1
|
Lymperopoulos A, Borges JI, Stoicovy RA. RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol 2023; 218:115904. [PMID: 37922976 PMCID: PMC10841918 DOI: 10.1016/j.bcp.2023.115904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Angiotensin II (AngII), as an octapeptide hormone normally ionized at physiological pH, cannot cross cell membranes and thus, relies on, two (mainly) G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert its intracellular effects in various organ systems including the cardiovascular one. Although a lot remains to be elucidated about the signaling of the AT2R, AT1R signaling is known to be remarkably versatile, mobilizing a variety of G protein-dependent and independent signal transduction pathways inside cells to produce a biological outcome. Cardiac AT1R signaling leads to hypertrophy, adverse remodeling, fibrosis, while vascular AT1R signaling raises blood pressure via vasoconstriction, but also elicits hypertrophic, vascular growth/proliferation, and pathological remodeling sets of events. In addition, adrenal AT1R is the major physiological stimulus (alongside hyperkalemia) for secretion of aldosterone, a mineralocorticoid hormone that contributes to hypertension, electrolyte abnormalities, and to pathological remodeling of the failing heart. Regulator of G protein Signaling (RGS) proteins, discovered about 25 years ago as GTPase-activating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins, play a central role in silencing G protein signaling from a plethora of GPCRs, including the AngII receptors. Given the importance of AngII and its receptors, but also of several RGS proteins, in cardiovascular homeostasis, the physiological and pathological significance of RGS protein-mediated modulation of cardiovascular AngII signaling comes as no surprise. In the present review, we provide an overview of the current literature on the involvement of RGS proteins in cardiovascular AngII signaling, by discussing their roles in cardiac (cardiomyocyte and cardiofibroblast), vascular (smooth muscle and endothelial cell), and adrenal (medulla and cortex) AngII signaling, separately. Along the way, we also highlight the therapeutic potential of enhancement of, or, in some cases, inhibition of each RGS protein involved in AngII signaling in each one of these cell types.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
2
|
Lymperopoulos A, Borges JI, Suster MS. Angiotensin II-dependent aldosterone production in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:393-404. [PMID: 38408805 DOI: 10.1016/bs.vh.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal cortex is responsible for production of adrenal steroid hormones and is anatomically divided into three distinct zones: zona glomerulosa secreting mineralocorticoids (mainly aldosterone), zona fasciculata secreting glucocorticoids (cortisol), and zona reticularis producing androgens. Importantly, due to their high lipophilicity, no adrenal steroid hormone (including aldosterone) is stored in vesicles but rather gets synthesized and secreted instantly upon cell stimulation with specific stimuli. Aldosterone is the most potent mineralocorticoid hormone produced from the adrenal cortex in response to either angiotensin II (AngII) or elevated K+ levels in the blood (hyperkalemia). AngII, being a peptide, cannot cross cell membranes and thus, uses two distinct G protein-coupled receptor (GPCR) types, AngII type 1 receptor (AT1R) and AT2R to exert its effects inside cells. In zona glomerulosa cells, AT1R activation by AngII results in aldosterone synthesis and secretion via two main pathways: (a) Gq/11 proteins that activate phospholipase C ultimately raising intracellular free calcium concentration; and (b) βarrestin1 and -2 (also known as Arrestin-2 and -3, respectively) that elicit sustained extracellular signal-regulated kinase (ERK) activation. Both pathways induce upregulation and acute activation of StAR (steroidogenic acute regulatory) protein, the enzyme that catalyzes the rate-limiting step in aldosterone biosynthesis. This chapter describes these two salient pathways underlying AT1R-induced aldosterone production in zona glomerulosa cells. We also highlight some pharmacologically important notions pertaining to the efficacy of the currently available AT1R antagonists, also known as angiotensin receptor blockers (ARBs) or sartans at suppressing both pathways, i.e., their inverse agonism efficacy at G proteins and βarrestins.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Jordana I Borges
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malka S Suster
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
3
|
Parichatikanond W, Duangrat R, Mangmool S. G αq protein-biased ligand of angiotensin II type 1 receptor mediates myofibroblast differentiation through TGF-β1/ERK axis in human cardiac fibroblasts. Eur J Pharmacol 2023; 951:175780. [PMID: 37209939 DOI: 10.1016/j.ejphar.2023.175780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Angiotensin II receptors are members of G protein-coupled receptor superfamily that manifest biased signals toward G protein- and β-arrestin-dependent pathways. However, the role of angiotensin II receptor-biased ligands and the mechanisms underlying myofibroblast differentiation in human cardiac fibroblasts have not been fully elucidated. Our results demonstrated that antagonism of angiotensin II type 1 receptor (AT1 receptor) and blockade of Gαq protein suppressed angiotensin II (Ang II)-induced fibroblast proliferation, overexpression of collagen I and α-smooth muscle actin (α-SMA), and stress fibre formation, indicating the AT1 receptor/Gαq axis is necessary for fibrogenic effects of Ang II. Stimulation of AT1 receptors by their Gαq-biased ligand (TRV120055), but not β-arrestin-biased ligand (TRV120027), substantially exerted fibrogenic effects at a level similar to that of Ang II, suggesting that AT1 receptor induced cardiac fibrosis in a Gαq-dependent and β-arrestin-independent manner. Valsartan prevents TRV120055-mediated fibroblast activation. TRV120055 mediated the upregulation of transforming growth factor-beta1 (TGF-β1) through the AT1 receptor/Gαq cascade. In addition, Gαq protein and TGF-β1 were necessary for ERK1/2 activation induced by Ang II and TRV120055. Collectively, TGF-β1 and ERK1/2 are downstream effectors of the Gαq-biased ligand of AT1 receptor for the induction of cardiac fibrosis.
Collapse
Affiliation(s)
- Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Tehrani AY, Zhao R, Donen G, Bernatchez P. Heterogenous improvements in endothelial function by sub-blood pressure lowering doses of ARBs result in major anti-aortic root remodeling effects. Nitric Oxide 2023; 131:18-25. [PMID: 36565741 DOI: 10.1016/j.niox.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Low basal nitric oxide (NO) production is associated with a dysfunctional endothelium and vascular diseases. We have shown that some angiotensin II (AngII) receptor type 1 (AT1R) blockers (ARBs), a group of clinic-approved blood pressure (BP)-lowering medications, are also capable of activating endothelial function acutely and chronically, both ex vivo and in vivo, in pleiotropic, AngII-independent fashions, which suggested that endothelial function enhancement with ARBs may be independent of their well-documented BP lowering properties. Herein, we attempt to identify the most potent ARB at activating endothelial function when administered at sub-BP-lowering doses and determine its anti-aortic root remodeling properties in a model of Marfan syndrome (MFS). Amongst the 8 clinically available ARBs tested, only telmisartan and azilsartan induced significant (70% and 49%, respectively) NO-dependent inhibition of aortic contractility when administered for 4 weeks at sub-BP lowering, EC5 doses. Low-dose telmisartan (0.47 mg/kg) attenuated MFS-associated aortic root widening, medial thickening, and elastic fiber fragmentation to the same degree as high-dose telmisartan (10 mg/kg) despite wide differences in BP lowering between the two doses. Our study suggests that telmisartan is the most potent ARB at promoting increased endothelial function at low sub-BP doses and that it retained major aortic root widening inhibition activities. ARBs may enhance endothelial function independently from BP-lowering pathways, which could lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Arash Y Tehrani
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Roy Zhao
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Graham Donen
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Pascal Bernatchez
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Hsiao WC, Hsin KY, Wu ZW, Song JS, Yeh YN, Chen YF, Tsai CH, Chen PH, Shia KS, Chang CP, Hung MS. Modulating the affinity and signaling bias of cannabinoid receptor 1 antagonists. Bioorg Chem 2022; 130:106236. [DOI: 10.1016/j.bioorg.2022.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
6
|
Borges JI, Ferraino KE, Cora N, Nagliya D, Suster MS, Carbone AM, Lymperopoulos A. Adrenal G Protein-Coupled Receptors and the Failing Heart: A Long-distance, Yet Intimate Affair. J Cardiovasc Pharmacol 2022; 80:386-392. [PMID: 34983911 PMCID: PMC9294064 DOI: 10.1097/fjc.0000000000001213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/11/2021] [Indexed: 01/31/2023]
Abstract
ABSTRACT Systolic heart failure (HF) is a chronic clinical syndrome characterized by the reduction in cardiac function and still remains the disease with the highest mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Chronic human HF is characterized by several important neurohormonal perturbations, emanating from both the autonomic nervous system and the adrenal glands. Circulating catecholamines (norepinephrine and epinephrine) and aldosterone elevations are among the salient alterations that confer significant hormonal burden on the already compromised function of the failing heart. This is why sympatholytic treatments (such as β-blockers) and renin-angiotensin system inhibitors or mineralocorticoid receptor antagonists, which block the effects of angiotensin II (AngII) and aldosterone on the failing heart, are part of the mainstay HF pharmacotherapy presently. The adrenal gland plays an important role in the modulation of cardiac neurohormonal stress because it is the source of almost all aldosterone, of all epinephrine, and of a significant amount of norepinephrine reaching the failing myocardium from the blood circulation. Synthesis and release of these hormones in the adrenals is tightly regulated by adrenal G protein-coupled receptors (GPCRs), such as adrenergic receptors and AngII receptors. In this review, we discuss important aspects of adrenal GPCR signaling and regulation, as they pertain to modulation of cardiac function in the context of chronic HF, by focusing on the 2 best studied adrenal GPCR types in that context, adrenergic receptors and AngII receptors (AT 1 Rs). Particular emphasis is given to findings from the past decade and a half that highlight the emerging roles of the GPCR-kinases and the β-arrestins in the adrenals, 2 protein families that regulate the signaling and functioning of GPCRs in all tissues, including the myocardium and the adrenal gland.
Collapse
Affiliation(s)
- Jordana I. Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Deepika Nagliya
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S. Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M. Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
7
|
Gao J, Wang H, Liu X, Song X, Zhong X. Surgical site wound infection, and other postoperative problems after coronary artery bypass grafting in subjects with chronic obstructive pulmonary disease: A meta-analysis. Int Wound J 2022; 20:302-312. [PMID: 35801278 PMCID: PMC9885461 DOI: 10.1111/iwj.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/03/2023] Open
Abstract
We performed a meta-analysis to evaluate the effect of chronic obstructive pulmonary disease on surgical site wound infection, and other postoperative problems after coronary artery bypass grafting. A systematic literature search up to April 2022 was performed and 37 444 subjects with coronary artery bypass grafting at the baseline of the studies; 4320 of them were with the chronic obstructive pulmonary disease, and 33 124 were without chronic obstructive pulmonary disease. Odds ratio (OR), and mean difference (MD) with 95% confidence intervals (CIs) were calculated to assess the effect of chronic obstructive pulmonary disease on surgical site wound infection, and other postoperative problems after coronary artery bypass grafting using the dichotomous, and contentious methods with a random or fixed-effect model. The chronic obstructive pulmonary disease subjects had a significantly higher surgical site wound infection (OR, 1.27; 95% CI, 1.01-1.60, P = 0.04), respiratory failure (OR, 1.84; 95% CI, 1.55-2.18, P < 0.001), mortality (OR, 1.61; 95% CI, 1.37-1.89, P < 0.001), pneumonia (OR, 2.30; 95% CI, 1.97-2.68, P < 0.001), pleural effusion (OR, 1.78; 95% CI, 1.12-2.83, P = 0.02), stroke (OR, 1.99; 95% CI, 1.17-3.36, P = 0.01), and length of intensive care unit stay (MD, 0.73; 95% CI, 0.19-1.26, P = 0.008) after coronary artery bypass grafting compared with subjects without chronic obstructive pulmonary disease. However, chronic obstructive pulmonary disease subjects did not show any significant difference in length of hospital stay (MD, 0.83; 95% CI, -0.01 to 1.67, P = 0.05), and pneumothorax (OR, 1.59; 95% CI, 0.98-2.59, P = 0.06) after coronary artery bypass grafting compared with subjects without chronic obstructive pulmonary disease. The chronic obstructive pulmonary disease subjects had a significantly higher surgical site wound infection, respiratory failure, mortality, pneumonia, pleural effusion, stroke, and length of intensive care unit stay, and no significant difference in length of hospital stay, and pneumothorax after coronary artery bypass grafting compared with subjects without chronic obstructive pulmonary disease. The analysis of outcomes should be with caution because of the low sample size of 1 out of 11 studies in the meta-analysis and a low number of studies in certain comparisons.
Collapse
Affiliation(s)
- Jinglin Gao
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China,Department of Rheumatism and ImmunologyThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouPeople's Republic of China
| | - Huijuan Wang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| | - Xiuhua Liu
- Department of Rheumatism and ImmunologyThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouPeople's Republic of China
| | - Xinghui Song
- Department of Rheumatism and ImmunologyThe Fourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouPeople's Republic of China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Guangxi Medical UniversityNanningPeople's Republic of China
| |
Collapse
|
8
|
Zhu X, Gao D, Albertazzi V, Zhong J, Ma LJ, Du L, Shyr Y, Kon V, Yang HC, Fogo AB. Podocyte-Related Mechanisms Underlying Survival Benefit of Long-Term Angiotensin Receptor Blocker. Int J Mol Sci 2022; 23:6018. [PMID: 35682697 PMCID: PMC9181646 DOI: 10.3390/ijms23116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
We previously found that short-term treatment (week 8 to 12 after injury) with high-dose angiotensin receptor blocker (ARB) induced the regression of existing glomerulosclerosis in 5/6 nephrectomy rats. We therefore assessed the effects of long-term intervention with ARB vs. nonspecific antihypertensives in this study. Adult rats underwent 5/6 nephrectomy and renal biopsy 8 weeks later. The rats were then divided into three groups with equivalent renal function and glomerular sclerosis and treated with high-dose losartan (ARB), nonspecific antihypertensive triple-therapy (TRX), or left untreated (Control) until week 30. We found that blood pressure, serum creatinine levels, and glomerulosclerosis were lower at sacrifice in ARB and TRX vs. Control. Only ARB reduced proteinuria and maintained the density of WT-1-positive podocytes. Glomerular tufts showed more double-positive cells for CD44, a marker of activated parietal epithelial cells, and synaptopodin after ARB vs. TRX or Control. ARB treatment reduced aldosterone levels. ARB-treated rats had significantly improved survival when compared with TRX or Control. We conclude that both long-term ARB and triple-therapy ameliorate progression, but do not sustain the regression of glomerulosclerosis. ARB resulted in the superior preservation of podocyte integrity and decreased proteinuria and aldosterone, linked to increased survival in the uremic environment.
Collapse
Affiliation(s)
- Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
| | - Dan Gao
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Department of Nephrology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Vittorio Albertazzi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Unit of Nephrology and Dialysis, “Guglielmo da Saliceto” AUSL Piacenza Hospital, Via Taverna 49, 29100 Piacenza, Italy
| | - Jianyong Zhong
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Li-Jun Ma
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
| | - Liping Du
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.D.); (Y.S.)
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.D.); (Y.S.)
| | - Valentina Kon
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Hai-Chun Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Agnes B. Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (D.G.); (V.A.); (J.Z.); (L.-J.M.); (H.-C.Y.)
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Lino CA, Barreto-Chaves ML. Beta-arrestins in the context of cardiovascular diseases: Focusing on type 1 angiotensin II receptor (AT1R). Cell Signal 2022; 92:110253. [DOI: 10.1016/j.cellsig.2022.110253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
|
10
|
Borges JI, Carbone AM, Cora N, Sizova A, Lymperopoulos A. GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha 2B-Adrenoceptor Variants. Methods Mol Biol 2022; 2547:267-273. [PMID: 36068469 DOI: 10.1007/978-1-0716-2573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301-303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5'-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
11
|
Lymperopoulos A, Borges JI, Carbone AM, Cora N, Sizova A. Cardiovascular angiotensin II type 1 receptor biased signaling: Focus on non-Gq-, non-βarrestin-dependent signaling. Pharmacol Res 2021; 174:105943. [PMID: 34662735 DOI: 10.1016/j.phrs.2021.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
The physiological and pathophysiological roles of the angiotensin II type 1 (AT1) receptor, a G protein-coupled receptor ubiquitously expressed throughout the cardiovascular system, have been the focus of intense investigations for decades. The success of angiotensin converting enzyme inhibitors (ACEIs) and of angiotensin receptor blockers (ARBs), which are AT1R-selective antagonists/inverse agonists, in the treatment of heart disease is a testament to the importance of this receptor for cardiovascular homeostasis. Given the pleiotropic signaling of the cardiovascular AT1R and, in an effort to develop yet better drugs for heart disease, the concept of biased signaling has been exploited to design and develop biased AT1R ligands that selectively activate β-arrestin transduction pathways over Gq protein-dependent pathways. However, by focusing solely on Gq or β-arrestins, studies on AT1R "biased" signaling & agonism tend to largely ignore other non-Gq-, non β-arrestin-dependent signaling modalities the very versatile AT1R employs in cardiovascular tissues, including two very important types of signal transducers/regulators: other G protein types (e.g., Gi/o, G12/13) & the Regulator of G protein Signaling (RGS) proteins. In this review, we provide a brief overview of the current state of cardiovascular AT1R biased signaling field with a special focus on the non-Gq-, non β-arrestin-dependent signaling avenues of this receptor in the cardiovascular system, which usually get left out of the conversation of "biased" AT1R signal transduction.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
12
|
Khalili A, Karim H, Bayat G. Theoretical Assessment of Therapeutic Effects of Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors on COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:312-316. [PMID: 34305244 PMCID: PMC8288492 DOI: 10.30476/ijms.2021.88753.1949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
13
|
Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021. [DOI: 10.3390/pharmaceutics13060838
expr 929824082 + 956151497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors’ (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
|
14
|
Rakib A, Eva TA, Sami SA, Mitra S, Nafiz IH, Das A, Tareq AM, Nainu F, Dhama K, Emran TB, Simal-Gandara J. Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics 2021; 13:838. [PMID: 34198801 PMCID: PMC8228839 DOI: 10.3390/pharmaceutics13060838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a complicated clinical syndrome that is considered an increasingly frequent reason for hospitalization, characterized by a complex therapeutic regimen, reduced quality of life, and high morbidity. Long-standing hypertension ultimately paves the way for HF. Recently, there have been improvements in the treatment of hypertension and overall management not limited to only conventional medications, but several novel pathways and their pharmacological alteration are also conducive to the treatment of hypertension. Beta-arrestin (β-arrestin), a protein responsible for beta-adrenergic receptors' (β-AR) functioning and trafficking, has recently been discovered as a potential regulator in hypertension. β-arrestin isoforms, namely β-arrestin1 and β-arrestin2, mainly regulate cardiac function. However, there have been some controversies regarding the function of the two β-arrestins in hypertension regarding HF. In the present review, we try to figure out the paradox between the roles of two isoforms of β-arrestin in the treatment of HF.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (T.A.E.); (S.A.S.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (I.H.N.); (A.D.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Kota Makassar, Sulawesi Selatan 90245, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
15
|
Ling QS, Zhang SL, Tian JS, Cheng MH, Liu AJ, Fu FH, Liu JG, Miao CY. Allisartan isoproxil reduces mortality of stroke-prone rats and protects against cerebrovascular, cardiac, and aortic damage. Acta Pharmacol Sin 2021; 42:871-884. [PMID: 34002042 PMCID: PMC8149727 DOI: 10.1038/s41401-021-00684-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
Stroke is a common cause of death and disability. Allisartan isoproxil (ALL) is a new angiotensin II receptor blocker and a new antihypertensive drug discovered and developed in China. In the present study we investigated the therapeutic effects of ALL in stroke-prone renovascular hypertensive rats (RHR-SP) and the underlying mechanisms. The model rats were generated via two-kidney two-clip (2K2C) surgery, which led to 100% of hypertension, 100% of cerebrovascular damage as well as 100% of mortality 1 year after the surgery. Administration of ALL (30 mg · kg-1 · d-1 in diet, for 55 weeks) significantly decreased stroke-related death and prolonged lifespan in RHR-SP, but the survival ALL-treated RHR-SP remained of hypertension and cardiovascular hypertrophy compared with sham-operated normal controls. In addition to cardiac, and aortic protection, ALL treatment for 10 or 12 weeks significantly reduced cerebrovascular damage incidence and scoring, along with a steady reduction of blood pressure (BP) in RHR-SP. Meanwhile, it significantly decreased serum aldosterone and malondialdehyde levels and cerebral NAD(P)H oxidase expressions in RHR-SP. We conducted 24 h continuous BP recording in conscious freely moving RHR-SP, and found that a single intragastric administration of ALL produced a long hypotensive effect lasting for at least 12 h on systolic BP. Taken together, our results in RHR-SP demonstrate that ALL can be used for stroke prevention via BP reduction and organ protection, with the molecular mechanisms related to inhibition of angiotensin-aldosterone system and oxidative stress. This study also provides a valuable scoring for evaluation of cerebrovascular damage and drug efficacy.
Collapse
Affiliation(s)
- Qi-Sheng Ling
- School of Pharmacy, Yantai University, Yantai, 264005, China
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Jia-Sheng Tian
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Ai-Jun Liu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Feng-Hua Fu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Jian-Guo Liu
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
16
|
Ferraino KE, Cora N, Pollard CM, Sizova A, Maning J, Lymperopoulos A. Adrenal angiotensin II type 1 receptor biased signaling: The case for "biased" inverse agonism for effective aldosterone suppression. Cell Signal 2021; 82:109967. [PMID: 33640432 DOI: 10.1016/j.cellsig.2021.109967] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Angiotensin II (AngII) uses two distinct G protein-coupled receptor (GPCR) types, AT1R and AT2R, to exert a plethora of physiologic effects in the body and to significantly affect cardiovascular homeostasis. Although not much is known about the signaling of the AT2R, AT1R signaling is known to be quite pleiotropic, mobilizing a variety of signal transducers inside cells to produce a biological outcome. When the outcome in question is aldosterone production from the adrenal cortex, the main transducers activated specifically by the adrenocortical AT1R to signal toward that cellular effect are the Gq/11 protein alpha subunits and the β-arrestins (also known as Arrestin-2 and -3). The existence of various downstream pathways the AT1R signal can travel down on has led to the ever-expanding filed of GPCR pharmacology termed "biased" signaling, which refers to a ligand preferentially activating one signaling pathway over others downstream of the same receptor in the same cell. However, "biased" signaling or "biased" agonism is therapeutically desirable only when the downstream pathways lead to different or opposite cellular outcomes, so the pathway promoting the beneficial effect can be selectively activated over the pathway that leads to detrimental consequences. In the case of the adrenal AT1R, both Gq/11 proteins and β-arrestins mediate signaling to the same end-result: aldosterone synthesis and secretion. Therefore, both pathways need to remain inactive in the adrenal cortex to fully suppress the production of aldosterone, which is one of the culprit hormones elevated in chronic heart failure, hypertension, and various other cardiovascular diseases. Variations in the effectiveness of the AT1R antagonists, which constitute the angiotensin receptor blocker (ARB) class of drugs (also known as sartans), at the relative blockade of these two pathways downstream of the adrenal AT1R opens the door to the flip term "biased" inverse agonism at the AT1R. ARBs that are unbiased and equipotent inverse agonists for both G proteins and β-arrestins at this receptor, like candesartan and valsartan, are the most preferred agents with the best efficacy at reducing circulating aldosterone, thereby ameliorating heart failure. In the present review, the biased signaling of the adrenal AT1R, particularly in relation to aldosterone production, is examined and the term "biased" inverse agonism at the AT1R is introduced and explained, as a means of pharmacological categorization of the various agents within the ARB drug class.
Collapse
Affiliation(s)
- Krysten E Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
17
|
Anti-ATR001 monoclonal antibody ameliorates atherosclerosis through beta-arrestin2 pathway. Biochem Biophys Res Commun 2021; 544:1-7. [PMID: 33516876 DOI: 10.1016/j.bbrc.2021.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous study developed ATRQβ-001 vaccine, which targets peptide ATR001 from angiotensin Ⅱ (Ang Ⅱ) receptor type 1 (AT1R). The ATRQβ-001 vaccine could induce the production of anti-ATR001 monoclonal antibody (McAb-ATR) and inhibit atherosclerosis without feedback activation of the renin-angiotensin system (RAS). This study aims at investigating the underexploited mechanisms of McAb-ATR in ameliorating atherosclerosis. METHODS AT1R-KO HEK293T cell lines were constructed to identify the specificity of McAb-ATR and key sites of ATRQβ-001 vaccine. Beta-arrestin1 knock-out (Arrb1-/-) mice, Beta-arrestin2 knock-out (Arrb2-/-) mice, and low-density lipoprotein receptor knock-out (LDLr-/-) mice were used to detect potential signaling pathways affected by McAb-ATR. The role of McAb-ATR in beta-arrestin and G proteins (Gq or Gi2/i3) signal transduction events was also investigated. RESULTS McAb-ATR could specifically bind to the Phe182-His183-Tyr184 site of AT1R second extracellular loop (ECL2). The anti-atherosclerotic effect of McAb-ATR disappeared in LDLr-/- mice transplanted with Arrb2-/- mouse bone marrow (BM) and BM-derived macrophages (BMDMs) from Arrb2-/- mice. Furthermore, McAb-ATR inhibited beta-arrestin2-dependent extracellular signal regulated kinase1/2 (ERK1/2) phosphorylation, and promoted beta-arrestin2-mediated nuclear factor kappa B p65 (NFκB p65) inactivity. Compared with conventional AT1R blockers (ARBs), McAb-ATR did not inhibit Ang Ⅱ-induced uncoupling of heterotrimeric G proteins (Gq or Gi2/i3) and Gq-dependent intracellular Ca2+ release, nor cause RAS feedback activation. CONCLUSIONS Through regulating beta-arrestin2, McAb-ATR ameliorates atherosclerosis without affecting Gq or Gi2/i3 pathways. Due to high selectivity for AT1R and biased interaction with beta-arrestin2, McAb-ATR could serve as a novel strategy for treating atherosclerosis.
Collapse
|
18
|
Low-dose angiotensin AT 1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity. Pharmacol Rep 2020; 72:1676-1684. [PMID: 33090352 DOI: 10.1007/s43440-020-00172-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Recruitment of β-arrestin to G protein-coupled receptors (GPCRs), initially described to cause receptor desensitization, has recently been shown to take active roles in cell signaling. We investigated the effects of TRV027, an angiotensin AT1 receptor β-arrestin-biased ligand, as well as losartan and valsartan on cisplatin-induced kidney injury. METHOD Male Sprague-Dawley rats were treated with angiotensin receptor ligands (1 or 10 mg/kg/day) with or without cisplatin, and kidney variables were monitored using animal SPECT, histopathology, and serum parameters. RESULTS TRV027, losartan, and valsartan did not alter renal dimercaptosuccinic acid (DMSA) uptake, histopathological manifestations of kidney injury, blood urea nitrogen (BUN), and creatinine or Na+ and K+ levels, per se. However, when rats co-treated with cisplatin and either of the AT1 receptor blockers at higher doses, we observed aggravation of cisplatin-induced reduction of radiotracer uptake but improvement of cisplatin-induced hypokalemia, and insignificant effect on histological findings. Furthermore, we noted an additional increase in cisplatin-induced augmentation of BUN and creatinine levels in cisplatin plus valsartan group. TRV027 (1 mg/kg/day) inhibited cisplatin adverse effects on radiotracer uptake, kidney histology, BUN, and creatinine as well as electrolyte levels, but it failed to produce protective effects at higher dose (10 mg/kg/day). CONCLUSION Low-dose TRV027 may offer potential benefits in kidney injury due to cisplatin.
Collapse
|
19
|
Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020; 11:1179. [PMID: 32848782 PMCID: PMC7417933 DOI: 10.3389/fphar.2020.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
G-protein–coupled receptors (GPCRs) are targets for around one third of currently approved and clinical prescribed drugs and represent the largest and most structurally diverse family of transmembrane signaling proteins, with almost 1000 members identified in the human genome. Upon agonist stimulation, GPCRs are internalized and trafficked inside the cell: they may be targeted to different organelles, recycled back to the plasma membrane or be degraded. Once inside the cell, the receptors may initiate other signaling pathways leading to different biological responses. GPCRs’ biological function may also be influenced by interaction with other receptors. Thus, the ultimate cellular response may depend not only on the activation of the receptor from the cell membrane, but also from receptor trafficking and/or the interaction with other receptors. This review is focused on angiotensin receptors and how their biological function is influenced by trafficking and interaction with others receptors.
Collapse
Affiliation(s)
- Natalia L Rukavina Mikusic
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mauro G Silva
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Angélica M Pineda
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | - Mariela M Gironacci
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Dpto. Química Biológica, IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
miR-7 Regulates GLP-1-Mediated Insulin Release by Targeting β-Arrestin 1. Cells 2020; 9:cells9071621. [PMID: 32640511 PMCID: PMC7407368 DOI: 10.3390/cells9071621] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to potentiate glucose-stimulated insulin secretion binding GLP-1 receptor on pancreatic β cells. β-arrestin 1 (βARR1) is known to regulate the desensitization of GLP-1 receptor. Mounting evidence indicates that microRNAs (miRNAs, miRs) are fundamental in the regulation of β cell function and insulin release. However, the regulation of GLP-1/βARR1 pathways by miRs has never been explored. Our hypothesis is that specific miRs can modulate the GLP-1/βARR1 axis in β cells. To test this hypothesis, we applied a bioinformatic approach to detect miRs that could target βARR1; we identified hsa-miR-7-5p (miR-7) and we validated the specific interaction of this miR with βARR1. Then, we verified that GLP-1 was indeed able to regulate the transcription of miR-7 and βARR1, and that miR-7 significantly regulated GLP-1-induced insulin release and cyclic AMP (cAMP) production in β cells. Taken together, our findings indicate, for the first time, that miR-7 plays a functional role in the regulation of GLP-1-mediated insulin release by targeting βARR1. These results have a decisive clinical impact given the importance of drugs modulating GLP-1 signaling in the treatment of patients with type 2 diabetes mellitus.
Collapse
|
21
|
Cora N, Ghandour J, Pollard CM, Desimine VL, Ferraino KE, Pereyra JM, Valiente R, Lymperopoulos A. Nicotine-induced adrenal beta-arrestin1 upregulation mediates tobacco-related hyperaldosteronism leading to cardiac dysfunction. World J Cardiol 2020; 12:192-202. [PMID: 32547713 PMCID: PMC7283997 DOI: 10.4330/wjc.v12.i5.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tobacco-related products, containing the highly addictive nicotine together with numerous other harmful toxicants and carcinogens, have been clearly associated with coronary artery disease, heart failure, stroke, and other heart diseases. Among the mechanisms by which nicotine contributes to heart disease is elevation of the renin-angiotensin-aldosterone system (RAAS) activity. Nicotine, and its major metabolite in humans cotinine, have been reported to induce RAAS activation, resulting in aldosterone elevation in smokers. Aldosterone has various direct and indirect adverse cardiac effects. It is produced by the adrenal cortex in response to angiotensin II (AngII) activating AngII type 1 receptors. RAAS activity increases in chronic smokers, causing raised aldosterone levels (nicotine exposure causes the same in rats). AngII receptors exert their cellular effects via either G proteins or the two βarrestins (βarrestin1 and-2).
AIM Since adrenal ßarrestin1 is essential for adrenal aldosterone production and nicotine/cotinine elevate circulating aldosterone levels in humans, we hypothesized that nicotine activates adrenal ßarrestin1, which contributes to RAAS activation and heart disease development.
METHODS We studied human adrenocortical zona glomerulosa H295R cells and found that nicotine and cotinine upregulate βarrestin1 mRNA and protein levels, thereby enhancing AngII-dependent aldosterone synthesis and secretion.
RESULTS In contrast, siRNA-mediated βarrestin1 knockdown reversed the effects of nicotine on AngII-induced aldosterone production in H295R cells. Importantly, nicotine promotes hyperaldosteronism via adrenal βarrestin1, thereby precipitating cardiac dysfunction, also in vivo, since nicotine-exposed experimental rats with adrenal-specific βarrestin1 knockdown display lower circulating aldosterone levels and better cardiac function than nicotine-exposed control animals with normal adrenal βarrestin1 expression.
CONCLUSION Adrenal βarrestin1 upregulation is one of the mechanisms by which tobacco compounds, like nicotine, promote cardio-toxic hyperaldosteronism in vitro and in vivo. Thus, adrenal βarrestin1 represents a novel therapeutic target for tobacco-related heart disease prevention or mitigation.
Collapse
Affiliation(s)
- Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Celina Marie Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Victoria Lynn Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Krysten Elaine Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Janelle Marie Pereyra
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Rachel Valiente
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| |
Collapse
|
22
|
GRK2-Mediated Crosstalk Between β-Adrenergic and Angiotensin II Receptors Enhances Adrenocortical Aldosterone Production In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21020574. [PMID: 31963151 PMCID: PMC7013621 DOI: 10.3390/ijms21020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone is produced by adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII) acting through its type I receptors (AT1Rs). AT1R is a G protein-coupled receptor (GPCR) that induces aldosterone via both G proteins and the adapter protein βarrestin1, which binds the receptor following its phosphorylation by GPCR-kinases (GRKs) to initiate G protein-independent signaling. β-adrenergic receptors (ARs) also induce aldosterone production in AZG cells. Herein, we investigated whether GRK2 or GRK5, the two major adrenal GRKs, is involved in the catecholaminergic regulation of AngII-dependent aldosterone production. In human AZG (H295R) cells in vitro, the βAR agonist isoproterenol significantly augmented both AngII-dependent aldosterone secretion and synthesis, as measured by the steroidogenic acute regulatory (StAR) protein and CYP11B2 (aldosterone synthase) mRNA inductions. Importantly, GRK2, but not GRK5, was indispensable for the βAR-mediated enhancement of aldosterone in response to AngII. Specifically, GRK2 inhibition with Cmpd101 abolished isoproterenol’s effects on AngII-induced aldosterone synthesis/secretion, whereas the GRK5 knockout via CRISPR/Cas9 had no effect. It is worth noting that these findings were confirmed in vivo, since rats overexpressing GRK2, but not GRK5, in their adrenals had elevated circulating aldosterone levels compared to the control animals. However, treatment with the β-blocker propranolol prevented hyperaldosteronism in the adrenal GRK2-overexpressing rats. In conclusion, GRK2 mediates a βAR-AT1R signaling crosstalk in the adrenal cortex leading to elevated aldosterone production. This suggests that adrenal GRK2 may be a molecular link connecting the sympathetic nervous and renin-angiotensin systems at the level of the adrenal cortex and that its inhibition might be therapeutically advantageous in hyperaldosteronism-related conditions.
Collapse
|
23
|
Markan U, Pasupuleti S, Pollard CM, Perez A, Aukszi B, Lymperopoulos A. The place of ARBs in heart failure therapy: is aldosterone suppression the key? Ther Adv Cardiovasc Dis 2019; 13:1753944719868134. [PMID: 31401939 PMCID: PMC6691655 DOI: 10.1177/1753944719868134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the launch of the first orally available angiotensin II (AngII) type 1 receptor (AT1R) blocker (ARB) losartan (Cozaar) in the late 1990s, the class of ARBs (or ‘sartans’, short for Angiotensin-RecepTor-ANtagonistS) quickly expanded to include candesartan, eprosartan, irbesartan, valsartan, telmisartan, and olmesartan. All ARBs have high affinity for the AT1 receptor, expressed in various tissues, including smooth muscle cells, heart, kidney, and brain. Since activation of AT1R, the target of these drugs, leads, among other effects, to vascular smooth muscle cell growth, proliferation and contraction, activation of fibroblasts, cardiac hypertrophy, aldosterone secretion from the adrenal cortex, thirst-fluid intake (hypervolemia), etc., the ARBs are nowadays one of the most useful cardiovascular drug classes used in clinical practice. However, significant differences in their pharmacological and clinical properties exist that may favor use of particular agents over others within the class, and, in fact, two of these drugs, candesartan and valsartan, continuously appear to distinguish themselves from the rest of the ‘pack’ in recent clinical trials. The reason(s) for the potential superiority of these two agents within the ARB class are currently unclear but under intense investigation. The present short review gives an overview of the clinical properties of the ARBs currently approved by the United States Food and Drug Administration, with a particular focus on candesartan and valsartan and the areas where these two drugs seem to have a therapeutic edge. In the second part of our review, we outline recent data from our laboratory (mainly) on the molecular effects of the ARB drugs on aldosterone production and on circulating aldosterone levels, which may underlie (at least in part) the apparent clinical superiority of candesartan (and valsartan) over most other ARBs currently in clinical use.
Collapse
Affiliation(s)
- Uma Markan
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Samhitha Pasupuleti
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Beatrix Aukszi
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Dr., HPD (Terry) Bldg/Room 1338, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
24
|
Solesio ME, Mitaishvili E, Lymperopoulos A. Adrenal βarrestin1 targeting for tobacco-associated cardiac dysfunction treatment: Aldosterone production as the mechanistic link. Pharmacol Res Perspect 2019; 7:e00497. [PMID: 31236278 PMCID: PMC6581946 DOI: 10.1002/prp2.497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Tobacco kills 6 million people annually and its global health costs are continuously rising. The main addictive component of every tobacco product is nicotine. Among the mechanisms by which nicotine, and its major metabolite, cotinine, contribute to heart disease is the renin-angiotensin-aldosterone system (RAAS) activation. This increases aldosterone production from the adrenals and circulating aldosterone levels. Aldosterone is a mineralocorticoid hormone with various direct harmful effects on the myocardium, including increased reactive oxygen species (ROS) generation, which contributes significantly to cardiac mitochondrial dysfunction and cardiac aging. Aldosterone is produced in the adrenocortical zona glomerulosa (AZG) cells in response to angiotensin II (AngII), activating its type 1 receptor (AT1R). The AT1R is a G protein-coupled receptor (GPCR) that leads to aldosterone biosynthesis and secretion, via signaling from both Gq/11 proteins and the GPCR adapter protein βarrestin1, in AZG cells. Adrenal βarrestin1 is essential for AngII-dependent adrenal aldosterone production, which aggravates heart disease. Since adrenal βarrestin1 is essential for raising circulating aldosterone in the body and tobacco compounds are also known to elevate aldosterone levels in smokers, accelerating heart disease progression, our central hypothesis is that nicotine and cotinine increase aldosterone levels to induce cardiac injury by stimulating adrenal βarrestin1. In the present review, we provide an overview of the current literature of the physiology and pharmacology of adrenal aldosterone production regulation, of the effects of tobacco on this process and, finally, of the effects of tobacco and aldosterone on cardiac structure and function, with a particular focus on cardiac mitochondrial function. We conclude our literature account with a brief experimental outline, as well as with some therapeutic perspectives of our pharmacological hypothesis, that is that adrenal βarrestin1 is a novel molecular target for preventing tobacco-induced hyperaldosteronism, thereby also ameliorating tobacco-related heart disease development.
Collapse
Affiliation(s)
- Maria E Solesio
- Department of Basic SciencesNew York UniversityNew YorkNew York
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical SciencesNova Southeastern University College of PharmacyFort Lauderdale, Florida
| |
Collapse
|
25
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Jackson Memorial Hospital, Miami, FL 33136, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
26
|
Zhao H, Li L, Yang G, Gong J, Ye L, Zhi S, Zhang X, Li J. Postoperative outcomes of patients with chronic obstructive pulmonary disease undergoing coronary artery bypass grafting surgery: A meta-analysis. Medicine (Baltimore) 2019; 98:e14388. [PMID: 30732179 PMCID: PMC6380818 DOI: 10.1097/md.0000000000014388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a frequent comorbid disease in patients undergoing coronary artery bypass grafting (CABG) surgery, with an incidence ranging from 4% to 20.5%. Conventionally, COPD was recognized as a surgical contraindication to CABG. Because of the recent improvements in surgical techniques, anesthesia, and postoperative management, CABG has been performed more commonly in patients with COPD. However, studies have shown the various effects of COPD on postoperative morbidity and mortality after CABG, and this remains to be well defined. OBJECTIVES To compare the postoperative outcomes after CABG between patients with and those without COPD. METHODS A systematic search was conducted in the Cochrane Library, PubMed, EmBase, and Ovid databases (until May 10, 2018). Studies comparing perioperative results and mortality outcomes after CABG between patients with and those without COPD were evaluated independently by 2 reviewers to identify the potentially eligible studies. Review Manager and STATA software were used for statistical analyses. RESULTS No significant difference in the mortality rates were found between patients with and those without COPD. COPD was associated with a higher respiratory failure rate (odds ratio [OR] = 4.01; 95% CI: 1.19-13.51, P = .03; P <.001 for heterogeneity), higher pneumonia rate (OR = 2.92; 95% CI: 2.37-3.60, P <.00001; P = .73 for heterogeneity), higher stroke rate (OR = 2.91; 95% CI: 1.37-6.18, P = .005; P = .60 for heterogeneity), higher renal failure rate (OR = 1.60; 95% CI: 1.30-1.97, P <.00001; P = .19 for heterogeneity), and higher wound infection rate (OR = 2.16; 95% CI: 1.21-3.88, P = .01; P = .53 for heterogeneity) after CABG. CONCLUSIONS Patients with COPD were at higher risks for developing postoperative morbidities, particularly pneumonia, respiratory failure, stroke, renal failure, and wound infection. Although COPD was not associated with a higher risk of mortality, caution should be taken when a patient with COPD is indicated for CABG, considering the higher odds of postoperative complications involving the respiratory system and others.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Lifang Li
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Guang Yang
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Jiannan Gong
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Lu Ye
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Shuyin Zhi
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Xulong Zhang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jianqiang Li
- Department of Respiratory Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi
| |
Collapse
|
27
|
Wertz SL, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Co-IP assays for measuring GPCR–arrestin interactions. Methods Cell Biol 2019; 149:205-213. [DOI: 10.1016/bs.mcb.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
29
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:ijms19123764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
30
|
Takezako T, Unal H, Karnik SS, Node K. The non-biphenyl-tetrazole angiotensin AT 1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT 1 receptor. Br J Pharmacol 2018; 175:2454-2469. [PMID: 29570771 PMCID: PMC5980637 DOI: 10.1111/bph.14213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT1 receptors is necessary. EXPERIMENTAL APPROACH To identify the robust inverse agonist for active state of AT1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT1 receptors and active-state N111G mutant AT1 receptors. KEY RESULTS Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT1 receptors compared with the ground-state WT-AT1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT1 receptors. In contrast, interactions between eprosartan and N111G-AT1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. CONCLUSIONS AND IMPLICATIONS Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT1 receptor activation are warranted.
Collapse
Affiliation(s)
- Takanobu Takezako
- Department of Advanced Heart ResearchSaga UniversitySagaJapan
- Department of Internal MedicineNadeshiko Lady's HospitalKobeJapan
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOHUSA
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research InstituteCleveland Clinic FoundationClevelandOHUSA
| | - Koichi Node
- Department of Cardiovascular MedicineSaga UniversitySagaJapan
| |
Collapse
|
31
|
Desimine VL, McCrink KA, Parker BM, Wertz SL, Maning J, Lymperopoulos A. Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:41-61. [PMID: 29776604 DOI: 10.1016/bs.ircmb.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) are among the most important drug targets currently used in clinic, including drugs for cardiovascular indications. We now know that, in addition to activating heterotrimeric G protein-dependent signaling pathways, GPCRs can also activate G protein-independent signaling, mainly via the βarrestins. The major role of βarrestin1 and -2, also known as arrestin2 or -3, respectively, is to desensitize GPCRs, i.e., uncoupled them from G proteins, and to subsequently internalize the receptor. As the βarrestin-bound GPCR recycles inside the cell, it serves as a signalosome transducing signals in the cytoplasm. Since both G proteins and βarrestins can transduce signals from the same receptor independently of each other, any given GPCR agonist might selectively activate either pathway, which would make it a biased agonist for that receptor. Although this selectivity is always relative (never absolute), in cases where the G protein- and βarrestin-dependent signals emanating from the same GPCR result in different cellular effects, pharmacological exploitation of GPCR-biased agonism might have therapeutic potential. In this chapter, we summarize the GPCR signaling pathways and their biased agonism/antagonism examples discovered so far that can be exploited for heart failure treatment. We also highlight important issues that need to be clarified along the journey of these ligands from bench to the clinic.
Collapse
Affiliation(s)
- Victoria L Desimine
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Barbara M Parker
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Shelby L Wertz
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jennifer Maning
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| |
Collapse
|
32
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
34
|
Zhang WW, Bai F, Wang J, Zheng RH, Yang LW, James EA, Zhao ZQ. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3019-3033. [PMID: 29081650 PMCID: PMC5652925 DOI: 10.2147/dddt.s144807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Angiotensin II (Ang II) is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC). In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day) or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day) was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05) and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19 mmHg, p<0.05) and ejection fraction (82%±3% vs 60%±5%, p<0.05). Treatment with telmisartan provided a comparable level of protection as compared with edaravone in all the parameters measured. Taken together, edaravone treatment ameliorates cardiac fibrosis and improves left ventricular function in the pressure overload rat model, potentially via suppressing the AT1 receptor-mediated signaling pathways. These data indicate that edaravone might be selected in combination with other existing drugs in preventing progression of cardiac dysfunction in heart failure.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Physiology, Shanxi Medical University.,Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Feng Bai
- Department of Physiology, Shanxi Medical University
| | - Jin Wang
- Department of Physiology, Shanxi Medical University
| | | | - Li-Wang Yang
- Department of Physiology, Shanxi Medical University
| | | | - Zhi-Qing Zhao
- Department of Physiology, Shanxi Medical University.,Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
35
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
36
|
Biased agonism/antagonism at the AngII-AT1 receptor: Implications for adrenal aldosterone production and cardiovascular therapy. Pharmacol Res 2017; 125:14-20. [PMID: 28511989 DOI: 10.1016/j.phrs.2017.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022]
Abstract
Many of the effects of angiotensin II (AngII), including adrenocortical aldosterone release, are mediated by the AngII type 1 receptor (AT1R), a receptor with essential roles in cardiovascular homeostasis. AT1R belongs to the G protein-coupled receptor (GPCR) superfamily, mainly coupling to the Gq/11 type of G proteins. However, it also signals through βarrestins, oftentimes in parallel to eliciting G protein-dependent signaling. This has spurred infinite possibilities for cardiovascular pharmacology, since various beneficial effects are purportedly exerted by AT1R via βarrestins, unlike AT1R-induced G protein-mediated pathways that usually result in damaging cardiovascular effects, including hypertension and aldosterone elevation. Over the past decade however, a number of studies from our group and others have suggested that AT1R-induced βarrestin signaling can also be damaging for the heart, similarly to the G protein-dependent one, with regard to aldosterone regulation. Additionally, AT1R-induced βarrestin signaling in astrocytes from certain areas of the brain may also play a significant role in central regulation of blood pressure and hypertension pathogenesis. These findings have provided the impetus for testing available angiotensin receptor blockers (ARBs) in their efficacy towards blocking both routes (i.e. both G protein- and βarrestin-dependent) of AT1R signaling in vitro and in vivo and also have promoted structure-activity relationship (SAR) studies for the AngII molecule in terms of βarrestin signaling to certain cellular effects, e.g. adrenal aldosterone production. In the present review, we will recount all of these recent studies on adrenal and astrocyte AT1R-dependent βarrestin signaling while underlining their implications for cardiovascular pathophysiology and therapy.
Collapse
|
37
|
Lymperopoulos A, Aukszi B. Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: Implications for heart failure therapy. World J Cardiol 2017; 9:200-206. [PMID: 28400916 PMCID: PMC5368669 DOI: 10.4330/wjc.v9.i3.200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Aldosterone mediates many of the physiological and pathophysiological/cardio-toxic effects of angiotensin II (AngII). Its synthesis and secretion from the zona glomerulosa cells of the adrenal cortex, elevated in chronic heart failure (HF), is induced by AngII type 1 receptors (AT1Rs). The AT1R is a G protein-coupled receptor, mainly coupling to Gq/11 proteins. However, it can also signal through β-arrestin-1 (βarr1) or -2 (βarr2), both of which mediate G protein-independent signaling. Over the past decade, a second, Gq/11 protein-independent but βarr1-dependent signaling pathway emanating from the adrenocortical AT1R and leading to aldosterone production has become appreciated. Thus, it became apparent that AT1R antagonists that block both pathways equally well are warranted for fully effective aldosterone suppression in HF. This spurred the comparison of all of the currently marketed angiotensin receptor blockers (ARBs, AT1R antagonists or sartans) at blocking activation of the two signaling modes (G protein-, and βarr1-dependent) at the AngII-activated AT1R and hence, at suppression of aldosterone in vitro and in vivo. Although all agents are very potent inhibitors of G protein activation at the AT1R, candesartan and valsartan were uncovered to be the most potent ARBs at blocking βarr activation by AngII and at suppressing aldosterone in vitro and in vivo in post-myocardial infarction HF animals. In contrast, irbesartan and losartan are virtually G protein-“biased” blockers at the human AT1R, with very low efficacy for βarr inhibition and aldosterone suppression. Therefore, candesartan and valsartan (and other, structurally similar compounds) may be the most preferred ARB agents for HF pharmacotherapy, as well as for treatment of other conditions characterized by elevated aldosterone.
Collapse
|
38
|
Assays of adrenal GPCR signaling and regulation: Measuring adrenal β-arrestin activity in vivo through plasma membrane recruitment. Methods Cell Biol 2017; 142:79-87. [DOI: 10.1016/bs.mcb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Zhao YT, Li PY, Zhang JQ, Wang L, Yi Z. Angiotensin II Receptor Blockers and Cancer Risk: A Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore) 2016; 95:e3600. [PMID: 27149494 PMCID: PMC4863811 DOI: 10.1097/md.0000000000003600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiotensin II receptor blockers (ARB) are widely used drugs that are proven to reduce cardiovascular disease events; however, several recent meta-analyses yielded conflicting conclusions regarding the relationship between ARB and cancer incidence, especially when ARB are combined with angiotensin-converting enzyme inhibitors (ACEI).We investigated the risk of cancer associated with ARB at different background ACEI levels.Search of PubMed and EMBASE (1966 to December 17, 2015) without language restriction.Randomized, controlled trials (RCTs) had at least 12 months of follow-up data and reported cancer incidence was included.Study characteristics, quality, and risk of bias were assessed by 2 reviewers independently.Nineteen RCTs including 148,334 patients were included in this study. Random-effects model meta-analyses were used to estimate the risk ratio (RR) of cancer risk. No excessive cancer risk was observed in our analyses of ARB alone versus placebo alone without background ACEI use (risk ratio [RR] 1.08, 95% confidence interval [CI] 1.00-1.18, P = 0.05); ARB alone versus ACEI alone (RR 1.03, 95%CI 0.94-1.14, P = 0.50); ARB plus partial use of ACEI versus placebo plus partial use of ACEI (RR 0.97, 95%CI 0.90-1.04, P = 0.33); and ARB plus ACEI versus ACEI (RR 0.99, 95%CI 0.79-1.24, P = 0.95).Lack of long-term data, inadequate reporting of safety data, significant heterogeneity in underlying study populations, and treatment regimens.ARB have a neutral effect on cancer incidence in randomized trials. We observed no significant differences in cancer incidence when we compared ARB alone with placebo alone, ARB alone with ACEI alone, ARB plus partial use of ACEI with placebo plus partial use of ACEI, or ARB plus ACEI combination with ACEI.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- From the Department of Cardiology, Aerospace Center Hospital (Y-T Z, P-Y L, Q-J Z, LW, ZY); Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing, People's Republic of China (P-YL)
| | | | | | | | | |
Collapse
|
40
|
Valero TR, Sturchler E, Jafferjee M, Rengo G, Magafa V, Cordopatis P, McDonald P, Koch WJ, Lymperopoulos A. Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Perspect 2016; 4:e00226. [PMID: 27069636 PMCID: PMC4804318 DOI: 10.1002/prp2.226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022] Open
Abstract
The known angiotensin II (AngII) physiological effect of aldosterone synthesis and secretion induction, a steroid hormone that contributes to the pathology of postmyocardial infarction (MI) heart failure (HF), is mediated by both Gq/11 proteins and β-arrestins, both of which couple to the AngII type 1 receptors (AT1Rs) of adrenocortical zona glomerulosa (AZG) cells. Over the past several years, AngII analogs with increased selectivity ("bias") toward β-arrestin-dependent signaling at the AT1R have been designed and described, starting with SII, the gold-standard β-arrestin-"biased" AngII analog. In this study, we examined the relative potencies of an extensive series of AngII peptide analogs at relative activation of G proteins versus β-arrestins by the AT1R. The major structural difference of these peptides from SII was their varied substitutions at position 5, rather than position 4 of native AngII. Three of them were found biased for β-arrestin activation and extremely potent at stimulating aldosterone secretion in AZG cells in vitro, much more potent than SII in that regard. Finally, the most potent of these three ([Sar(1), Cys(Et)(5), Leu(8)]-AngII, CORET) was further examined in post-MI rats progressing to HF and overexpressing adrenal β-arrestin1 in vivo. Consistent with the in vitro studies, CORET was found to exacerbate the post-MI hyperaldosteronism, and, consequently, cardiac function of the post-MI animals in vivo. Finally, our data suggest that increasing the size of position 5 of the AngII peptide sequence results in directly proportional increases in AT1R-dependent β-arrestin activation. These findings provide important insights for AT1R pharmacology and future AngII-targeted drug development.
Collapse
Affiliation(s)
- Thairy Reyes Valero
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| | | | - Malika Jafferjee
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation-Scientific Institute of Telese Terme Telese Terme Italy
| | - Vassiliki Magafa
- Department of Pharmacy Laboratory of Pharmacognosy & Chemistry of Natural Products University of Patras Patras Greece
| | - Paul Cordopatis
- Department of Pharmacy Laboratory of Pharmacognosy & Chemistry of Natural Products University of Patras Patras Greece
| | - Patricia McDonald
- Translational Research Institute Scripps Florida Jupiter Florida 33458
| | - Walter J Koch
- Center for Translational Medicine Temple University Philadelphia Pennsylvania 19140
| | - Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences Laboratory for the Study of Neurohormonal Control of the Circulation Nova Southeastern University College of Pharmacy Fort Lauderdale Florida 33328
| |
Collapse
|
41
|
Hsiao FC, Tung YC, Chou SH, Wu LS, Lin CP, Wang CL, Lin YS, Chang CJ, Chu PH. Fixed-Dose Combinations of Renin-Angiotensin System Inhibitors and Calcium Channel Blockers in the Treatment of Hypertension: A Comparison of Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors. Medicine (Baltimore) 2015; 94:e2355. [PMID: 26705234 PMCID: PMC4698000 DOI: 10.1097/md.0000000000002355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fixed-dose combinations (FDCs) of different regimens are recommended in guidelines for the treatment of hypertension. However, clinical studies comparing FDCs of angiotensin receptor blocker (ARB)/calcium channel blocker (CCB) and angiotensin-converting enzyme inhibitor (ACE inhibitor)/CCB in hypertensive patients are lacking.Using a propensity score matching of 4:1 ratio, this retrospective claims database study compared 2 FDC regimens, ARB/CCB and ACE inhibitor/CCB, in treating hypertensive patients with no known atherosclerotic cardiovascular disease. All patients were followed for at least 3 years or until the development of major adverse cardiovascular events (MACEs) during the study period. In addition, the effect of medication adherence on clinical outcomes was evaluated in subgroup analysis based on different portions of days covered.There was no significant difference in MACE-free survival (hazard ratio [HR]: 1.21; 95% confidence interval [CI]: 0.98-1.50; P = 0.08) and survival free from hospitalization for heart failure (HR: 1.15; 95% CI: 082-1.61; P = 0.431), new diagnosis of chronic kidney disease (HR: 0.98; 95% CI: 071-1.36; P = 0.906), and initiation of dialysis (HR: 0.99; 95% CI: 050-1.92; P = 0.965) between the 2 study groups. The results remained the same within each subgroup of patients with different adherence statuses.ARBs in FDC regimens with CCBs in the present study were shown to be as effective as ACE inhibitors at reducing the risks of MACEs, hospitalization for heart failure, new diagnosis of chronic kidney disease, and new initiation of dialysis in hypertensive patients, regardless of the medication adherence status.
Collapse
Affiliation(s)
- Fu-Chih Hsiao
- From the Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine (F-CH, Y-CT, S-HC, L-SW, C-PL, C-LW, Y-SL, P-HC); Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University (C-J C); Healthcare Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine (Y-SL, P-HC); and Heart Failure Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan (P-HC)
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
GPCR signaling and cardiac function. Eur J Pharmacol 2015; 763:143-8. [PMID: 25981298 DOI: 10.1016/j.ejphar.2015.05.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/30/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
G protein-coupled receptors (GPCRs), such as β-adrenergic and angiotensin II receptors, located in the membranes of all three major cardiac cell types, i.e. myocytes, fibroblasts and endothelial cells, play crucial roles in regulating cardiac function and morphology. Their importance in cardiac physiology and disease is reflected by the fact that, collectively, they represent the direct targets of over a third of the currently approved cardiovascular drugs used in clinical practice. Over the past few decades, advances in elucidation of their structure, function and the signaling pathways they elicit, specifically in the heart, have led to identification of an increasing number of new molecular targets for heart disease therapy. Here, we review these signaling modalities employed by GPCRs known to be expressed in the cardiac myocyte membranes and to directly modulate cardiac contractility. We also highlight drugs and drug classes that directly target these GPCRs to modulate cardiac function, as well as molecules involved in cardiac GPCR signaling that have the potential of becoming novel drug targets for modulation of cardiac function in the future.
Collapse
|