1
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
2
|
Copos C, Sun YH, Zhu K, Zhang Y, Reid B, Draper B, Lin F, Yue H, Bernadskaya Y, Zhao M, Mogilner A. Galvanotactic directionality of cell groups depends on group size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607794. [PMID: 39185145 PMCID: PMC11343102 DOI: 10.1101/2024.08.13.607794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Motile cells migrate directionally in the electric field in a process known as galvanotaxis, important and under-investigated phenomenon in wound healing and development. We previously reported that individual fish keratocyte cells migrate to the cathode in electric fields, that inhibition of PI3 kinase reverses single cells to the anode, and that large cohesive groups of either unperturbed or PI3K-inhibited cells migrate to the cathode. Here we find that small uninhibited cell groups move to the cathode, while small groups of PI3K-inhibited cells move to the anode. Small groups move faster than large groups, and groups of unperturbed cells move faster than PI3K-inhibited cell groups of comparable sizes. Shapes and sizes of large groups change little when they start migrating, while size and shapes of small groups change significantly, lamellipodia disappear from the rear edges of these groups, and their shapes start to resemble giant single cells. Our results are consistent with the computational model, according to which cells inside and at the edge of the groups pool their propulsive forces to move but interpret directional signals differently. Namely, cells in the group interior are directed to the cathode independently of their chemical state. Meanwhile, the edge cells behave like individual cells: they are directed to the cathode/anode in uninhibited/PI3K-inhibited groups, respectively. As a result, all cells drive uninhibited groups to the cathode, while larger PI3K-inhibited groups are directed by cell majority in the group interior to the cathode, while majority of the edge cells in small groups win the tug-of-war driving these groups to the anode.
Collapse
Affiliation(s)
- Calina Copos
- Department of Biology and Department of Mathematics, Northeastern University, Boston, MA 02115
| | - Yao-Hui Sun
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Kan Zhu
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yan Zhang
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou 311121, China
| | - Brian Reid
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Haicen Yue
- Department of Physics, University of Vermont, Burlington, VT 05405
| | - Yelena Bernadskaya
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| | - Min Zhao
- Department of Ophthalmology and Vision Science and Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
3
|
Abdellatef SA, Bard F, Nakanishi J. Photoactivatable substrates show diverse phenotypes of leader cells in collective migration when moving along different extracellular matrix proteins. Biomater Sci 2024; 12:3446-3457. [PMID: 38832531 DOI: 10.1039/d4bm00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In cancer metastasis, collectively migrating clusters are discriminated into leader and follower cells that move through extracellular matrices (ECMs) with different characteristics. The impact of changes in ECM protein types on leader cells and migrating clusters is unknown. To address this, we investigated the response of leader cells and migrating clusters upon moving from one ECM protein to another using a photoactivatable substrate bearing photocleavable PEG (PCP), whose surface changes from protein-repellent to protein-adhesive in response to light. We chose laminin and collagen I for our study since they are abundant in two distinct regions in living tissues, namely basement membrane and connective tissue. Using the photoactivatable substrates, the precise deposition of the first ECM protein in the irradiated areas was achieved, followed by creating well-defined cellular confinements. Secondary irradiation enabled the deposition of the second ECM protein in the new irradiated regions, resulting in region-selective heterogeneous and homogenous ECM protein-coated surfaces. Different tendencies in leader cell formation from laminin into laminin compared to those migrating from laminin into collagen were observed. The formation of focal adhesion and actin structures for cells within the same cluster in the ECM proteins responded according to the underlying ECM protein type. Finally, integrin β1 was crucial for the appearance of leader cells for clusters migrating from laminin into collagen. However, when it came to laminin into laminin, integrin β1 was not responsible. This highlights the correlation between leader cells in collective migration and the biochemical signals that arise from underlying extracellular matrix proteins.
Collapse
Affiliation(s)
- Shimaa A Abdellatef
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
| | - Francesca Bard
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jun Nakanishi
- Mechanobiology group, Research Centre for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan.
- Waseda University Graduate School of Advanced Science and Engineering Department of Nanoscience and Engineering, Tokyo, Japan
- Tokyo University of Science, advanced Graduate School of Engineering Materials Innovation Engineering, Japan
| |
Collapse
|
4
|
Lichtenberg JY, Ramamurthy E, Young AD, Redman TP, Leonard CE, Das SK, Fisher PB, Lemmon CA, Hwang PY. Leader cells mechanically respond to aligned collagen architecture to direct collective migration. PLoS One 2024; 19:e0296153. [PMID: 38165954 PMCID: PMC10760762 DOI: 10.1371/journal.pone.0296153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024] Open
Abstract
Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.
Collapse
Affiliation(s)
- Jessanne Y. Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ella Ramamurthy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Anna D. Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Trey P. Redman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Corinne E. Leonard
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Priscilla Y. Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
5
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
6
|
González I, Luzuriaga J, Valdivieso A, Candil M, Frutos J, López J, Hernández L, Rodríguez-Lorenzo L, Yagüe V, Blanco JL, Pinto A, Earl J. Low-intensity continuous ultrasound to inhibit cancer cell migration. Front Cell Dev Biol 2023; 10:842965. [PMID: 36712968 PMCID: PMC9877218 DOI: 10.3389/fcell.2022.842965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
In recent years, it has been verified that collective cell migration is a fundamental step in tumor spreading and metastatic processes. In this paper, we demonstrate for the first time how low-intensity ultrasound produces long-term inhibition of collective migration of epithelial cancer cells in wound healing processes. In particular, we show how pancreatic tumor cells, PANC-1, grown as monolayers in vitro respond to these waves at frequencies close to 1 MHz and low intensities (<100 mW cm-2) for 48-72 h of culture after some minutes of a single ultrasound irradiation. This new strategy opens a new line of action to block the spread of malignant cells in cancer processes. Despite relevant spatial variations of the acoustic pressure amplitude induced in the assay, the cells behave as a whole, showing a collective dynamic response to acoustic performance. Experiments carried out with samples without previous starving showed remarkable effects of the LICUs from the first hours of culture, more prominent than those with experiments with monolayers subjected to fasting prior to the experiments. This new strategy to control cell migration demonstrating the effectiveness of LICUS on not starved cells opens a new line of action to study effects of in vivo ultrasonic actuation on tumor tissues with malignant cells. This is a proof-of-concept study to demonstrate the physical effects of ultrasound stimulation on tumor cell migration. An in-depth biological study of the effects of ultrasounds and underlying biological mechanisms is on-going but out of the scope of this article.
Collapse
Affiliation(s)
- Itziar González
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain,*Correspondence: Itziar González,
| | - Jon Luzuriaga
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alba Valdivieso
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Manuel Candil
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jesús Frutos
- Molecular Epidemiology and Predictive Tumor Markers Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain,Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Jaime López
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Hernández
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Virginia Yagüe
- Universidad Politécnica de Madrid UPM, Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain
| | - Jose Luis Blanco
- Universidad Politécnica de Madrid UPM, Escuela Técnica Superior de Ingenieros de Telecomunicación, Madrid, Spain
| | - Alberto Pinto
- Group of Ultrasonic Resonators RESULT, Institute of Physical Technologies and Informacion, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain,Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
7
|
Sakakibara S, Abdellatef SA, Yamamoto S, Kamimura M, Nakanishi J. Photoactivatable surfaces resolve the impact of gravity vector on collective cell migratory characteristics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2206525. [PMID: 37151805 PMCID: PMC10158565 DOI: 10.1080/14686996.2023.2206525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.
Collapse
Affiliation(s)
- Shinya Sakakibara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shimaa A. Abdellatef
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- CONTACT Shimaa A. Abdellatef
| | - Shota Yamamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Masao Kamimura
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Graduate school of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Jun Nakanishi Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba305-0044, Japan
| |
Collapse
|
8
|
Zarubova J, Hasani-Sadrabadi MM, Norris SCP, Majedi FS, Xiao C, Kasko AM, Li S. Cell-Taxi: Mesenchymal Cells Carry and Transport Clusters of Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203515. [PMID: 36307906 PMCID: PMC9772300 DOI: 10.1002/smll.202203515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed. These results indicate that mesenchymal stromal cells (MSCs) or cancer-associated fibroblasts (CAFs) in the heterotypic tumor cell clusters may facilitate metastatic dissemination by transporting low-motile cancer cells in a Rac-dependent manner and that extracellular vesicles secreted by mesenchymal cells only play a minor role in this process. Furthermore, in vivo studies show that cancer cell spheroids containing MSCs or CAFs have faster spreading rates. These findings highlight the active role of co-traveling stromal cells in the collective migration of tumor cell clusters and may help in developing better-targeted therapies.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, 14220, Czech Republic
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| | - Sam C P Norris
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| | - Fatemeh Sadat Majedi
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| | - Andrea M Kasko
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| | - Song Li
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, Los Angeles, CA, 90095-1600, USA
| |
Collapse
|
9
|
Basta MD, Menko AS, Walker JL. PI3K Isoform-Specific Regulation of Leader and Follower Cell Function for Collective Migration and Proliferation in Response to Injury. Cells 2022; 11:3515. [PMID: 36359913 PMCID: PMC9658457 DOI: 10.3390/cells11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
To ensure proper wound healing it is important to elucidate the signaling cues that coordinate leader and follower cell behavior to promote collective migration and proliferation for wound healing in response to injury. Using an ex vivo post-cataract surgery wound healing model we investigated the role of class I phosphatidylinositol-3-kinase (PI3K) isoforms in this process. Our findings revealed a specific role for p110α signaling independent of Akt for promoting the collective migration and proliferation of the epithelium for wound closure. In addition, we found an important role for p110α signaling in orchestrating proper polarized cytoskeletal organization within both leader and wounded epithelial follower cells to coordinate their function for wound healing. p110α was necessary to signal the formation and persistence of vimentin rich-lamellipodia extensions by leader cells and the reorganization of actomyosin into stress fibers along the basal domains of the wounded lens epithelial follower cells for movement. Together, our study reveals a critical role for p110α in the collective migration of an epithelium in response to wounding.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Bertrand-Chapel A, Caligaris C, Fenouil T, Savary C, Aires S, Martel S, Huchedé P, Chassot C, Chauvet V, Cardot-Ruffino V, Morel AP, Subtil F, Mohkam K, Mabrut JY, Tonon L, Viari A, Cassier P, Hervieu V, Castets M, Mauviel A, Sentis S, Bartholin L. SMAD2/3 mediate oncogenic effects of TGF-β in the absence of SMAD4. Commun Biol 2022; 5:1068. [PMID: 36207615 PMCID: PMC9546935 DOI: 10.1038/s42003-022-03994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
TGF-β signaling is involved in pancreatic ductal adenocarcinoma (PDAC) tumorigenesis, representing one of the four major pathways genetically altered in 100% of PDAC cases. TGF-β exerts complex and pleiotropic effects in cancers, notably via the activation of SMAD pathways, predominantly SMAD2/3/4. Though SMAD2 and 3 are rarely mutated in cancers, SMAD4 is lost in about 50% of PDAC, and the role of SMAD2/3 in a SMAD4-null context remains understudied. We herein provide evidence of a SMAD2/3 oncogenic effect in response to TGF-β1 in SMAD4-null human PDAC cancer cells. We report that inactivation of SMAD2/3 in SMAD4-negative PDAC cells compromises TGF-β-driven collective migration mediated by FAK and Rho/Rac signaling. Moreover, RNA-sequencing analyses highlight a TGF-β gene signature related to aggressiveness mediated by SMAD2/3 in the absence of SMAD4. Using a PDAC patient cohort, we reveal that SMAD4-negative tumors with high levels of phospho-SMAD2 are more aggressive and have a poorer prognosis. Thus, loss of SMAD4 tumor suppressive activity in PDAC leads to an oncogenic gain-of-function of SMAD2/3, and to the onset of associated deleterious effects. In pancreatic ductal adenocarcinoma cells and patient tissue, SMAD2/3 is shown to mediate oncogenic effects of TGF-β in the absence of SMAD4.
Collapse
Affiliation(s)
- Adrien Bertrand-Chapel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cassandre Caligaris
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Tanguy Fenouil
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France.,Ribosome, Translation and Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Clara Savary
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Sophie Aires
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Martel
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Huchedé
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France
| | - Christelle Chassot
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Véronique Chauvet
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Victoire Cardot-Ruffino
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fabien Subtil
- Service de Biostatistiques, Hospices Civils de Lyon, Lyon France, Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Villeurbanne, France
| | - Kayvan Mohkam
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Jean-Yves Mabrut
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Claude Bernard Lyon 1 University, Department of General Surgery & Liver Transplantation, Lyon, France
| | - Laurie Tonon
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Alain Viari
- Plateforme de bioinformatique Gilles Thomas, Fondation Lyon Synergie Cancer, Centre Léon Bérard, Lyon, France
| | - Philippe Cassier
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Département d'oncologie Médicale, unité de phase 1, Centre Léon Bérard, Lyon, France
| | - Valérie Hervieu
- Hospices Civils de Lyon, Institute of Pathology, Groupement Hospitalier Est, Bron, France
| | - Marie Castets
- Cell Death and Childhood Cancers Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Labex DevWeCan, Institut Convergence Plascan, Lyon, France.
| | - Alain Mauviel
- Team "TGF-ß and Oncogenesis", Institut Curie, PSL Research University, INSERM 1021, CNRS 3347, Equipe Labellisée Ligue 2016, 91400, Orsay, France
| | - Stéphanie Sentis
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Bartholin
- TGF-β & Pancreatic Cancer Lab, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, INSERM 1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Hino N, Matsuda K, Jikko Y, Maryu G, Sakai K, Imamura R, Tsukiji S, Aoki K, Terai K, Hirashima T, Trepat X, Matsuda M. A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Dev Cell 2022; 57:2290-2304.e7. [PMID: 36174555 DOI: 10.1016/j.devcel.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.
Collapse
Affiliation(s)
- Naoya Hino
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Jikko
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gembu Maryu
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirashima
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Hakubi Center, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, Presto, Kawaguchi, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Kelm M, Anger F. Mucosa and microbiota – the role of intrinsic parameters on intestinal wound healing. Front Surg 2022; 9:905049. [PMID: 35937599 PMCID: PMC9354512 DOI: 10.3389/fsurg.2022.905049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mucosal healing in the gut is an essential process when it comes to chronic inflammatory disorders such as inflammatory bowel diseases (IBD) but also to the creation of intestinal anastomosis. Despite an improvement of surgical techniques, the rates of anastomotic leakage remain substantial and represent a significant health-care and socio-economic burden. Recent research has focused on intrinsic factors such as mucosal linings and differences in the intestinal microbiota and identified specific endoluminal bacteria and epithelial proteins which influence intestinal wound healing and re-establishment of mucosal homeostasis. Despite the lack of large clinical studies, previous data indicate that the identified bacteria such as aerotolerant lactobacilli or wound-associated Akkermansia muciniphila as well as epithelial-expressed sialyl Lewis glycans or CD47 might be critical for wound and anastomotic healing in the gut, thus, providing a potential novel approach for future treatment strategies in colorectal surgery and IBD therapy. Since microbiota and mucosa are interacting closely, we outline the current discoveries about both subsets in this review together to demonstrate the significant interplay
Collapse
|
13
|
Deng F, Wu Z, Zou F, Wang S, Wang X. The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front Cell Dev Biol 2022; 10:894737. [PMID: 35927987 PMCID: PMC9343807 DOI: 10.3389/fcell.2022.894737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The Hippo pathway and its downstream effectors, the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), control stem cell fate and cell proliferation and differentiation and are essential for tissue self-renewal and regeneration. YAP/TAZ are the core components of the Hippo pathway and they coregulate transcription when localized in the nucleus. The intestinal epithelium undergoes well-regulated self-renewal and regeneration programs to maintain the structural and functional integrity of the epithelial barrier. This prevents luminal pathogen attack, and facilitates daily nutrient absorption and immune balance. Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the entire digestive tract. Impaired mucosal healing is a prominent biological feature of IBD. Intestinal self-renewal is primarily dependent on functional intestinal stem cells (ISCs), especially Lgr5+ crypt base columnar (CBC) cells and transient-amplifying (TA) cells in the crypt base. However, intestinal wound healing is a complicated process that is often associated with epithelial cells, and mesenchymal and immune cells in the mucosal microenvironment. Upon intestinal injury, nonproliferative cells rapidly migrate towards the wound bed to reseal the damaged epithelium, which is followed by cell proliferation and differentiation. YAP is generally localized in the nucleus of Lgr5+ CBC cells, where it transcriptionally regulates the expression of the ISC marker Lgr5 and plays an important role in intestinal self-renewal. YAP/TAZ are the primary mechanical sensors of the cellular microenvironment. Their functions include expanding progenitor and stem cell populations, reprogramming differentiated cells into a primitive state, and mediating the regenerative function of reserve stem cells. Thus, YAP/TAZ play extremely crucial roles in epithelial repair after damage. This review provides an overview of the Hippo–YAP/TAZ signaling pathway and the processes of intestinal self-renewal and regeneration. In particular, we summarize the roles of YAP/TAZ in the phases of intestinal self-renewal and regeneration to suggest a potential strategy for IBD treatment.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| |
Collapse
|
14
|
The Role of the Fibronectin Synergy Site for Skin Wound Healing. Cells 2022; 11:cells11132100. [PMID: 35805184 PMCID: PMC9265582 DOI: 10.3390/cells11132100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Skin is constantly exposed to injuries that are repaired with different outcomes, either regeneration or scarring. Scars result from fibrotic processes modulated by cellular physical forces transmitted by integrins. Fibronectin (FN) is a major component in the provisional matrix assembled to repair skin wounds. FN enables cell adhesion binding of α5β1/αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5/αIIb is the synergy site located in close proximity to the RGD motif. The mutation to impair the FN synergy region (Fn1syn/syn) demonstrated that its absence permits complete development. However, only with the additional engagement to the FN synergy site do cells efficiently resist physical forces. To test how the synergy site-mediated adhesion affects the course of wound healing fibrosis, we used a mouse model of skin injury and in-vitro migration studies with keratinocytes and fibroblasts on FNsyn. The loss of FN synergy site led to normal re-epithelialization caused by two opposing migratory defects of activated keratinocytes and, in the dermis, induced reduced fibrotic responses, with lower contents of myofibroblasts and FN deposition and diminished TGF-β1-mediated cell signalling. We demonstrate that weakened α5β1-mediated traction forces on FNsyn cause reduced TGF-β1 release from its latent complex.
Collapse
|
15
|
Kausar S, Abbas MN, Gul I, Liu Y, Tang BP, Maqsood I, Liu QN, Dai LS. Integrins in the Immunity of Insects: A Review. Front Immunol 2022; 13:906294. [PMID: 35757717 PMCID: PMC9218073 DOI: 10.3389/fimmu.2022.906294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022] Open
Abstract
Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Woman University, Peshawar, Pakistan
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Pilia G, Piddini E. From guardian to shepherd: The novel role of p53 in collective cell migration and epithelial repair. Clin Transl Med 2022; 12:e855. [PMID: 35538916 PMCID: PMC9091983 DOI: 10.1002/ctm2.855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Giulia Pilia
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Eugenia Piddini
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| |
Collapse
|
17
|
Lai MK, Otgon B, Ohashi T. Identification of leader cells by filopodia in collective cell migration using computer vision. Biomed Mater Eng 2022; 33:505-513. [DOI: 10.3233/bme-221397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Imaging of cells and cellular organelles has been of great interest among researchers and medical staff because it can provide useful information on cell physiology and pathology. Many researches related to collective cell migration have been established and leader cells seem to be the ones that regulate the migration, however, the identification of leader cells is very time-consuming. OBJECTIVE: This study utilized computer vision with deep learning to segment cell shape and to identify leader cells through filopodia. METHODS: Healthy Madin–Darby Canine Kidney (MDCK) cells cultured in a Polydimethylsiloxane (PDMS) microchannel device allowed collective cell migration as well as the formation of leader cells. The cells were stained, and cell images were captured to train the computer using UNet++ together with their corresponding masks created using Photoshop for automated cell segmentation. Lastly, cell shape and filopodia were filtered out using Filopodyan and FiloQuant were detected. RESULTS: The segmentation of cell shape and the identification of filopodia were successful and produced accurate results in less than one second per image. CONCLUSIONS: The proposed approach of image analysis would be a great help in the field of cell science, engineering, and diagnosis.
Collapse
Affiliation(s)
- Mun Kit Lai
- Graduate School of Engineering, Hokkaido University, , Japan
| | | | | |
Collapse
|
18
|
Detroja TS, Gil-Henn H, Samson AO. Text-Mining Approach to Identify Hub Genes of Cancer Metastasis and Potential Drug Repurposing to Target Them. J Clin Med 2022; 11:jcm11082130. [PMID: 35456223 PMCID: PMC9029557 DOI: 10.3390/jcm11082130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/11/2022] Open
Abstract
Metastasis accounts for the majority of cancer-related deaths. Despite decades of research, the prevention and suppression of metastasis remain an elusive goal, and to date, only a few metastasis-related genes have been targeted therapeutically. Thus, there is a strong need to find potential genes involved in key driver traits of metastasis and their available drugs. In this study, we identified genes associated with metastasis and repurposable drugs that potentially target them. First, we use text mining of PubMed citations to identify candidate genes associated with metastatic processes, such as invadopodia, motility, movement, metastasis, invasion, wound healing, EMT (epithelial to mesenchymal transition), and podosome. Next, we annotated the top genes involved in each process as a driver, tumor suppressor, or oncogene. Then, a total of 185 unique cancer genes involved in metastasis-related processes were used for hub gene analysis using bioinformatics tools. Notably, a total of 77 hub genes were identified. Further, we used virtual screening data of druggable candidate hub genes involved in metastasis and identified potential drugs that can be repurposed as anti-metastatic drugs. Remarkably, we found a total of 50 approved drugs that have the potential to be repurposed against 19 hub genes involved in metastasis-related processes. These 50 drugs were also found to be validated in different cancer cell lines, such as dasatinib, captopril, leflunomide, and dextromethorphan targeting SRC, MMP2, PTK2B, and RAC1 hub genes, respectively. These repurposed drugs potentially target metastasis, provide pharmacodynamic insight, and offer a window of opportunity for the development of much-needed antimetastatic drugs.
Collapse
Affiliation(s)
- Trishna Saha Detroja
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Hava Gil-Henn
- Cell Migration and Invasion Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence: (T.S.D.); (H.G.-H.)
| | - Abraham O. Samson
- Drug Discovery Lab, Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel;
| |
Collapse
|
19
|
Zou H, Yang Z, Chan YS, Yeung SKA, Alam MK, Si T, Xu T, Yang M. Single cell analysis of mechanical properties and EMT-related gene expression profiles in cancer fingers. iScience 2022; 25:103917. [PMID: 35252814 PMCID: PMC8889141 DOI: 10.1016/j.isci.2022.103917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/07/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Collective cell migration is associated with cancer metastasis. Cancer fingers are formed when groups of migrating cancer cells follow the leader cells in the front. Epithelial to mesenchymal transition (EMT) is a critical process of cancer metastasis. However, the role of EMT in cancer finger formation remains unclear. In this work, we investigated the EMT-associated mechanical properties and gene expression at single-cell levels in non-small lung cancer fingers. We found that leader cells were more elastic and less sticky than follower cells. Spatial EMT-related gene expression profiling in cancer fingers revealed cellular heterogeneity. Particularly, SNAIL and VIM were found to be two key genes that positively correlated with leader cell phenotypes and controlled cancer finger formation. Silencing either SNAIL or VIM, decreased cancer cell elasticity, cancer finger formation and migration, and increased adhesiveness. These findings indicated that SNAIL and VIM are two driver genes for cancer finger formation. Spatial mapping of EMT genes and mechanical properties of cancer finger at single cell level Cancer cell elasticity and adhesiveness are two physical biomarkers for leader cells SNAIL and VIM drive finger cell formation and are potential targets for therapy
Collapse
|
20
|
Sattari S, Basak US, James RG, Perrin LW, Crutchfield JP, Komatsuzaki T. Modes of information flow in collective cohesion. SCIENCE ADVANCES 2022; 8:eabj1720. [PMID: 35138896 PMCID: PMC8827646 DOI: 10.1126/sciadv.abj1720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/20/2021] [Indexed: 05/23/2023]
Abstract
Pairwise interactions are fundamental drivers of collective behavior-responsible for group cohesion. The abiding question is how each individual influences the collective. However, time-delayed mutual information and transfer entropy, commonly used to quantify mutual influence in aggregated individuals, can result in misleading interpretations. Here, we show that these information measures have substantial pitfalls in measuring information flow between agents from their trajectories. We decompose the information measures into three distinct modes of information flow to expose the role of individual and group memory in collective behavior. It is found that decomposed information modes between a single pair of agents reveal the nature of mutual influence involving many-body nonadditive interactions without conditioning on additional agents. The pairwise decomposed modes of information flow facilitate an improved diagnosis of mutual influence in collectives.
Collapse
Affiliation(s)
- Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Udoy S. Basak
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Ryan G. James
- Reddit Inc., 420 Taylor Street, San Francisco, CA 94102, USA
- Department of Physics, Complexity Sciences Center, University of California, Davis, Davis, CA 95616, USA
| | - Louis W. Perrin
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- École Normale Supérieure de Rennes, Robert Schumann, Campus de, Av. de Ker Lann, 35170 Bruz, France
| | - James P. Crutchfield
- Department of Physics, Complexity Sciences Center, University of California, Davis, Davis, CA 95616, USA
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Graduate School of Chemical Sciences and Engineering Materials Chemistry and Energy Course, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
21
|
Kozyrska K, Pilia G, Vishwakarma M, Wagstaff L, Goschorska M, Cirillo S, Mohamad S, Gallacher K, Carazo Salas RE, Piddini E. p53 directs leader cell behavior, migration, and clearance during epithelial repair. Science 2022; 375:eabl8876. [PMID: 35143293 DOI: 10.1126/science.abl8876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial cells migrate across wounds to repair injured tissue. Leader cells at the front of migrating sheets often drive this process. However, it is unclear how leaders emerge from an apparently homogeneous epithelial cell population. We characterized leaders emerging from epithelial monolayers in cell culture and found that they activated the stress sensor p53, which was sufficient to initiate leader cell behavior. p53 activated the cell cycle inhibitor p21WAF1/CIP1, which in turn induced leader behavior through inhibition of cyclin-dependent kinase activity. p53 also induced crowding hypersensitivity in leader cells such that, upon epithelial closure, they were eliminated by cell competition. Thus, mechanically induced p53 directs emergence of a transient population of leader cells that drive migration and ensures their clearance upon epithelial repair.
Collapse
Affiliation(s)
- Kasia Kozyrska
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Giulia Pilia
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Wagstaff
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Maja Goschorska
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Saad Mohamad
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Kelli Gallacher
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Rafael E Carazo Salas
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
22
|
Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophys J 2022; 121:44-60. [PMID: 34890578 PMCID: PMC8758422 DOI: 10.1016/j.bpj.2021.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.
Collapse
|
23
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Ghosh D, Dutta A, Kashyap A, Upmanyu N, Datta S. PLP2 drives collective cell migration via ZO-1-mediated cytoskeletal remodeling at the leading edge in human colorectal cancer cells. J Cell Sci 2021; 134:271878. [PMID: 34409455 DOI: 10.1242/jcs.253468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 08/11/2021] [Indexed: 01/06/2023] Open
Abstract
Collective cell migration (CCM), in which cell-cell integrity remains preserved during movement, plays an important role in the progression of cancer. However, studies describing CCM in cancer progression are majorly focused on the effects of extracellular tissue components on moving cell plasticity. The molecular and cellular mechanisms of CCM during cancer progression remain poorly explored. Here, we report that proteolipid protein 2 (PLP2), a colonic epithelium-enriched transmembrane protein, plays a vital role in the CCM of invasive human colorectal cancer (CRC) epithelium by modulating leading-edge cell dynamics in 2D. The extracellular pool of PLP2, secreted via exosomes, was also found to contribute to the event. During CCM, the protein was found to exist in association with ZO-1 (also known as TJP1) and to be involved in the positioning of the latter at the migrating edge. PLP2-mediated positioning of ZO-1 at the leading edge further alters actin cytoskeletal organization that involves Rac1 activation. Taken together, our findings demonstrate that PLP2, via its association with ZO-1, drives CCM in CRC epithelium by modulating the leading-edge actin cytoskeleton, thereby opening up new avenues of cancer research. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.,School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Ankita Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Anjali Kashyap
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Neeraj Upmanyu
- School of Pharmacy and Research, People's University, Bhopal 462037, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
25
|
Allen SC, Widman JA, Datta A, Suggs LJ. Dynamic extracellular matrix stiffening induces a phenotypic transformation and a migratory shift in epithelial cells. Integr Biol (Camb) 2021; 12:161-174. [PMID: 32472133 DOI: 10.1093/intbio/zyaa012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/10/2019] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
Soft tissue tumors, including breast cancer, become stiffer throughout disease progression. This increase in stiffness has been shown to correlate to malignant phenotype and epithelial-to-mesenchymal transition (EMT) in vitro. Unlike current models, utilizing static increases in matrix stiffness, our group has previously created a system that allows for dynamic stiffening of an alginate-matrigel composite hydrogel to mirror the native dynamic process. Here, we utilize this system to evaluate the role of matrix stiffness on EMT and metastasis both in vitro and in vivo. Epithelial cells were seen to lose normal morphology and become protrusive and migratory after stiffening. This shift corresponded to a loss of epithelial markers and gain of mesenchymal markers in both the cell clusters and migrated cells. Furthermore, stiffening in a murine model reduced tumor burden and increased migratory behavior prior to tumor formation. Inhibition of FAK and PI3K in vitro abrogated the morphologic and migratory transformation of epithelial cell clusters. This work demonstrates the key role extracellular matrix stiffening has in tumor progression through integrin signaling and, in particular, its ability to drive EMT-related changes and metastasis.
Collapse
Affiliation(s)
- Shane C Allen
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Jessica A Widman
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Anisha Datta
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas, Austin, TX, USA
| |
Collapse
|
26
|
Nguyen DT, Smith AF, Jiménez JM. Stent strut streamlining and thickness reduction promote endothelialization. J R Soc Interface 2021; 18:20210023. [PMID: 34404229 PMCID: PMC8371379 DOI: 10.1098/rsif.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander F. Smith
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
27
|
Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab 2021; 33:1307-1321. [PMID: 33915111 PMCID: PMC9015673 DOI: 10.1016/j.cmet.2021.04.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Altered tissue mechanics and metabolism are defining characteristics of cancer that impact not only proliferation but also migration. While migrating through a mechanically and spatially heterogeneous microenvironment, changes in metabolism allow cells to dynamically tune energy generation and bioenergetics in response to fluctuating energy needs. Physical cues from the extracellular matrix influence mechanosignaling pathways, cell mechanics, and cytoskeletal architecture to alter presentation and function of metabolic enzymes. In cancer, altered mechanosensing and metabolic reprogramming supports metabolic plasticity and high energy production while cells migrate and metastasize. Here, we discuss the role of mechanoresponsive metabolism in regulating cell migration and supporting metastasis as well as the potential of therapeutically targeting cancer metabolism to block motility and potentially metastasis.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
28
|
Qin L, Yang D, Yi W, Cao H, Xiao G. Roles of leader and follower cells in collective cell migration. Mol Biol Cell 2021; 32:1267-1272. [PMID: 34184941 PMCID: PMC8351552 DOI: 10.1091/mbc.e20-10-0681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Collective cell migration is a widely observed phenomenon during animal development, tissue repair, and cancer metastasis. Considering its broad involvement in biological processes, it is essential to understand the basics behind the collective movement. Based on the topology of migrating populations, tissue-scale kinetics, called the “leader–follower” model, has been proposed for persistent directional collective movement. Extensive in vivo and in vitro studies reveal the characteristics of leader cells, as well as the special mechanisms leader cells employ for maintaining their positions in collective migration. However, follower cells have attracted increasing attention recently due to their important contributions to collective movement. In this Perspective, the current understanding of the molecular mechanisms behind the “leader–follower” model is reviewed with a special focus on the force transmission and diverse roles of leaders and followers during collective cell movement.
Collapse
Affiliation(s)
- Lei Qin
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China.,Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China
| |
Collapse
|
29
|
Hayden LD, Poss KD, De Simone A, Di Talia S. Mathematical modeling of Erk activity waves in regenerating zebrafish scales. Biophys J 2021; 120:4287-4297. [PMID: 34022234 DOI: 10.1016/j.bpj.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022] Open
Abstract
Erk signaling regulates cellular decisions in many biological contexts. Recently, we have reported a series of Erk activity traveling waves that coordinate regeneration of osteoblast tissue in zebrafish scales. These waves originate from a central source region, propagate as expanding rings, and impart cell growth, thus controlling tissue morphogenesis. Here, we present a minimal reaction-diffusion model for Erk activity waves. The model considers three components: Erk, a diffusible Erk activator, and an Erk inhibitor. Erk stimulates both its activator and inhibitor, forming a positive and negative feedback loop, respectively. Our model shows that this system can be excitable and propagate Erk activity waves. Waves originate from a pulsatile source that is modeled by adding a localized basal production of the activator, which turns the source region from an excitable to an oscillatory state. As Erk activity periodically rises in the source, it can trigger an excitable wave that travels across the entire tissue. Analysis of the model finds that positive feedback controls the properties of the traveling wavefront and that negative feedback controls the duration of Erk activity peak and the period of Erk activity waves. The geometrical properties of the waves facilitate constraints on the effective diffusivity of the activator, indicating that waves are an efficient mechanism to transfer growth factor signaling rapidly across a large tissue.
Collapse
Affiliation(s)
- Luke D Hayden
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Alessandro De Simone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
30
|
Basak US, Sattari S, Hossain M, Horikawa K, Komatsuzaki T. Transfer entropy dependent on distance among agents in quantifying leader-follower relationships. Biophys Physicobiol 2021; 18:131-144. [PMID: 34178564 PMCID: PMC8214925 DOI: 10.2142/biophysico.bppb-v18.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022] Open
Abstract
Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.
Collapse
Affiliation(s)
- Udoy S. Basak
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Motaleb Hossain
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- University of Dhaka, Dhaka 1000, Bangladesh
| | - Kazuki Horikawa
- Department of Optical Imaging, The Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Graduate School of Chemical Sciences and Engineering Materials Chemistry and Engineering Course, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
31
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
32
|
Basak US, Sattari S, Hossain MM, Horikawa K, Komatsuzaki T. An information-theoretic approach to infer the underlying interaction domain among elements from finite length trajectories in a noisy environment. J Chem Phys 2021; 154:034901. [PMID: 33499629 DOI: 10.1063/5.0034467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transfer entropy in information theory was recently demonstrated [Basak et al., Phys. Rev. E 102, 012404 (2020)] to enable us to elucidate the interaction domain among interacting elements solely from an ensemble of trajectories. Therefore, only pairs of elements whose distances are shorter than some distance variable, termed cutoff distance, are taken into account in the computation of transfer entropies. The prediction performance in capturing the underlying interaction domain is subject to the noise level exerted on the elements and the sufficiency of statistics of the interaction events. In this paper, the dependence of the prediction performance is scrutinized systematically on noise level and the length of trajectories by using a modified Vicsek model. The larger the noise level and the shorter the time length of trajectories, the more the derivative of average transfer entropy fluctuates, which makes the identification of the interaction domain in terms of the position of global minimum of the derivative of average transfer entropy difficult. A measure to quantify the degree of strong convexity at the coarse-grained level is proposed. It is shown that the convexity score scheme can identify the interaction distance fairly well even while the position of the global minimum of the derivative of average transfer entropy does not. We also derive an analytical model to explain the relationship between the interaction domain and the change in transfer entropy that supports our cutoff distance technique to elucidate the underlying interaction domain from trajectories.
Collapse
Affiliation(s)
- Udoy S Basak
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Md Motaleb Hossain
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, The Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan
| | - Tamiki Komatsuzaki
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
33
|
Oguma T, Takigawa-Imamura H, Miura T. Mechanism underlying dynamic scaling properties observed in the contour of spreading epithelial monolayer. Phys Rev E 2020; 102:062408. [PMID: 33466041 DOI: 10.1103/physreve.102.062408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
We found evidence of dynamic scaling in the spreading of Madin-Darby canine kidney (MDCK) cell monolayer, which can be characterized by the Hurst exponent α=0.86 and the growth exponent β=0.73, and theoretically and experimentally clarified the mechanism that governs the contour shape dynamics. Dynamic scaling refers to the roughness of the surface scales, both spatially and temporally. During the spreading of the monolayer, it is known that so-called leader cells generate the driving force and lead the other cells. Our time-lapse observations of cell behavior showed that these leader cells appeared at the early stage of the spreading and formed the monolayer protrusion. Informed by these observations, we developed a simple mathematical model that included differences in cell motility, cell-cell adhesion, and random cell movement. The model reproduced the quantitative characteristics obtained from the experiment, such as the spreading speed, the distribution of the increment, and the dynamic scaling law. Analysis of the model equation shows that the model can reproduce different scaling laws from (α=0.5,β=0.25) to (α=0.9,β=0.75), where the exponents α and β are determined by two dimensionless quantities determined by the microscopic cell behavior. From the analytical result, parameter estimation from the experimental results was achieved. The monolayer on the collagen-coated dishes showed a different scaling law, α=0.74,β=0.68, suggesting that cell motility increased ninefold. This result was consistent with the assay of the single-cell motility. Our study demonstrated that the dynamics of the contour of the monolayer were explained by the simple model, and we propose a mechanism that exhibits the dynamic scaling property.
Collapse
Affiliation(s)
- Toshiki Oguma
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
34
|
Miyazaki K, Togo S, Okamoto R, Idiris A, Kumagai H, Miyagi Y. Collective cancer cell invasion in contact with fibroblasts through integrin-α5β1/fibronectin interaction in collagen matrix. Cancer Sci 2020; 111:4381-4392. [PMID: 32979884 PMCID: PMC7734169 DOI: 10.1111/cas.14664] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Interaction of cancer cells with cancer-associated fibroblasts (CAFs) plays critical roles in tumor progression. Recently we proposed a new tumor invasion mechanism in which invasive cancer cells individually migrate on elongate protrusions of CAFs (CAF fibers) in 3-D collagen matrix. In this mechanism, cancer cells interact with fibronectin fibrils assembled on CAFs mainly through integrin-α5β1. Here we tested whether this mechanism is applicable to the collective invasion of cancer cells, using two E-cadherin-expressing adenocarcinoma cell lines, DLD-1 (colon) and MCF-7 (breast). When hybrid spheroids of DLD-1 cells with CAFs were embedded into collagen gel, DLD-1 cells collectively but very slowly migrated through the collagen matrix in contact with CAFs. Epidermal growth factor and tumor necrosis factor-α promoted the collective invasion, possibly by reducing the E-cadherin junction, as did the transforming growth factor-β inhibitor SB431542 by stimulating the outgrowth of CAFs. Transforming growth factor-β itself inhibited the cancer cell invasion. Efficient collective invasion of DLD-1 cells required large CAF fibers or their assembly as stable adhesion substrates. Experiments with function-blocking Abs and siRNAs confirmed that DLD-1 cells adhered to fibronectin fibrils on CAFs mainly through integrin-α5β1. Anti-E-cadherin Ab promoted the single cell invasion of DLD-1 cells by dissociating the E-cadherin junction. Although the binding affinity of MCF-7 cells to CAFs was lower than DLD-1, they also collectively invaded the collagen matrix in a similar fashion to DLD-1 cells. Our results suggest that the direct interaction with CAFs, as well as environmental cytokines, contributes to the collective invasion of cancers.
Collapse
Affiliation(s)
- Kaoru Miyazaki
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | - Shinsaku Togo
- Division of Respiratory MedicineJuntendo University of MedicineTokyoJapan
| | - Reiko Okamoto
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
- Present address:
Developing and Planning DivisionTechnology Development General DivisionElectronics CompanyAGC Inc.YokohamaJapan
| | - Alimjan Idiris
- Bio Science DivisionMaterial Integration LaboratoriesYokohamaJapan
| | | | - Yohei Miyagi
- Molecular Pathology DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| |
Collapse
|
35
|
Mise S, Shibagaki S, Nishikawa S, Nakamura H, Kimura H, Takamatsu A. Diversity in self-organized forms and migration modes in isolated epithelial cells. ARTIFICIAL LIFE AND ROBOTICS 2020. [DOI: 10.1007/s10015-020-00640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Lachowski D, Cortes E, Matellan C, Rice A, Lee DA, Thorpe SD, del Río Hernández AE. G Protein-Coupled Estrogen Receptor Regulates Actin Cytoskeleton Dynamics to Impair Cell Polarization. Front Cell Dev Biol 2020; 8:592628. [PMID: 33195261 PMCID: PMC7649801 DOI: 10.3389/fcell.2020.592628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanical forces regulate cell functions through multiple pathways. G protein-coupled estrogen receptor (GPER) is a seven-transmembrane receptor that is ubiquitously expressed across tissues and mediates the acute cellular response to estrogens. Here, we demonstrate an unidentified role of GPER as a cellular mechanoregulator. G protein-coupled estrogen receptor signaling controls the assembly of stress fibers, the dynamics of the associated focal adhesions, and cell polarization via RhoA GTPase (RhoA). G protein-coupled estrogen receptor activation inhibits F-actin polymerization and subsequently triggers a negative feedback that transcriptionally suppresses the expression of monomeric G-actin. Given the broad expression of GPER and the range of cytoskeletal changes modulated by this receptor, our findings position GPER as a key player in mechanotransduction.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - David A. Lee
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- Institute of Bioengineering, School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Armando E. del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Khalil AA, Ilina O, Vasaturo A, Venhuizen JH, Vullings M, Venhuizen V, Bilos A, Figdor CG, Span PN, Friedl P. Collective invasion induced by an autocrine purinergic loop through connexin-43 hemichannels. J Cell Biol 2020; 219:e201911120. [PMID: 32777015 PMCID: PMC7659730 DOI: 10.1083/jcb.201911120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/23/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
Progression of epithelial cancers predominantly proceeds by collective invasion of cell groups with coordinated cell-cell junctions and multicellular cytoskeletal activity. Collectively invading breast cancer cells express the gap junction protein connexin-43 (Cx43), yet whether Cx43 regulates collective invasion remains unclear. We here show that Cx43 mediates gap-junctional coupling between collectively invading breast cancer cells and, via hemichannels, adenosine nucleotide/nucleoside release into the extracellular space. Using molecular interference and rescue strategies, we identify that Cx43 hemichannel function, but not intercellular communication, induces leader cell activity and collective migration through the engagement of the adenosine receptor 1 (ADORA1) and AKT signaling. Accordingly, pharmacological inhibition of ADORA1 or AKT signaling caused leader cell collapse and halted collective invasion. ADORA1 inhibition further reduced local invasion of orthotopic mammary tumors in vivo, and joint up-regulation of Cx43 and ADORA1 in breast cancer patients correlated with decreased relapse-free survival. This identifies autocrine purinergic signaling, through Cx43 hemichannels, as a critical pathway in leader cell function and collective invasion.
Collapse
Affiliation(s)
- Antoine A. Khalil
- Department of Dermatology and Graduate School of Life Science, University of Wuerzburg, Wuerzburg, Germany
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Olga Ilina
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Angela Vasaturo
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manon Vullings
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Victor Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ab Bilos
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Friedl
- Department of Dermatology and Graduate School of Life Science, University of Wuerzburg, Wuerzburg, Germany
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- David H. Koch Center for Genitourinary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
- Cancer Genomics Center, Utrecht, Netherlands
| |
Collapse
|
38
|
Hirth M, Gandla J, Höper C, Gaida MM, Agarwal N, Simonetti M, Demir A, Xie Y, Weiss C, Michalski CW, Hackert T, Ebert MP, Kuner R. CXCL10 and CCL21 Promote Migration of Pancreatic Cancer Cells Toward Sensory Neurons and Neural Remodeling in Tumors in Mice, Associated With Pain in Patients. Gastroenterology 2020; 159:665-681.e13. [PMID: 32330476 DOI: 10.1053/j.gastro.2020.04.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by excruciating pain, which has been associated with attraction of cancer cells and their invasion of intrapancreatic sensory nerves. Neutralization of the chemokine CCL2 reduced cancer-associated pain in a clinical trial, but there have been no systematic analyses of the highly diverse chemokine families and their receptors in PDAC. METHODS We performed an open, unbiased RNA-interference screen of mammalian chemokines in co-cultures of mouse PDAC cells (K8484) and mouse peripheral sensory neurons, and confirmed findings in studies of DT8082 PDAC cells. We studied the effects of chemokines on migration of PDAC cell lines. Orthotopic tumors were grown from K8484 cells in mice, and mice were given injections of neutralizing antibodies against chemokines, antagonists, or control antibodies. We analyzed abdominal mechanical hypersensitivity and collected tumors and analyzed them by histology and immunohistochemistry to assess neural remodeling. We collected PDAC samples and information on pain levels from 74 patients undergoing resection and measured levels of CXCR3 and CCR7 by immunohistochemistry and immunoblotting. RESULTS Knockdown of 9 chemokines in DRG neurons significantly reduced migration of PDAC cells towards sensory neurons. Sensory neuron-derived CCL21 and CXCL10 promoted migration of PDAC cells via their receptors CCR7 and CXCR3, respectively, which were expressed by cells in orthotopic tumors and PDAC specimens from patients. Neutralization of CCL21 or CXCL10, or their receptors, in mice with orthotopic tumors significantly reduced nociceptive hypersensitivity and nerve fiber hypertrophy and improved behavioral parameters without affecting tumor infiltration by T cells or neutrophils. Increased levels of CXCR3 and CCR7 in human PDAC specimens were associated with increased frequency of cancer-associated pain, determined from patient questionnaires. CONCLUSIONS In an unbiased screen of chemokines, we identified CCL21 and CXCL10 as proteins that promote migration of pancreatic cancer cells toward sensory neurons. Inhibition of these chemokines or their receptors reduce hypersensitivity in mice with orthotopic tumors, and patients with PDACs with high levels of the chemokine receptors of CXCR3 and CCR7 had increased frequency of cancer-associated pain.
Collapse
Affiliation(s)
- Michael Hirth
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany; Department of Medicine II, University Medical Center Mannheim, Medical Faculty at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jagadeesh Gandla
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Christiane Höper
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Institute of Pathology, University Hospital Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aykut Demir
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Yong Xie
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Cleo Weiss
- Institute of Pathology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph W Michalski
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany; Department of Surgery, Halle University Hospital, Halle, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
39
|
Vishwakarma M, Spatz JP, Das T. Mechanobiology of leader-follower dynamics in epithelial cell migration. Curr Opin Cell Biol 2020; 66:97-103. [PMID: 32663734 DOI: 10.1016/j.ceb.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Collective cell migration is fundamental to biological form and function. It is also relevant to the formation and repair of organs and to various pathological situations, including metastatic propagation of cancer. Technological, experimental, and computational advancements have allowed the researchers to explore various aspects of collective migration, spanning from biochemical signalling to inter-cellular force transduction. Here, we summarize our current understanding of the mechanobiology of collective cell migration, limiting to epithelial tissues. On the basis of recent studies, we describe how cells sense and respond to guidance signals to orchestrate various modes of migration and identify the determining factors dictating leader-follower interactions. We highlight how the inherent mechanics of dense epithelial monolayers at multicellular length scale might instruct individual cells to behave collectively. On the basis of these findings, we propose that mechanical resilience, obtained by a certain extent of cell jamming, allows the epithelium to perform efficient collective migration during wound healing.
Collapse
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS81TD, United Kingdom; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany; Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69117, Germany
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad 500046, India.
| |
Collapse
|
40
|
Basak US, Sattari S, Horikawa K, Komatsuzaki T. Inferring domain of interactions among particles from ensemble of trajectories. Phys Rev E 2020; 102:012404. [PMID: 32795064 DOI: 10.1103/physreve.102.012404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 11/07/2022]
Abstract
An information-theoretic scheme is proposed to estimate the underlying domain of interactions and the timescale of the interactions for many-particle systems. The crux is the application of transfer entropy which measures the amount of information transferred from one variable to another, and the introduction of a "cutoff distance variable" which specifies the distance within which pairs of particles are taken into account in the estimation of transfer entropy. The Vicsek model often studied as a metaphor of collectively moving animals is employed with introducing asymmetric interactions and an interaction timescale. Based on ensemble data of trajectories of the model system, it is shown that using the interaction domain significantly improves the performance of classification of leaders and followers compared to the approach without utilizing knowledge of the domain. Given an interaction timescale estimated from an ensemble of trajectories, the first derivative of transfer entropy averaged over the ensemble with respect to the cutoff distance is presented to serve as an indicator to infer the interaction domain. It is shown that transfer entropy is superior for inferring the interaction radius compared to cross correlation, hence resulting in a higher performance for inferring the leader-follower relationship. The effects of noise size exerted from environment and the ratio of the numbers of leader and follower on the classification performance are also discussed.
Collapse
Affiliation(s)
- Udoy S Basak
- Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan and Pabna University of Science and Technology, Pabna 6600, Bangladesh
| | - Sulimon Sattari
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima 770-8503, Japan
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo 001-0020, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan; Graduate School of Life Science, Transdisciplinary Life Science Course, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan; and Graduate School of Chemical Sciences and Engineering Materials, Chemistry and Engineering Course, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
41
|
Hino N, Rossetti L, Marín-Llauradó A, Aoki K, Trepat X, Matsuda M, Hirashima T. ERK-Mediated Mechanochemical Waves Direct Collective Cell Polarization. Dev Cell 2020; 53:646-660.e8. [PMID: 32497487 DOI: 10.1016/j.devcel.2020.05.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 01/02/2023]
Abstract
During collective migration of epithelial cells, the migration direction is aligned over a tissue-scale expanse. Although the collective cell migration is known to be directed by mechanical forces transmitted via cell-cell junctions, it remains elusive how the intercellular force transmission is coordinated with intracellular biochemical signaling to achieve collective movements. Here, we show that intercellular coupling of extracellular signal-regulated kinase (ERK)-mediated mechanochemical feedback yields long-distance transmission of guidance cues. Mechanical stretch activates ERK through epidermal growth factor receptor (EGFR) activation, and ERK activation triggers cell contraction. The contraction of the activated cell pulls neighboring cells, evoking another round of ERK activation and contraction in the neighbors. Furthermore, anisotropic contraction based on front-rear polarization guarantees unidirectional propagation of ERK activation, and in turn, the ERK activation waves direct multicellular alignment of the polarity, leading to long-range ordered migration. Our findings reveal that mechanical forces mediate intercellular signaling underlying sustained transmission of guidance cues for collective cell migration.
Collapse
Affiliation(s)
- Naoya Hino
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Leone Rossetti
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | | | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Tsuyoshi Hirashima
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
42
|
Balcioglu HE, Balasubramaniam L, Stirbat TV, Doss BL, Fardin MA, Mège RM, Ladoux B. A subtle relationship between substrate stiffness and collective migration of cell clusters. SOFT MATTER 2020; 16:1825-1839. [PMID: 31970382 DOI: 10.1039/c9sm01893j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The physical cues from the extracellular environment mediates cell signaling spatially and temporally. Cells respond to physical cues from their environment in a non-monotonic fashion. Despite our understanding of the role of substrate rigidity on single cell migration, how cells respond collectively to increasing extracellular matrix stiffness is not well established. Here we patterned multicellular epithelial Madin-Darby canine kidney (MDCK) islands on polyacrylamide gels of varying stiffness and studied their expansion. Our findings show that the MDCK islands expanded faster with increasing stiffness only up to an optimum stiffness, over which the expansion plateaued. We then focused on the expansion of the front of the assemblies and the formation of leader cells. We observed cell front destabilization only above substrate stiffness of a few kPa. The extension of multicellular finger-like structures at the edges of the colonies for intermediate and high stiffnesses from 6 to 60 kPa responded to higher substrate stiffness by increasing focal adhesion areas and actin cable assembly. Additionally, the number of leader cells at the finger-like protrusions increased with stiffness in correlation with an increase of the area of these multicellular protrusions. Consequently, the force profile along the epithelial fingers in the parallel and transverse directions of migration showed an unexpected relationship leading to a global force decrease with the increase of stiffness. Taken together, our findings show that epithelial cell colonies respond to substrate stiffness but in a non-trivial manner that may be of importance to understand morphogenesis and collective cell invasion during tumour progression.
Collapse
Affiliation(s)
- Hayri E Balcioglu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | | | | | | | | | | | | |
Collapse
|
43
|
Isozaki Y, Sakai K, Kohiro K, Kagoshima K, Iwamura Y, Sato H, Rindner D, Fujiwara S, Yamashita K, Mizuno K, Ohashi K. The Rho-guanine nucleotide exchange factor Solo decelerates collective cell migration by modulating the Rho-ROCK pathway and keratin networks. Mol Biol Cell 2020; 31:741-752. [PMID: 32049581 PMCID: PMC7185966 DOI: 10.1091/mbc.e19-07-0357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Collective cell migration plays crucial roles in tissue remodeling, wound healing, and cancer cell invasion. However, its underlying mechanism remains unknown. Previously, we showed that the RhoA-targeting guanine nucleotide exchange factor Solo (ARHGEF40) is required for tensile force–induced RhoA activation and proper organization of keratin-8/keratin-18 (K8/K18) networks. Here, we demonstrate that Solo knockdown significantly increases the rate at which Madin-Darby canine kidney cells collectively migrate on collagen gels. However, it has no apparent effect on the migratory speed of solitary cultured cells. Therefore, Solo decelerates collective cell migration. Moreover, Solo localized to the anteroposterior regions of cell–cell contact sites in collectively migrating cells and was required for the local accumulation of K8/K18 filaments in the forward areas of the cells. Partial Rho-associated protein kinase (ROCK) inhibition or K18 or plakoglobin knockdown also increased collective cell migration velocity. These results suggest that Solo acts as a brake for collective cell migration by generating pullback force at cell–cell contact sites via the RhoA-ROCK pathway. It may also promote the formation of desmosomal cell–cell junctions related to K8/K18 filaments and plakoglobin.
Collapse
Affiliation(s)
- Yusuke Isozaki
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kouki Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kenta Kohiro
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Kagoshima
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuma Iwamura
- Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hironori Sato
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Daniel Rindner
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazunari Yamashita
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Department of Chemistry, Faculty of Science and Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
44
|
Kim J, Zheng Y, Alobaidi AA, Nan H, Tian J, Jiao Y, Sun B. Geometric Dependence of 3D Collective Cancer Invasion. Biophys J 2020; 118:1177-1182. [PMID: 32049055 DOI: 10.1016/j.bpj.2020.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Metastasis of mesenchymal tumor cells is traditionally considered as a single-cell process. Here, we report an emergent collective phenomenon in which the dissemination rate of mesenchymal breast cancer cells from three-dimensional tumors depends on the tumor geometry. Combining experimental measurements and computational modeling, we demonstrate that the collective dynamics is coordinated by the mechanical feedback between individual cells and their surrounding extracellular matrix (ECM). We find the tissue-like fibrous ECM supports long-range physical interactions between cells, which turn geometric cues into regulated cell dissemination dynamics. Our results suggest that migrating cells in three-dimensional ECM represent a distinct class of an active particle system in which the collective dynamics is governed by the remodeling of the environment rather than direct particle-particle interactions.
Collapse
Affiliation(s)
- Jihan Kim
- Department of Physics, Oregon State University, Corvallis, Oregon
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Amani A Alobaidi
- Department of Physics, Oregon State University, Corvallis, Oregon
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona
| | - Jianxiang Tian
- Materials Science and Engineering, Arizona State University, Tempe, Arizona; Department of Physics, Qufu Normal University, Qufu, China
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, Arizona; Materials Science and Engineering, Arizona State University, Tempe, Arizona.
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
45
|
Haeger A, Alexander S, Vullings M, Kaiser FM, Veelken C, Flucke U, Koehl GE, Hirschberg M, Flentje M, Hoffman RM, Geissler EK, Kissler S, Friedl P. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med 2020; 217:e20181184. [PMID: 31658985 PMCID: PMC7037234 DOI: 10.1084/jem.20181184] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted β1 and αVβ3/β5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with β1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-β1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by β1/αVβ3/β5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.
Collapse
Affiliation(s)
- Anna Haeger
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Stephanie Alexander
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| | - Manon Vullings
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Fabian M.P. Kaiser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | - Uta Flucke
- Department of Pathology, Radboudumc, Nijmegen, Netherlands
| | - Gudrun E. Koehl
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Markus Hirschberg
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Stephan Kissler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Epithelial CD47 is critical for mucosal repair in the murine intestine in vivo. Nat Commun 2019; 10:5004. [PMID: 31676794 PMCID: PMC6825175 DOI: 10.1038/s41467-019-12968-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD47 is a ubiquitously expressed transmembrane glycoprotein that regulates inflammatory responses and tissue repair. Here, we show that normal mice treated with anti-CD47 antibodies, and Cd47-null mice have impaired intestinal mucosal wound healing. Furthermore, intestinal epithelial cell (IEC)-specific loss of CD47 does not induce spontaneous immune-mediated intestinal barrier disruption but results in defective mucosal repair after biopsy-induced colonic wounding or Dextran Sulfate Sodium (DSS)-induced mucosal damage. In vitro analyses using primary cultures of CD47-deficient murine colonic IEC or human colonoid-derived IEC treated with CD47-blocking antibodies demonstrate impaired epithelial cell migration in wound healing assays. Defective wound repair after CD47 loss is linked to decreased epithelial β1 integrin and focal adhesion signaling, as well as reduced thrombospondin-1 and TGF-β1. These results demonstrate a critical role for IEC-expressed CD47 in regulating mucosal repair and raise important considerations for possible alterations in wound healing secondary to therapeutic targeting of CD47. The role of the transmembrane glycoprotein CD47 in healing injured intestinal mucosa is unclear. Here, the authors show that selective loss of CD47 in the murine intestinal epithelium results in defective mucosal repair after colonic wounding, with suggested impaired cell migration in vitro.
Collapse
|
47
|
Sarker B, Bagchi A, Walter C, Almeida J, Pathak A. Longer collagen fibers trigger multicellular streaming on soft substrates via enhanced forces and cell-cell cooperation. J Cell Sci 2019; 132:jcs226753. [PMID: 31444287 PMCID: PMC6765186 DOI: 10.1242/jcs.226753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Grouped cells often leave large cell colonies in the form of narrow multicellular streams. However, it remains unknown how collective cell streaming exploits specific matrix properties, like stiffness and fiber length. It is also unclear how cellular forces, cell-cell adhesion and velocities are coordinated within streams. To independently tune stiffness and collagen fiber length, we developed new hydrogels and discovered invasion-like streaming of normal epithelial cells on soft substrates coated with long collagen fibers. Here, streams arise owing to a surge in cell velocities, forces, YAP activity and expression of mesenchymal marker proteins in regions of high-stress anisotropy. Coordinated velocities and symmetric distribution of tensile and compressive stresses support persistent stream growth. Stiff matrices diminish cell-cell adhesions, disrupt front-rear velocity coordination and do not promote sustained fiber-dependent streaming. Rac inhibition reduces cell elongation and cell-cell cooperation, resulting in a complete loss of streaming in all matrix conditions. Our results reveal a stiffness-modulated effect of collagen fiber length on collective cell streaming and unveil a biophysical mechanism of streaming governed by a delicate balance of enhanced forces, monolayer cohesion and cell-cell cooperation.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St Louis, MO 63130, USA
| | - Amrit Bagchi
- Department of Mechanical Engineering & Materials Science, Washington University, St Louis, MO 63130, USA
| | - Christopher Walter
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - José Almeida
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St Louis, MO 63130, USA
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
48
|
Yang Y, Zheng H, Zhan Y, Fan S. An emerging tumor invasion mechanism about the collective cell migration. Am J Transl Res 2019; 11:5301-5312. [PMID: 31632511 PMCID: PMC6789225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Traditionally, the metastasis has been detected in the late stage of the cancer, which mostly leads to death. The classical opinion about tumor metastasis is that tumor cell migration begins with the single tumor cell and goes through a series of complicated procedures, and lastly arrives and survives at distant tissues and organs. However, emerging studies have found a new migration mechanism called collective cell migration in many cancers. The collective cell migration could move as clusters with the tight cell-cell junction in the tumor microenvironments, toward the traction established by the leader cells. In addition, the collective cell migration has been shown to have higher invasive capacity and higher resistance to the clinical treatments than the single tumor cell migration. Interestingly, the collective clusters of tumor cells have been detected in the early stage of the cancer patient, which has led to the understanding of the significance of early cancer screenings. Here, we reviewed the major principles and guidance of the collective cell migration mechanisms, and the specific manifestations in the different tumors such as breast cancer and lung cancer.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital of Central South University Changsha, Hunan, China
| |
Collapse
|
49
|
Kim CS, Yang X, Jacobsen S, Masters KS, Kreeger PK. Leader cell PLCγ1 activation during keratinocyte collective migration is induced by EGFR localization and clustering. Bioeng Transl Med 2019; 4:e10138. [PMID: 31572796 PMCID: PMC6764804 DOI: 10.1002/btm2.10138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 01/20/2023] Open
Abstract
Re-epithelialization is a critical step in wound healing and results from the collective migration of keratinocytes. Previous work demonstrated that immobilized, but not soluble, epidermal growth factor (EGF) resulted in leader cell-specific activation of phospholipase C gamma 1 (PLCγ1) in HaCaT keratinocytes, and that this PLCγ1 activation was necessary to drive persistent cell migration. To determine the mechanism responsible for wound edge-localized PLCγ1 activation, we examined differences in cell area, cell-cell interactions, and EGF receptor (EGFR) localization between wound edge and bulk cells treated with vehicle, soluble EGF, or immobilized EGF. Our results support a multistep mechanism where EGFR translocation from the lateral membrane to the basolateral/basal membrane allows clustering in response to immobilized EGF. This analysis of factors regulating PLCγ1 activation is a crucial step toward developing therapies or wound dressings capable of modulating this signal and, consequently, cell migration.
Collapse
Affiliation(s)
- Chloe S. Kim
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Xinhai Yang
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Sarah Jacobsen
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
| | - Kristyn S. Masters
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
- Carbone Cancer CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
| | - Pamela K. Kreeger
- Department of Biomedical EngineeringUniversity of Wisconsin—MadisonMadisonWI53705
- Carbone Cancer CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
- Department of Cell and Regenerative BiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWI53705
| |
Collapse
|
50
|
Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation. Nat Commun 2019; 10:3557. [PMID: 31391456 PMCID: PMC6686005 DOI: 10.1038/s41467-019-11482-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
Mammalian embryos change shape dramatically upon implantation. The cellular and molecular mechanism underlying this transition are largely unknown. Here, we show that this transition is directed by cross talk between the embryonic epiblast and the first extra-embryonic tissue, the trophectoderm. Specifically, we show via visualisation of a Cdx2-GFP reporter line and pharmacologically mediated loss and gain of function experiments that the epiblast provides FGF signal that results in differential fate acquisition in the multipotent trophectoderm leading to the formation of a tissue boundary within this tissue. The trophectoderm boundary becomes essential for expansion of the tissue into a multi-layered epithelium. Folding of this multi-layered trophectoderm induces spreading of the second extra-embryonic tissue, the primitive endoderm. Together, these events remodel the pre-implantation embryo into its post-implantation cylindrical shape. Our findings uncover how communication between embryonic and extra-embryonic tissues provides positional cues to drive shape changes in mammalian development during implantation.
Collapse
|