diseases but also for arresting disease prognoses through its interactions with other systems.
Collapse
|
16
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
17
|
Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front Immunol 2018. [PMID: 29535711 PMCID: PMC5834419 DOI: 10.3389/fimmu.2018.00284] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
18
|
Liu Z, Zhou Z, Jiang Q, Wang L, Yi Q, Qiu L, Song L. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas. Open Biol 2017; 7:rsob.160289. [PMID: 28077596 PMCID: PMC5303279 DOI: 10.1098/rsob.160289] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 01/10/2023] Open
Abstract
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas. Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca2+. This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the ‘nervous-haemocyte’ NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Qilin Yi
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, People's Republic of China
| |
Collapse
|
19
|
Chen H, Xin L, Song X, Wang L, Wang W, Liu Z, Zhang H, Wang L, Zhou Z, Qiu L, Song L. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. FISH & SHELLFISH IMMUNOLOGY 2017; 64:297-307. [PMID: 28286314 DOI: 10.1016/j.fsi.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
20
|
Catecholamines are produced by ascidian immune cells: The involvement of PKA and PKC in the adrenergic signaling pathway. Brain Behav Immun 2017; 61:289-296. [PMID: 28089640 DOI: 10.1016/j.bbi.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
The stress response is a complex mechanism, which includes changes in the immune system to enable organisms to maintain homeostasis. The neurohormones dopamine, noradrenaline (NA) and adrenalin are responsible for the physiological modulations that occur during acute stress. In the present study, we analyzed the effects of NA on the immune system specific to nitric-oxide (NO) production by subpopulations of immune cells (hemocytes) of the ascidian Phallusia nigra. We also investigated the capability of immune cells to produce catecholamine (CA). Finally, we tested the involvement of protein kinase A (PKA) and C (PKC) in the NA downstream signaling pathway. The results revealed that NA can reduce NO production by P. nigra hemocytes threefold, and that signet-ring cells, univacuolar refractile granulocytes and morula cells are the cell types most involved in this event. A challenge effected with Zymosan A induced CA production, and co-incubation with both inhibitors of the second messengers PKA and PKC revealed the involvement of these molecules in the adrenergic pathway of P. nigra hemocytes. Taken together, these results suggest that NO production can be down-regulated by NA through α- and β-adrenoceptors via the second messengers PKA and PKC.
Collapse
|
21
|
Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:2-23. [PMID: 27296493 DOI: 10.1016/j.dci.2016.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
It has now become accepted that the immune system and neuroendocrine system form an integrated part of our physiology. Immunological defense mechanisms act in concert with physiological processes like growth and reproduction, energy intake and metabolism, as well as neuronal development. Not only are psychological and environmental stressors communicated to the immune system, but also, vice versa, the immune response and adaptation to a current pathogen challenge are communicated to the entire body, including the brain, to evoke adaptive responses (e.g., fever, sickness behavior) that ensure allocation of energy to fight the pathogen. This phenomenon is evolutionarily conserved. Hence it is both interesting and important to consider the evolutionary history of this bi-directional neuroendocrine-immune communication to reveal phylogenetically ancient or relatively recently acquired mechanisms. Indeed, such considerations have already disclosed an extensive "common vocabulary" of information pathways as well as molecules and their receptors used by both the neuroendocrine and immune systems. This review focuses on the principal mechanisms of bi-directional communication and the evidence for evolutionary conservation of the important physiological pathways involved.
Collapse
Affiliation(s)
- B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | - Nicholas Cohen
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14620, USA
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| |
Collapse
|
22
|
Liu Z, Zhou Z, Wang L, Qiu L, Zhang H, Wang H, Song L. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:50-58. [PMID: 27633678 DOI: 10.1016/j.fsi.2016.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/02/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca2+ increased significantly (p < 0.05). But, this increasing of Ca2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Calcium/metabolism
- Crassostrea/enzymology
- Crassostrea/genetics
- Crassostrea/immunology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Hemocytes/immunology
- Immunity, Cellular
- Immunity, Humoral
- Phagocytosis
- Phylogeny
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Sequence Homology, Amino Acid
- Tumor Necrosis Factors/genetics
- Tumor Necrosis Factors/metabolism
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
23
|
Chen H, Wang H, Jiang S, Xu J, Wang L, Qiu L, Song L. An oyster species-specific miRNA scaffold42648_5080 modulates haemocyte migration by targeting integrin pathway. FISH & SHELLFISH IMMUNOLOGY 2016; 57:160-169. [PMID: 27544269 DOI: 10.1016/j.fsi.2016.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/07/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
miRNAs are important gene regulators at post-transcriptional level and can modulate diverse biological processes, including immune response. Dozens of species-specific miRNAs have been identified in oyster Crassostrea gigas while their functions remain largely unknown. In the present study, an oyster species-specific miRNA scaffold42648_5080 was found responsive to LPS stimulation and might target a total of 31 oyster genes possibly involved in cell communication, cellular localization and cellular response to stimulus. Besides, in gain-of-function assay of scaffold42648_5080 in vivo, the phagocytosis (30.90% in miRNA group verse 23.20% in miRNA control group), apoptosis (3.10% in miRNA group verse 5.30% in miRNA control group) and migration rate (13.88% in miRNA group verse 21.03% in miRNA control group) of oyster haemocytes were found significantly altered after the injection of scaffold42648_5080 mimics. Among the target genes, integrin-linked kinase (CgILK) was considered crucial in cell migration and its interaction with scaffold42648_5080 was then verified both in vitro and in vivo. Consequently, a significant decrease of relative luciferase ratio was observed in CgILK 3'-UTR luciferase reporter assay after transfection of scaffold42648_5080 mimics (0.70-fold of that in blank group, p < 0.01). Meanwhile, when scaffold42648_5080 was overexpressed in vivo (5.41-fold of miRNA control group, p < 0.01), the expression of CgILK declined significantly to 0.25-fold of miRNA control group (p < 0.01). Comparatively, a significant decrease of the haemocyte migration rate (19.76% verse 34.82% in siEGFP control group, p < 0.01) was observed after knock-down of CgILK in vivo. The present study, as far as we know, for the first time revealed the immunomodulation role of an oyster species-specific miRNA, which might provide new insights into miRNA-mediated adaptation mechanism of oysters.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jiachao Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
24
|
Chen H, Jiang S, Wang L, Wang L, Wang H, Qiu L, Song L. Cgi-miR-92d indirectly regulates TNF expression by targeting CDS region of lipopolysaccharide-induced TNF-α factor 3 (CgLITAF3) in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2016; 55:577-584. [PMID: 27346152 DOI: 10.1016/j.fsi.2016.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Tumor necrosis factor alpha (TNF-α) mediated inflammatory response plays indispensable roles in organisms defending against the invaded bacteria, during which microRNAs have been found crucial by controlling multiple TNF-α-related genes. In the present study, cgi-miR-92d was annotated as a member of miR-17-92 family and could target the CDS region of lipopolysaccharide (LPS)-induced TNF-α factor (CgLITAF3) in oyster Crassostrea gigas. It was observed that cgi-miR-92d could be vigorously modulated by Vibrio splendidus or LPS stimulation while CgLITAF3 altered oppositely. Two putative binding sites of cgi-miR-92d were then found at CDS region of CgLITAF3. The interaction between cgi-miR-92d and CgLITAF3 was subsequently verified both in vitro and in vivo. As a result, a significant decrease of cellular luminescence was observed in CgLITAF3 luciferase reporter assay when cgi-miR-92d was overexpressed. The luminescent decrease was then recuperated when cgi-miR-92d inhibitor was co-transfected with miRNA mimics. Besides, CgLITAF3 transcripts were significantly down-regulated when cgi-miR-92d was overexpressed in vivo during V. splendidus challenge. Gain-of-function assay of CgLITAF3 was then conducted in HEK293T cells to verify its function. Consequently, a significant increase of TNF-α was observed during the assay. At the meantime, CgTNF was also down-regulated in gain-of-function assay of cgi-miR-92 in vivo, which was a member of TNF superfamily in oysters which could be robustly induced after pathogen stimulation. Together, these results verify the interaction between CgLITAF3 and cgi-miR-92d, which might dedicate crucially in the repaid activation of CgTNF expression during inflammatory response of oysters.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
25
|
Lu XJ, Chen Q, Rong YJ, Chen J. Mobilisation and dysfunction of haematopoietic stem/progenitor cells after Listonella anguillarum infection in ayu, Plecoglossus altivelis. Sci Rep 2016; 6:28082. [PMID: 27306736 PMCID: PMC4910102 DOI: 10.1038/srep28082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Haematopoietic stem/progenitor cells (HSPCs) can mobilise into blood and produce immune cell lineages following stress. However, the homeostasis and function of HSPCs after infection in teleosts are less well known. Here, we report that Listonella anguillarum infection enhances HSPC mobilisation and reduces their differentiation into myeloid cells in ayu (Plecoglossus altivelis), an aquacultured teleost in East Asia. We established a colony-forming unit culture (CFU-C) assay to measure HSPCs using conditioned medium from peripheral blood mononuclear cells stimulated with phytohaemagglutinin. The number of CFU-Cs decreased in the head kidney and increased in the blood and spleen of ayu infected with L. anguillarum. HSPC mobilisation after L. anguillarum infection was mediated by norepinephrine. Furthermore, HSPCs from ayu treated with L. anguillarum lipopolysaccharide (LPS) showed defective myeloid differentiation and could no longer rescue L. anguillarum-infected ayu. HSPC expansion was suppressed after L. anguillarum infection or its LPS treatment in vitro. These results reveal a link between HSPC regulation and pathogen infection in teleosts.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ye-Jing Rong
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
26
|
The first description of complete invertebrate arginine metabolism pathways implies dose-dependent pathogen regulation in Apostichopus japonicus. Sci Rep 2016; 6:23783. [PMID: 27032691 PMCID: PMC4817134 DOI: 10.1038/srep23783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
In this study, three typical members representative of different arginine metabolic pathways were firstly identified from Apostichopus japonicus, including nitric oxide synthase (NOS), arginase, and agmatinase. Spatial expression analysis revealed that the AjNOS transcript presented negative expression patterns relative to those of Ajarginase or Ajagmatinase in most detected tissues. Furthermore, Vibrio splendidus-challenged coelomocytes and intestine, and LPS-exposed primary coelomocytes could significantly induce AjNOS expression, followed by obviously inhibited Arginase and AjAgmatinase transcripts at the most detected time points. Silencing the three members with two specific siRNAs in vivo and in vitro collectively indicated that AjNOS not only compete with Ajarginase but also with Ajagmatinase in arginine metabolism. Interestingly, Ajarginase and Ajagmatinase displayed cooperative expression profiles in arginine utilization. More importantly, live pathogens of V. splendidus and Vibrio parahaemolyticus co-incubated with primary cells also induced NO production and suppressed arginase activity in a time-dependent at an appropriate multiplicity of infection (MOI) of 10, without non-pathogen Escherichia coli. When increasing the pathogen dose (MOI = 100), arginase activity was significantly elevated, and NO production was depressed, with a larger magnitude in V. splendidus co-incubation. The present study expands our understanding of the connection between arginine's metabolic and immune responses in non-model invertebrates.
Collapse
|
27
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
28
|
Jiang S, Li H, Zhang D, Zhang H, Wang L, Sun J, Song L. A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS. FISH & SHELLFISH IMMUNOLOGY 2015; 45:583-591. [PMID: 26002640 DOI: 10.1016/j.fsi.2015.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
C1q proteins serve as pattern recognition receptors and involve in the pathogen recognition and complement pathway activation. In the present study, a novel C1q domain containing protein from Crassostrea gigas (designated CgC1qDC-1) was isolated by liposaccharide-Sepharose 6B affinity chromatography. The coding sequence of CgC1qDC-1 gene was determined by performing a homologous search of eight tryptic peptides identified by MALDI-TOF/TOF-MS against the genome of C. gigas. The coding sequence of CgC1qDC-1 was of 387 bp encoding a polypeptide of 128 amino acids containing a typical globular C1q domain. The globular C1q domain possessed eight β strands with a jelly-roll topology structure, which was similar to the structure of human gC1q domain. The mRNA transcripts of CgC1qDC-1 were dominantly expressed in mantle and hemocytes, while low expressed in hepatopancreas, gonad, gill and muscle. The expression level of CgC1qDC-1 increased drastically at 6 h after Vibrio splendidus stimulation, and then gradually fell to the normal level at about 24 h. ELISA assay quantified that CgC1qDC-1 bound to LPS with high binding affinity (Kd = 0.09 × 10(-6) M). Moreover, CgC1qDC-1 significantly enhanced the phagocytosis of oyster hemocytes towards Gram-negative bacteria Escherichia coli and V. splendidus. These results collectively indicated that CgC1qDC-1 could serve as pattern recognition receptor and opsonin in the innate immune response against invading Gram-negative bacteria.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin 300387, China
| | | |
Collapse
|
29
|
Determination of iNOS-2087A>G Polymorphism in Acute Pancreatitis Patients. CURRENT HEALTH SCIENCES JOURNAL 2014; 40:249-52. [PMID: 26793321 PMCID: PMC4709709 DOI: 10.12865/chsj.40.04.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine whether single nucleotide polymorphism (SNP) of inducible nitric oxide synthase (iNOS) is involved in susceptibility for acute pancreatitis. MATERIAL AND METHODS Genomic DNA was extracted from blood samples collected from cases of acute pancreatitis (n=110) and normal population controls frequency matched for age and sex (n=232). iNOS - 2087A>G polymorphism was genotyped using TaqMan allelic discrimination assays. The association of the genetic polymorphism with clinical and pathological data of the patients was evaluated. RESULTS We have found no significant statistical association between this polymorphism and an increased risk of developing acute pancreatitis. CONCLUSION In Romanian population, the risk of developing acute pancreatitis is not increased by the presence of iNOS-2087A>G polymorphism.
Collapse
|