1
|
Li B, Liu C, Bai J, Huang Y, Su R, Wei Y, Ma B. Strategy to mitigate substrate inhibition in wastewater treatment systems. Nat Commun 2024; 15:7920. [PMID: 39256375 PMCID: PMC11387818 DOI: 10.1038/s41467-024-52364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Global urbanization requires more stable and sustainable wastewater treatment to reduce the burden on the water environment. To address the problem of substrate inhibition of microorganisms during wastewater treatment, which leads to unstable wastewater discharge, this study proposes an approach to enhance the tolerance of bacterial community by artificially setting up a non-lethal high substrate environment. And the feasibility of this approach was explored by taking the inhibition of anammox process by nitrite as an example. It was shown that the non-lethal high substrate environment could enhance the nitrite tolerance of anammox bacterial community, as the specific anammox activity increasing up to 24.71 times at high nitrite concentrations. Moreover, the system composed of anammox bacterial community with high nitrite tolerance also showed greater resistance (two-fold) in response to nitrite shock. The antifragility of the system was enhanced without affecting the operation of the main reactor, and the non-lethal high nitrite environment changed the dominant anammox genera to Candidatus Jettenia. This approach to enhance tolerance of bacterial community in a non-lethal high substrate environment not only allows the anammox system to operate stably, but also promises to be a potential strategy for achieving stable biological wastewater treatment processes to comply with standards.
Collapse
Affiliation(s)
- Beiying Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Conghe Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jingjing Bai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yikun Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resources Utilization in the South China Sea, Hainan University, Haikou, 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Qin Y, Wei Q, Chen R, Jiang Z, Qiu Y, Jiang Y, Li L. Roles of red mud-based biochar carriers in the recovery of anammox activity: characteristics and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20488-20498. [PMID: 38376779 DOI: 10.1007/s11356-024-32263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.
Collapse
Affiliation(s)
- Yongli Qin
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Ruihong Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Zhicheng Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yuchen Qiu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongrong Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Li Li
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
3
|
Zhang L, Zhao W, Ji X, Wang J, Wu P, Qian F, Chen C, Shen Y, Liu W. Waste iron scraps promote anammox bacteria to resist inorganic carbon limitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169042. [PMID: 38061648 DOI: 10.1016/j.scitotenv.2023.169042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
The anaerobic ammonium oxidation (anammox) process is adversely affected by the limitation of inorganic carbon (IC). In this research, a new technique was introduced to assist anammox biomass in counteracting the adverse effects of IC limitation by incorporating waste iron scraps (WIS), a cheap and easily accessible byproduct of lathe cutting. Results demonstrated that reducing the influent IC/TN ratio from 0.08-0.09 to 0.04 resulted in a 20 % decrease in the nitrogen removal rate (NRR) for the control reactor, with an average specific anammox activity (SAA) of 0.65 g N/g VSS/day. Nevertheless, the performance of the WIS-assisted anammox reactor remained robust despite the reduction in IC supply. In fact, the NRR and SAA of the WIS-assisted reactor exhibited substantial improvements, reaching approximately 1.86 kg/(m3·day) and 0.98 g N/g VSS/day, respectively. These values surpassed those achieved by the control reactor by approximately 39 % and 51 %, respectively. The microbial analysis confirmed that the WIS addition significantly stimulated the proliferation of anammox bacteria (dominated by Candidatus Kuenenia) under IC limitation. The anammox gene abundances in the WIS-assisted anammox reactor were 3-4 times higher than those in the control reactor. Functional genes prediction based on the KEGG database revealed that the addition of WIS significantly enhanced the relative abundances of genes associated with nitrogen metabolism, IC fixation, and central carbon metabolism. Together, the results suggested that WIS promoted carbon dioxide fixation of anammox species to resist IC limitation. This study provided a promising approach for effectively treating high ammonium-strength wastewater using anammox under IC limitation.
Collapse
Affiliation(s)
- Liangwei Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoliang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Li Q, Lu H, Tian T, Fu Z, Dai Y, Li P, Zhou J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2393-2403. [PMID: 38268063 DOI: 10.1021/acs.est.3c08625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Wang H, Fan Y, Zhou M, Liu J, Li X, Wang Y. Metagenomics insight into the long-term effect of ferrous ions on the mainstream anammox system. ENVIRONMENTAL RESEARCH 2023; 238:117243. [PMID: 37778610 DOI: 10.1016/j.envres.2023.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Anaerobic ammonium oxidation (anammox) bacteria have a high requirement for iron for their growth and metabolism. However, it remains unclear whether iron supplementation can sustain the stability of mainstream anammox systems at varying temperatures. Here, we investigated the long-term effects of Fe2+ on the mainstream anammox systems. Our findings revealed that the nitrogen removal efficiency (NRE) of the anammox system supplemented with 5 mg/L Fe2+ decreased from 76.5 ± 0.76% at 35 °C to 39.0 ± 9.9% at 25 °C. Notably, higher dosages of Fe2+ (15 mg/L and 30 mg/L) inhibited the anammox system, resulting in NREs of 15.9 ± 8.1% and 2.5 ± 1.1% at 25 °C, respectively. The results of microbial communities and function profiles suggested that the high Fe2+ dosage seriously affected the iron assimilation and utilization in the mainstream anammox system. This was evident from the decreased abundance of genes associated with Fe(II) transport and uptake, which in turn hindered the biosynthesis of intracellular iron-cofactors, resulting in decrease in the absolute abundance of Candidatus Brocadia, a key anammox bacterium, as well as a decline in NRE. Furthermore, our results showed that the anammox process was more susceptible to iron supplementation at 25 °C compared to 35 °C, which may be due to the oxidative stress reactions induced by combined lowered temperature and a high Fe2+ dosage. Overall, these findings offer a deeper understanding of the effect of iron in mainstream anammox systems, which can contribute to improved stability maintenance and effectiveness of anammox processes.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yufei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| |
Collapse
|
6
|
Wang J, Wang Q, Tang YJ, Fu HM, Fang F, Guo JS, Yan P, Chen YP. Unraveling the structure and function of bacterioferritin in Candidatus Kuenenia stuttgartiensis: Iron storage sites maintain cellular iron homeostasis. WATER RESEARCH 2023; 238:120016. [PMID: 37146397 DOI: 10.1016/j.watres.2023.120016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu-Jiao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
8
|
Zhang Q, Lin JG, Kong Z, Zhang Y. A critical review of exogenous additives for improving the anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155074. [PMID: 35398420 DOI: 10.1016/j.scitotenv.2022.155074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Anammox achieves chemoautotrophic nitrogen removal under anaerobic and anoxic conditions and is a low-carbon wastewater biological nitrogen removal process with broad application potential. However, the physiological limitations of AnAOB often cause problems in engineering applications, such as a long start-up time, unstable operation, easily inhibited reactions, and difficulty in long-term strain preservation. Exogenous additives have been considered an alternative strategy to address these issues by retaining microbes, shortening the doubling time of AnAOB and improving functional enzyme activity. This paper reviews the role of carriers, biochar, intermediates, metal ions, reaction substrates, redox buffers, cryoprotectants and organics in optimizing anammox. The pathways and mechanisms of exogenous additives, which are explored to solve problems, are systematically summarized and analyzed in this article according to operational performance, functional enzyme activity, and microbial abundance to provide helpful information for the engineering application of anammox.
Collapse
Affiliation(s)
- Qi Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China; Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Wan L, Liu H, Wang X. Anaerobic ammonium oxidation coupled to Fe(III) reduction: Discovery, mechanism and application prospects in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151687. [PMID: 34788664 DOI: 10.1016/j.scitotenv.2021.151687] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Fe(III) reduction coupled with anaerobic ammonium oxidation is known as Feammox. Feammox, which was first discovered in wetland ecosystems, has the potential to be used in wastewater treatment systems due to its ability to remove ammonium. Feammox can produce N2, NO2- or NO3- through the reduction of Fe(III) and oxidation of ammonium, which is a potential process to nitrogen loss from aquatic ecosystems and terrestrial ecosystems. The Acidimicrobiaceae sp. A6 was the first Feammox functional bacteria that was successfully isolated from wetlands. The nitrogen removal effect of Feammox can be influenced by many environmental factors, such as pH, organic matter, and different sources of Fe(III). Feammox has broad application prospects, but more exploration is needed to apply this principle to wastewater treatment. This review introduces the development, mechanism, functional microbes and factors affecting the Feammox process, and discusses its potential applications.
Collapse
Affiliation(s)
- Liuyang Wan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Reservoir Aquatic Environment, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
10
|
Comprehensive analysis of the impacts of iron-based nanoparticles and ions on Anammox process. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Fan L, Li H, Chen Y, Jia F, Liu T, Guo J, Yao H. Evaluation of the joint effects of Cu 2+, Zn 2+ and Mn 2+ on completely autotrophic nitrogen-removal over nitrite (CANON) process. CHEMOSPHERE 2022; 286:131896. [PMID: 34426268 DOI: 10.1016/j.chemosphere.2021.131896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The completely autotrophic nitrogen-removal over nitrite (CANON) process has merits in energy saving and consumption reducing, thus being considered as an attractive alternative over the common denitrification technology. In this study, the effects of three common heavy metals (Cu2+, Zn2+ and Mn2+) in wastewater to the CANON process were evaluated comprehensively. A central composite design with response surface methodology was utilized to investigate the joint effect of these three metal ions on the nitrogen removal performance of CANON process. In accordance with the determined optimal dosage in batch tests, four bioreactors were established with different amounts of heavy metal dosage in long-term operation, which determined the optimal concentrations for Cu2+, Zn2+ and Mn2+ to be 0.25, 0.81 and 1.00 mg/L, respectively. However, the optimal dosing level determined in batch tests showed no promotion during long-term experiment. This indicated that the actual concentration of heavy metals in bioreactors during long-term operation could be higher than expectation, leading to the difference between short-term tests and long-term experiment. The distribution of metal ions revealed that Mn2+ was mainly absorbed in anammox bacteria cells while Cu2+ and Zn2+ were mostly identified inside AOB cells. Moreover, the addition of heavy metals consistently showed positive effects for the relative abundance of AOB, while only a low level of dosage could promote the abundance of anammox bacteria. Furthermore, a mathematical model was established to simulate the CANON system considering the impacts of heavy metals, which was calibrated and validated using independent dataset in this study.
Collapse
Affiliation(s)
- Liru Fan
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Huayu Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Yao Chen
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Tao Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China; Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China; Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, PR China.
| |
Collapse
|
12
|
Differences in the Effects of Calcium and Magnesium Ions on the Anammox Granular Properties to Alleviate Salinity Stress. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent cations were known to alleviate salinity stress on anammox bacteria. Understanding the mechanism of reducing the salinity stress on anammox granules is essential for the application of the anammox process for saline wastewater treatment. In this study, the effect of Ca2+ and Mg2+ augmentation on the recovery of the activity of freshwater anammox granules affected by salinity stress was evaluated. At the condition of a salinity stress of 5 g NaCl/L, the specific anammox activity (SAA) of the granule decreased to 50% of that of the SAA without NaCl treatment. Augmentation of Ca2+ at the optimum concentration of 200 mg/L increased the SAA up to 78% of the original activity, while the augmentation of Mg2+ at the optimum concentration of 70 mg/L increased the SAA up to 71%. EPS production in the granules was increased by the augmentation of divalent cations compared with the granules affected by salinity stress. In the soluble EPS, the ratio of protein to polysaccharides was higher in the granules augmented by Ca2+ than with Mg2+, and the functional groups of the EPS differed from each other. The amount of Na+ sequestered in the soluble EPS was increased by the augmentation of divalent cations, which seems to contribute to the alleviation of salinity stress. Ca. Kuenenia-like anammox bacteria, which were known to be salinity stress-tolerant, were predominant in the granules and there was no significant difference in the microbial community of the granules by the salinity stress treatment. Our results suggest that the alleviation effect of the divalent cations on the salinity stress on the anammox granules might be associated with the increased production of different EPS rather than in changes to the anammox bacteria.
Collapse
|
13
|
Yang Y, Azari M, Herbold CW, Li M, Chen H, Ding X, Denecke M, Gu JD. Activities and metabolic versatility of distinct anammox bacteria in a full-scale wastewater treatment system. WATER RESEARCH 2021; 206:117763. [PMID: 34700143 DOI: 10.1016/j.watres.2021.117763] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 05/05/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a key N2-producing process in the global nitrogen cycle. Major progress in understanding the core mechanism of anammox bacteria has been made, but our knowledge of the survival strategies of anammox bacteria in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Here, by combining metagenomics with in situ metatranscriptomics, complex anammox-driven nitrogen cycles in an anoxic tank and a granular activated carbon (GAC) biofilm module of a full-scale WWTP treating landfill leachate were constructed. Four distinct anammox metagenome-assembled genomes (MAGs), representing a new genus named Ca. Loosdrechtii, a new species in Ca. Kuenenia, a new species in Ca. Brocadia, and a new strain in "Ca. Kuenenia stuttgartiensis", were simultaneously retrieved from the GAC biofilm. Metabolic reconstruction revealed that all anammox organisms highly expressed the core metabolic enzymes and showed a high metabolic versatility. Pathways for dissimilatory nitrate reduction to ammonium (DNRA) coupled to volatile fatty acids (VFAs) oxidation likely assist anammox bacteria to survive unfavorable conditions and facilitate switches between lifestyles in oxygen fluctuating environments. The new Ca. Kuenenia species dominated the anammox community of the GAC biofilm, specifically may be enhanced by the uniquely encoded flexible ammonium and iron acquisition strategies. The new Ca. Brocadia species likely has an extensive niche distribution that is simultaneously established in the anoxic tank and the GAC biofilm, the two distinct niches. The highly diverse and impressive metabolic versatility of anammox bacteria revealed in this study advance our understanding of the survival and application of anammox bacteria in the full-scale wastewater treatment system.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Mohammad Azari
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany; Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany
| | - Craig W Herbold
- Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Xinghua Ding
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, The People's Republic of China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong, The People's Republic of China.
| |
Collapse
|
14
|
Chen H, Zhang B, Yu C, Zhang Z, Yao J, Jin R. The effects of magnetite on anammox performance: Phenomena to mechanisms. BIORESOURCE TECHNOLOGY 2021; 337:125470. [PMID: 34320750 DOI: 10.1016/j.biortech.2021.125470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Low temperature is adverse to anaerobic ammonium oxidation (anammox) reaction while proper Fe addition can enhance anammox performance. Therefore, batch assays were conducted to investigate the potential effects of magnetite (100 μm, 20 μm and 200 nm) on anammox performance which were achieved from the reactor operated at 10-25 °C. After 3 runs, the results indicated that nano-scale magnetite improved the nitrogen elimination significantly. The specific anammox activity (SAA) of the group with nano-magnetite amendments was greater than the other groups after 3 runs (13.5, 12.9, 14.3, 15.4 and 15.7 mgTN/(gVSS·h)), reaching 18.0 mgTN/(gVSS·h). The distribution of magnetite in the granules were then analyzed using X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). The results indicated that nano-magnetite was more feasible to attached to the surface of the granules which might accelerate the release of Fe(II) or Fe(III) to enhance anammox performance.
Collapse
Affiliation(s)
- Hui Chen
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Ben Zhang
- Taizhou Lvshuiqingshan Environmental Technology Co., Ltd, Jiaojiang 318000, China
| | - Changqi Yu
- Environmental Science Research and Design Institute of Taizhou, Jiaojiang 318000, China
| | - Zhicheng Zhang
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China
| | - Jun Yao
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, China.
| | - Rencun Jin
- Department of Environmental Science and Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
15
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
16
|
Burov VE, Li J, Meng J. Nitrogen removal from domestic wastewater in a novel hybrid anoxic-oxic biofilm reactor at different reflux ratios. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:865-874. [PMID: 33155359 DOI: 10.1002/wer.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
A lab-scale hybrid anoxic-oxic biofilm reactor (HAOBR) with one anoxic compartment and two oxic compartments in sequence was constructed to treat domestic wastewater in this study. Performance of the HAOBR was evaluated at 25°C and hydraulic retention time 12 hr with reflux ratio increased from 100% to 300% by stages. The results showed that COD, NH 4 + - N , and TN removal presented an increasing trend with the increase of reflux ratio by stages. At the optimal reflux ratio of 300%, removal of COD, NH 4 + - N , and TN averaged 83.9%, 99.0%, and 80.8%, respectively. Analysis about pollutant concentration in each compartment of the HAOBR revealed that the excellent pollutant removal was mainly achieved by the cooperation of nitrification in 3rd oxic compartment and denitrification in 1st anoxic compartment. Denitrification in the anoxic zone of 2nd oxic compartment would also contribute to the nitrogen removal. The higher nitrogen removal of the HAOBR at the reflux ratio of 300% is attributed to the presence of the anammox in the 1st anoxic compartment, which is mainly due to the lower COD concentration in the compartment at the higher reflux ratio. PRACTITIONER POINTS: A hybrid anoxic-oxic baffled reactor was built to treat domestic wastewater. Effect of reflux ratio and mechanism of nitrogen removal were investigated. Reflux ratio 300% was favorable for COD, NH 4 + and TN removal. The removal of COD, NH 4 + and TN averaged 84.4%, 99.0% and 80.8%, respectively. Cooperation of nitrification, denitrification and anammox dominated the high nitrogen removal at the higher reflux ratio of 300%.
Collapse
Affiliation(s)
- Vladimir E Burov
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Yang Y, Xiao C, Yu Q, Zhao Z, Zhang Y. Using Fe(II)/Fe(III) as catalyst to drive a novel anammox process with no need of anammox bacteria. WATER RESEARCH 2021; 189:116626. [PMID: 33249306 DOI: 10.1016/j.watres.2020.116626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
A novel 'anammox' in the absence of anammox bacteria was confirmed to occur in an anaerobic sludge slurry system, in which Fe(II)/Fe(III) cycle driven by NO2--induced Fe(II) oxidation and subsequent NH4+-induced Fe(III) reduction (Feammox) pushed the nitrogen removal. Results showed that Fe(II) contents significantly (p<0.05) decreased and Fe(III) accordingly increased with NO2- addition, indicating that Fe(II) was anaerobically oxidized to Fe(III). With depletion of NO2-, the Fe(II) content began to increase which was a result of Feammox. Consequently, 96.0% NH4+-N of the NO2--added reactor was removed during 18 days operation, while NH4+-N content remained essentially unchanged in the control in which NO2- was not added. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) analysis indicated that FeOOH was produced from chemical Fe(II) oxidation with NO2-. During the treatment, anammox bacteria was not detected, but the relative abundance of Geobacter of the NO2--added group increased by 13 folds. Isotope experiment in 15NH4+-containing reactors found that much more 30N2 and 29N2 in the 14NO2--added group were produced than those in the control (without 14NO2-), confirming that 14NO2- induced Fe(II) oxidation to participate in Feammox for 15NH4+ removal. Also, NO2- could be produced from partial denitrification of NO3-, meaning that NO3- as a more common species might substitute NO2- to trigger this new anammox process.
Collapse
Affiliation(s)
- Yafei Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Cancan Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
18
|
Qian F, Huang Z, Liu Y, Grace OOW, Wang J, Shi G. Conversion of full nitritation to partial nitritation/anammox in a continuous granular reactor for low-strength ammonium wastewater treatment at 20 °C. Biodegradation 2021; 32:87-98. [PMID: 33449262 DOI: 10.1007/s10532-020-09923-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/14/2020] [Indexed: 01/21/2023]
Abstract
The feasibility of converting full nitritation to partial nitritation/anammox (PN/A) at ambient temperature (20 °C) was investigated in a continuous granular reactor. The process was conducted without anammox bacteria inoculation for the treatment of 70 mg L-1 of low-strength ammonium nitrogen wastewater. Following the stepwise increase of the nitrogen loading rate from 0.84 to 1.30 kg N m-3 d-1 in 320 days of operation, the removal efficiency of total inorganic nitrogen (TIN) exceeded 80% under oxygen-limiting conditions. The mature PN/A granules, which had a compact structure and abundant biomass, exhibited a specific TIN removal rate of 0.11 g N g-1 VSS d-1 and a settling velocity of 70.2 m h-1. This was comparable with that obtained at above 30 °C in previous reports. High-throughput pyrosequencing results revealed that the co-enrichment of aerobic and anaerobic ammonium-oxidizing bacteria identified as genera Nitrosomonas and Candidatus Kuenenia, which prompted a hybrid competition for oxygen and nitrite with nitrite-oxidizing bacteria (NOB). However, the overgrowth of novel NOB Candidatus Nitrotoga adapted to low temperatures and low nitrite concentration could potentially deteriorate the one-stage PN/A process by exhausting residual bulk ammonium under long-term excessive aeration.
Collapse
Affiliation(s)
- Feiyue Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China. .,National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, People's Republic of China.
| | - Ziheng Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Olatidoye Omo Wumi Grace
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China
| | - Jianfang Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China.,National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, People's Republic of China
| | - Guangyu Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, People's Republic of China.,National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou, 215009, People's Republic of China
| |
Collapse
|
19
|
Yang Y, Zhang C, Huang X, Gui X, Luo Y, Li Z. Exogenous Fe 2+ alleviated the toxicity of CuO nanoparticles on Pseudomonas tolaasii Y-11 under different nitrogen sources. PeerJ 2020; 8:e10351. [PMID: 33240659 PMCID: PMC7664463 DOI: 10.7717/peerj.10351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
Extensive use of CuO nanoparticles (CuO-NPs ) inevitably leads to their accumulation in wastewater and toxicity to microorganisms that effectively treat nitrogen pollution. Due to the effects of different mediums, the sources of CuO-NPs-induced toxicity to microorganisms and methods to mitigating the toxicity are still unclear. In this study, CuO-NPs were found to impact the nitrate reduction of Pseudomonas tolaasii Y-11 mainly through the action of NPs themselves while inhibiting the ammonium transformation of strain Y-11 through releasing Cu2+. As the content of CuO-NPs increased from 0 to 20 mg/L, the removal efficiency of NO3− and NH4+ decreased from 42.29% and 29.83% to 2.05% and 2.33%, respectively. Exogenous Fe2+ significantly promoted the aggregation of CuO-NPs, reduced the possibility of contact with bacteria, and slowed down the damage of CuO-NPs to strain Y-11. When 0.01 mol/L Fe2+ was added to 0, 1, 5, 10 and 20 mg/L CuO-NPs treatment, the removal efficiencies of NO3- were 69.77%, 88.93%, 80.51%, 36.17% and 2.47%, respectively; the removal efficiencies of NH4+ were 55.95%, 96.71%, 38.11%, 20.71% and 7.43%, respectively. This study provides a method for mitigating the toxicity of CuO-NPs on functional microorganisms.
Collapse
Affiliation(s)
- Yuran Yang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Can Zhang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xuejiao Huang
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xuwei Gui
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| | - Yifang Luo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Zhuang JL, Zhou YY, Liu YD, Li W. Flocs are the main source of nitrous oxide in a high-rate anammox granular sludge reactor: insights from metagenomics and fed-batch experiments. WATER RESEARCH 2020; 186:116321. [PMID: 32861184 DOI: 10.1016/j.watres.2020.116321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emissions from anammox-based processes are well documented but insight into source of the N2O emission in high-rate anammox granular sludge reactors (AGSR) is limited. In this study, metagenomics and fed-batch experiments were applied to investigate the relative contributions of anammox granules and flocs to N2O production in a high-rate AGSR. Flocs, which constitute only ~10% of total biomass contributed about 60% of the total N2O production. Granules, the main contributor of nitrogen removal (~95%), were responsible for the remaining ~40% of N2O production. This result is inconsistent with reads-based analysis that found the gene encoding clade II type nitrous oxide reductase (nosZII) had similar abundances in both granules and flocs. Another notable trend observed was the relatively higher abundance of the gene for NO-producing nitrite reductase (nir) in comparison to the gene for the nitric oxide reductase gene (nor) in both granules and flocs, indicating nitric oxide (NO) may accumulate in the AGSR. This is significant since NO and N2O pulse assays demonstrated that NO could lead to N2O production from both granules and flocs. However, since anammox bacteria, which were shown to be in higher abundance in granules than in flocs, have the capacity to scavenge NO this provides a mechanism by which its inhibitory effects can be mitigated, limiting N2O release from the granules, consistent with experimental observation. These results demonstrate flocs are the main source of N2O emission in AGSR and provide lab-scale evidence that NO-dependent anammox can mitigate N2O emission.
Collapse
Affiliation(s)
- Jin-Long Zhuang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan-Yuan Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong-di Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
21
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
22
|
Huang YT, Chen SS, Jetten MSM, Lin JG. Nanoarchitectured structure and population dynamics of anaerobic ammonium oxidizing (anammox) bacteria in a wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122714. [PMID: 32413666 DOI: 10.1016/j.jhazmat.2020.122714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Studies on microbial community and population dynamics are essential for the successful development, monitoring and operation of biological wastewater treatment systems. Especially for novel or sustainable systems such as the anaerobic ammonium oxidizing (anammox) process that are not yet well explored. Here we collected granular microbial sludge samples and investigated a community of anammox bacteria over a period of four years, divided into eight stages in a full scale simultaneous partial nitrification, anammox and denitrification (SNAD) process for treating landfill leachate. Specific qPCR primers were designed to target and quantify the two most abundant anammox species, Candidatus Kuenenia stuttgartiensis (KS) and Candidatus Brocadia anammoxidans (BA). The two species were monitored and could explain the dynamic shift of the anammox community corresponding to the operating conditions. Using the newly designed KS-specific primer (KSqF3/KSqR3) and BA-specific primer (BAqF/BAqR), we estimated the amounts of KS and BA to be in the range of 6.2 × 106 to 5.9 × 108 and 1.1 × 105 to 4.1 × 107 copies μg-1 DNA, respectively. KS was found to be the dominant species in all anammox granules studied and played an important role in the formation of granules. The KS/BA ratio was positively correlated to the size of granules in the reactor and ammonia nitrogen removal efficiency of the treatment plant.
Collapse
Affiliation(s)
- Yu-Tzu Huang
- Department of Chemical Engineering and Research Center for Circular Economy, Chung Yuan Christian University, No. 200, Chung-Pei Road, Taoyuan 32023, Taiwan; R&D Center for Membrane Technology and Research Center for Analysis and Identification, Chung Yuan Christian University, No. 200, Chung-Pei Road, Taoyuan 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, No. 200, Chung-Pei Road, Taoyuan 32023, Taiwan.
| | - Shiou-Shiou Chen
- Department of Environmental Engineering, Chung Yuan Christian University, No. 200, Chung-Pei Road, Taoyuan 32023, Taiwan
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegenm the Netherlands
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| |
Collapse
|
23
|
Jo Y, Cho K, Choi H, Lee C. Treatment of low-strength ammonia wastewater by single-stage partial nitritation and anammox using upflow dual-bed gel-carrier reactor (UDGR). BIORESOURCE TECHNOLOGY 2020; 304:123023. [PMID: 32088631 DOI: 10.1016/j.biortech.2020.123023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the single-stage partial nitritation and anammox (S-PNA) treatment of low-strength ammonia wastewater (≤140 mg NH4+-N/L). Upflow dual-bed gel-carrier reactor (UDGR) with polyvinyl alcohol cryogel biocarriers, developed in this study, was employed for the anammox biomass enrichment from conventional activated sludge and subsequent S-PNA experiments. Anammox biomass was successfully enriched from conventional activated sludge. The enriched anammox carriers were inoculated together with gel carriers containing nitrifying sludge into the S-PNA reactors. S-PNA activity developed rapidly, and the nitrogen removal efficiency and rate reached up to 90.1% (with complete ammonia removal) and 0.15 kg N/m3⋅d, respectively, under low nitrogen loading conditions (0.10-0.17 kg N/m3⋅d). The microbial community structure changed significantly while adapting to anammox and S-PNA conditions. Anammox was likely driven solely by a Candidatus Jettenia population accounting for ≤49.4% of bacterial 16S rRNA genes. The results demonstrate that the UDGR-based S-PNA is suitable for treating low-strength wastewater.
Collapse
Affiliation(s)
- Yeadam Jo
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyungmin Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
24
|
Hou Y, Cheng S, Wang M, Zhang C, Liu B. Feasibility of Adjusting the S 2O 32-/NO 3- Ratio to Adapt to Dynamic Influents in Coupled Anammox and Denitrification Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072200. [PMID: 32218305 PMCID: PMC7177345 DOI: 10.3390/ijerph17072200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/27/2023]
Abstract
In this study, anammox, sulfur-based autotrophic denitrification, and heterotrophic denitrification (A/SAD/HD) were coupled in an expanded granular sludge bed (EGSB) reactor to explore the feasibility of enhancing denitrification performance by adjusting the S2O32-/NO3- (S/N) ratio to accommodate dynamic influents. The results indicated that the optimal influent conditions occurred when the conversion efficiency of ammonium (CEA) was 55%, the S/N ratio was 1.24, and the chemical oxygen demand (COD) was 50 mg/L, which resulted in a total nitrogen removal efficiency (NRE) of 95.0% ± 0.5%. The S/N ratio regulation strategy was feasible when the influent COD concentration was less than 100 mg/L and the CEA was between 57% and 63%. Characterization by 16S rRNA sequencing showed that Candidatus Jettenia might have contributed the most to anammox, while Thiobacillus and Denitratisoma were the dominant taxa related to denitrification. The findings of this study provide insights into the effects of CEA and COD on the performance of the A/SAD/HD system and the feasibility of the S/N ratio regulation strategy.
Collapse
Affiliation(s)
| | | | | | | | - Bo Liu
- Correspondence: ; Tel.: +86-13921426821
| |
Collapse
|
25
|
Zhang L, Okabe S. Ecological niche differentiation among anammox bacteria. WATER RESEARCH 2020; 171:115468. [PMID: 31926373 DOI: 10.1016/j.watres.2020.115468] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/03/2019] [Accepted: 01/02/2020] [Indexed: 05/05/2023]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria can directly convert ammonium and nitrite to nitrogen gas anaerobically and were responsible for a substantial part of the fixed nitrogen loss and re-oxidation of nitrite to nitrate in freshwater and marine ecosystems. Although a wide variety of studies have been undertaken to investigate the abundance and biodiversity of anammox bacteria so far, ecological niche differentiation of anammox bacteria is still not fully understood. To assess their growth behavior and consequent population dynamics at a given environment, the Monod model is often used. Here, we summarize the Monod kinetic parameters such as the maximum specific growth rate (μmax) and the half-saturation constant for nitrite (KNO2-) and ammonium (KNH4+) of five known candidatus genera of anammox bacteria. We also discuss potential pivotal environmental factors and metabolic flexibility that influence the community compositions of anammox bacteria. Particularly biodiversity of the genus "Scalindua" might have been largely underestimated. Several anammox bacteria have been successfully enriched from various source of biomass. We reevaluate their enrichment methods and culture medium compositions to gain a clue of niche differentiation of anammox bacteria. Furthermore, we formulate the current issues that must be addressed. Overall this review re-emphasizes the importance of enrichment cultures (preferably pure cultures), physiological characterization and direct microbial competition studies using enrichment cultures in laboratories.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628, Japan.
| |
Collapse
|
26
|
Li W, Zhuang JL, Zhou YY, Meng FG, Kang D, Zheng P, Shapleigh JP, Liu YD. Metagenomics reveals microbial community differences lead to differential nitrate production in anammox reactors with differing nitrogen loading rates. WATER RESEARCH 2020; 169:115279. [PMID: 31734392 DOI: 10.1016/j.watres.2019.115279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 05/12/2023]
Abstract
Nitrate production during anammox can decrease total nitrogen removal efficiency, which will negatively impact its usefulness for the removal of nitrogen from waste streams. However, neither the performance characteristics nor physiological shifts associated with nitrate accumulation in anammox reactors under different nitrogen loading rates (NLRs) is well understood. Consequently, these parameters were studied in a lower NLR anammox reactor, termed R1, producing higher than expected levels of nitrate and compared with a higher NLR reactor, termed R2, showing no excess nitrate production. While both reactors showed high NH4+-N removal efficiencies (>90%), the total nitrogen removal efficiency (<60%) was much lower in R1 due to higher nitrate production. Metagenomic analysis found that the number of reads derived from anammox bacteria were significantly higher in R2. Another notable trend in reads occurrence was the relatively higher levels of reads from genes predicted to be nitrite oxidoreductases (nxr) in R1. Binning yielded 27 high quality draft genomes from the two reactors. Analysis of bin occurrence found that R1 showing both a decrease in anammox bacteria and an unexpected increase in nxr. In-situ assays confirmed that R1 had higher rates of nitrite oxidation to nitrate and suggested that it was not solely due to obligate NOB, but other nxr-containing bacteria are important contributors as well. Our results demonstrate that nitrate accumulation can be a serious operational concern for the application of anammox technology to low-strength wastewater treatment and provide insight into the community changes leading to this outcome.
Collapse
Affiliation(s)
- Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China
| | - Jin-Long Zhuang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan-Yuan Zhou
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Fan-Gang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangdong, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | | | - Yong-di Liu
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
27
|
Li J, Feng L, Biswal BK, Chen GH, Wu D. Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(III) in saline wastewater treatment under low temperature. BIORESOURCE TECHNOLOGY 2020; 295:122292. [PMID: 31655251 DOI: 10.1016/j.biortech.2019.122292] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
This work investigated a new method of using Fe(III) to enhance the reactor performance enriched with marine anammox bacteria (MAB). The experiments were conducted in a sequencing batch reactor at low temperature (15 °C), high salinity (35 g/L) and varying Fe(III) concentrations (0-250 mg/l). The results of this study showed that at low Fe(III) (6 mg Fe/L), the rate of ammonium removal, nitrite removal and specific anammox activity remarkably increased to 0.42 kg/(m3·d), 0.53 kg/(m3·d), 0.56 kg/(kg·d), respectively. However, Fe(III) at above 120 mg Fe/L, the reaction time was significantly shortened from 5 to 2 h. MAB-based nitrite removal could be predicated based on the change of pH (ΔpH) and oxidation-reduction potential (ΔORP). Kinetics analysis demonstrated, the "Remodified Logistic Model" could simulate the Fe(III) enhanced anammox process. Overall, this research shed the light of designing a new high-rate anaerobic nitrogen removal technology for carbon insufficient, nitrogen-laden saline wastewater.
Collapse
Affiliation(s)
- Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Li Feng
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
28
|
He S, Yang W, Li W, Zhang Y, Qin M, Mao Z. Impacts of salt shocking and the selection of a suitable reversal agent on anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:602-612. [PMID: 31539968 DOI: 10.1016/j.scitotenv.2019.07.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, an anaerobic ammonium oxidation (anammox) reactor, which was inhibited by a salinity of 50 g NaCl L-1 during a long-term experiment, was rapidly restarted by decreasing the salinity to 20 g NaCl L-1 and adding biomass. The effects of exposure time and shock concentrations on the anammox reactor indicate that anammox granular sludge has a high tolerance to salinity and strong ability for self-recovery. The nitrogen removal efficiency was higher than 50% after exposure to 50 g NaCl L-1 for 66 h. To shorten the time taken for effluent nitrogen concentrations to attain national standards (GB18918-2002) after the anammox reactor was shocked with NaCl, reactor performance (i.e., recovery) after the addition of K+, glycine betaine, Fe2+, and hydroxylamine were compared after the reactor was inhibited by 80 g NaCl L-1. The results indicate that hydroxylamine was the best reversal agent. The recovery time of the anammox reactor could be shortened by 50% following the addition of hydroxylamine. The most favorable NH2OH-N/NO2--N concentration ratio for improving nitrogen removal of anammox was 1:11. The abundances of Planctomycetes and its genera Candidatus Kuenenia and Brocadiaceae_g_unclassified increased after repeated salinity shock-recovery phases, indicating that Candidatus Kuenenia and Brocadiaceae_g_unclassified are able to adapt to NaCl shocking and recovery.
Collapse
Affiliation(s)
- Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China.
| | - Wan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Wenji Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiangan Rd, Xiamen 361102, Fujian, PR China
| | - Meng Qin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Zhen Mao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| |
Collapse
|
29
|
Arora AS, Nawaz A, Yun CM, Cho H, Lee M. Ecofriendly Anaerobic Ammonium Oxidation System: Optimum Operation and Inhibition Control Strategies for Enhanced Nitrogen Removal. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amarpreet Singh Arora
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chao Mun Yun
- Sherpa Space Inc., Daejeon 34051, Republic of Korea
| | - Hwanchul Cho
- Doosan Heavy Industries & Construction, Yongin 16858, Republic of Korea
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
30
|
Yan Y, Wang Y, Wang W, Zhou S, Wang J, Guo J. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition. WATER RESEARCH 2019; 153:284-294. [PMID: 30735958 DOI: 10.1016/j.watres.2019.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
As obligate anaerobes, anammox bacteria are sensitive to oxygen, which might hinder the maximization of anammox activity. However, there are very few effective strategies to rapidly recover anammox activity after its deterioration under exposure of oxygen. In this study, the activity recovery of anammox bacteria encountering dissolved oxygen (DO) exposure (0.2 and 2.0 mg L-1) were compared by three strategies in short-term experiments, nZVI, Fe(II) dosing, and N2 purging. nZVI is more effective in recovering anammox activity with a high DO exposure (2 mg L-1), compared to a low DO exposure (0.2 mg L-1). After inhibiting by 2.0 mg L-1 DO, anammox activity recovery (normalized to the control) was ranked in the order of nZVI (5 mg L-1) addition (63 ± 8.2%) > Fe(II) (5 mg L-1) addition (41 ± 8.0%) >N2 purging (39 ± 4.0%). In contrast to Fe(II) ion additions, the shell structure of nZVI combined with the buffering effect of biomass-extracellular polysaccharide (EPS) prevented the sharp pH variation and excessive dissolved Fe(II)/Fe(III) in solution. Under such circumstances, nZVI addition (5 and 25 mg L-1) increased the intracellular reactive oxygen species (ROS) to a moderate level (<200%), which might be responsible for the better activity recovery of anammox than that of Fe(II) addition and N2 purging. Specifically, 5 mg L-1 nZVI dosage moderately enhanced the intracellular O2- production (∼150% of the control) after scavenging 2.0 mg L-1 DO, and the anammox activity recovered better than that of both 5 and 25 mg L-1 Fe(II) ions additions. However, high dosage nZVI (75 mg L-1) inhibited anammox activity in spite of low or high DO exposure. Our findings elucidate that appropriate amount of nZVI (short-term dosing) can rapidly recover anammox activity when anammox bacteria encountering oxygen exposure accidentally and could be useful in facilitating the robust operation of anammox-based processes.
Collapse
Affiliation(s)
- Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Shuai Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
31
|
Zhang L, Loh KC, Zhang J. Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Zhang X, Chen Z, Zhou Y, Ma Y, Ma C, Li Y, Liang Y, Jia J. Impacts of the heavy metals Cu (II), Zn (II) and Fe (II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (II) makes a difference. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:798-804. [PMID: 30138879 DOI: 10.1016/j.scitotenv.2018.08.206] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 05/16/2023]
Abstract
In this study, the impacts of heavy metals (1 mg L-1) on the nitrogen removal, bioactivity of anaerobic ammonia-oxidizing bacteria (AAOB) and the microbial community of anaerobic ammonium oxidation (Anammox) process were investigated. It was observed that short-term exposure in Cu (II) and Zn (II) both improved AAOB bioactivity, while long-term exposure significantly lowered the nitrogen removal to 0.218 and 0.302 kg m-3 d-1, when treated the wastewater with 100 mg L-1 nitrogen under 14-16 °C. Fe(II) had slight impact on Anammox in short-term experiment but deeply enhanced nitrogen removal during the long-term contact, and finally increased the that to 0.58 kg m-3 d-1. The impact on Anammox was Cu(II) > Zn(II) > Fe(II). Cu(II) and Zn(II) lowered the share of Candidatus Kuenenia to 3.32% and 3.80%, while Fe(II) improved that to 11.30% from 7.99%. Extracellular polymeric substance in biofilm had prominent iron adsorption capacity, which was the key factor that help AAOB resist Fe(II).
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yue Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuhai Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510000, China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
33
|
Salinity-driven heterogeneity toward anammox distribution and growth kinetics. Appl Microbiol Biotechnol 2019; 103:1953-1960. [DOI: 10.1007/s00253-018-9521-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
34
|
Ding C, Enyi FO, Adrian L. Anaerobic Ammonium Oxidation (Anammox) with Planktonic Cells in a Redox-Stable Semicontinuous Stirred-Tank Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5671-5681. [PMID: 29693390 DOI: 10.1021/acs.est.7b05979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria are routinely cultivated in mixed culture in biomass-retaining bioreactors or as planktonic cells in membrane bioreactors. Here, we demonstrate that anammox bacteria can also be cultivated as planktonic cells in a semicontinuous stirred-tank reactor (semi-CSTR) with a specific growth rate μ of 0.33 d-1 at 30 °C. Redox potential inside the reactor stabilized at around 10 mV (±15 mV; vs standard hydrogen electrode) without gas purging. Reactor headspace pressure was used as a sensitive and real-time indicator for nitrogen evolution and anammox activity. The reactor was dominated by an organism closely related to " Candidatus Kuenenia stuttgartiensis" (∼87% abundance) as shown by Illumina amplicon sequencing and fluorescence in situ hybridization. Epifluorescence microscopy demonstrated that all cells were in their planktonic form. Mass balance analysis revealed a nitrite/ammonium ratio of 1.270, a nitrate/ammonium ratio of 0.238, and a biomass yield of 1.97 g volatile suspended solids per mole of consumed ammonium. Batch experiments with the reactor effluent showed that anammox activities were sensitive to sulfide (IC50 = 5 μM) and chloramphenicol (IC50 = 19 mg L-1), much lower than reported for granular anammox biomass. This study shows that semi-CSTR is a powerful tool to study anammox bacteria.
Collapse
Affiliation(s)
- Chang Ding
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Francis O Enyi
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ , Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
- Chair of Geobiotechnology, Technische Universität Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
35
|
Abstract
Water quality in San Francisco Bay is reportedly adversely affected by nitrogen loading from the wastewater treatment plants (WWTPs) discharging around the periphery of the Bay. Here, we consider a zeolite-anammox system to remove ammonia and nitrate from secondary-treated wastewater at ambient temperatures (12–30 °C). Until now, use of anammox bacteria has been largely limited to treatment of high-ammonia content wastewater at warm temperatures (30–40 °C). Specifically, we investigate upscaling the zeolite-anammox system to nitrogen removal from relatively low-ammonia content (~35 NH3-N mg/L) effluent using gravity-fed 0.7 m wide and 0.17 m deep linear-channel reactors within pilot plants located at either the WWTP or some eight kilometers away. Following establishment, we monitored ammonia and nitrate concentrations along one reactor bi-weekly and only inflow–outflow concentrations at the other for more than a year. We found nearly complete ammonia removal within the first 22 m of reactor consistent with the theoretical 89% nitrogen removal capacity associated with the nitrogen-conversion stoichiometry of anammox bacteria. We also determined degradation parameters of a constant 1.41 mg NH3-N/L per hour in the first 15 m, or 20.7 g NH3-N/m3/day for overall reactor volume. At the higher flowrate of the second reactor, we achieved a removal rate of 42 g NH3-N/m3/day. Overall, the linear-channel reactors operated with minimal maintenance, no additional energy inputs (e.g., for aeration) and consistently achieved NH3-N discharge concentrations ~1 mg/L despite fluctuating temperatures and WWTP effluent concentrations of 20–75 mg NH3-N/L.
Collapse
|
36
|
The Zeolite-Anammox Treatment Process for Nitrogen Removal from Wastewater—A Review. WATER 2017. [DOI: 10.3390/w9110901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Tomaszewski M, Cema G, Ziembińska-Buczyńska A. Influence of temperature and pH on the anammox process: A review and meta-analysis. CHEMOSPHERE 2017; 182:203-214. [PMID: 28499181 DOI: 10.1016/j.chemosphere.2017.05.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The anammox (anaerobic ammonium oxidation) process was considered a very efficient and economic wastewater treatment technology immediately after its discovery in 1995, thus research in this field was intensified. The anammox process is characterised by a high temperature optimum and is very sensitive to both temperature and pH fluctuations. The process can also be inhibited by many factors, including by its substrates, i.e. nitrite and ammonium (or its unionised forms: free ammonia and free nitrous acid). This paper presents a comprehensive study of the most important and recent findings on the influence of two parameters that are crucial in wastewater treatment, i.e. temperature and pH. Because both parameters may influence the anammox process simultaneously, a meta-analysis was conducted of the data from the literature. Although meta-analysis is commonly used in medical research, mathematical analysis of the literature data has become an interesting and important step in the environmental sciences. This paper presents information on the influence of both temperature and pH on process efficiency and microbial composition. Additionally, the responses of different operating systems on both temperature and pH changes are described. Moreover, the role of both adaptation to changed conditions and of pH control as well as indicated areas of process operation are discussed.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland.
| | - Grzegorz Cema
- The Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100, Gliwice, Poland
| | | |
Collapse
|
38
|
Cao Y, van Loosdrecht MCM, Daigger GT. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol 2017; 101:1365-1383. [PMID: 28084538 DOI: 10.1007/s00253-016-8058-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
Abstract
Driven by energy neutral/positive of wastewater treatment plants, significant efforts have been made on the research and development of mainstream partial nitritation and anaerobic ammonium oxidation (anammox) (PN/A) (deammonification) process since the early 2010s. To date, feasibility of mainstream PN/A process has been demonstrated and proven by experimental results at various scales although with the low loading rates and elevated nitrogen concentration in the effluent at low temperatures (15-10 °C). This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application. The paper discusses the following: (i) the current status of research and development of mainstream PN/A process; (ii) the interactions among aerobic ammonium-oxidizing bacteria, aerobic nitrite-oxidizing bacteria, anammox bacteria, and heterotrophic bacteria; (iii) the suppression of aerobic nitrite-oxidizing bacteria; (iv) process and bioreactors; and (v) suggested further studies including efficient and robust carbon concentrating pretreatment, deepening of understanding competition between autotrophic nitrogen-converting organisms, intensification of biofilm anammox activity, reactor design, and final polishing.
Collapse
Affiliation(s)
- Yeshi Cao
- , Blk 6, 41 Tiang Jia Xian, Suzhou, 215000, Jiangsu Province, China.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI, 48109, USA
| |
Collapse
|
39
|
Wang X, Shu D, Yue H. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe (III) supplementation. Appl Microbiol Biotechnol 2016; 100:10147-10163. [DOI: 10.1007/s00253-016-7865-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 08/30/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
40
|
Liu Y, Sun J, Peng L, Wang D, Dai X, Ni BJ. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling. Sci Rep 2016; 6:27576. [PMID: 27273460 PMCID: PMC4895179 DOI: 10.1038/srep27576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 11/10/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria-substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm.
Collapse
Affiliation(s)
- Yiwen Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Lai Peng
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
41
|
Shu D, He Y, Yue H, Yang S. Effects of Fe(ii) on microbial communities, nitrogen transformation pathways and iron cycling in the anammox process: kinetics, quantitative molecular mechanism and metagenomic analysis. RSC Adv 2016. [DOI: 10.1039/c6ra09209h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Appropriate Fe(ii) concentration has been regarded as a significant factor for fast start-up of the anammox (anaerobic ammonium oxidizing) process.
Collapse
Affiliation(s)
- Duntao Shu
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education
- School of Life Science and Technology
- Xi'an Jiaotong University
- China
| | - Yanling He
- School of Human Settlements & Civil Engineering
- Xi'an Jiaotong University
- China
| | - Hong Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas
- College of Agronomy and Yangling Branch of China Wheat Improvement Center
- Northwest A&F University
- Yangling
- China
| | - Shucheng Yang
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- China
| |
Collapse
|
42
|
Zhang ZZ, Zhang QQ, Xu JJ, Shi ZJ, Guo Q, Jiang XY, Wang HZ, Chen GH, Jin RC. Long-term effects of heavy metals and antibiotics on granule-based anammox process: granule property and performance evolution. Appl Microbiol Biotechnol 2015; 100:2417-27. [DOI: 10.1007/s00253-015-7120-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
43
|
Liu Y, Peng L, Guo J, Chen X, Yuan Z, Ni BJ. Evaluating the Role of Microbial Internal Storage Turnover on Nitrous Oxide Accumulation During Denitrification. Sci Rep 2015; 5:15138. [PMID: 26463891 PMCID: PMC4604521 DOI: 10.1038/srep15138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/18/2015] [Indexed: 11/23/2022] Open
Abstract
Biological wastewater treatment processes under a dynamic regime with respect to carbon substrate can result in microbial storage of internal polymers (e.g., polyhydroxybutyrate (PHB)) and their subsequent utilizations. These storage turnovers play important roles in nitrous oxide (N2O) accumulation during heterotrophic denitrification in biological wastewater treatment. In this work, a mathematical model is developed to evaluate the key role of PHB storage turnovers on N2O accumulation during denitrification for the first time, aiming to establish the key relationship between N2O accumulation and PHB storage production. The model is successfully calibrated and validated using N2O data from two independent experimental systems with PHB storage turnovers. The model satisfactorily describes nitrogen reductions, PHB storage/utilization, and N2O accumulation from both systems. The results reveal a linear relationship between N2O accumulation and PHB production, suggesting a substantial effect of PHB storage on N2O accumulation during denitrification. Application of the model to simulate long-term operations of a denitrifying sequencing batch reactor and a denitrifying continuous system indicates the feeding pattern and sludge retention time would alter PHB turnovers and thus affect N2O accumulation. Increasing PHB utilization could substantially raise N2O accumulation due to the relatively low N2O reduction rate when using PHB as carbon source.
Collapse
Affiliation(s)
- Yiwen Liu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Lai Peng
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xueming Chen
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Lotti T, Kleerebezem R, Abelleira-Pereira JM, Abbas B, van Loosdrecht MCM. Faster through training: The anammox case. WATER RESEARCH 2015; 81:261-268. [PMID: 26074189 DOI: 10.1016/j.watres.2015.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria based technologies are widely applied for nitrogen removal from warm (25-40 °C) wastewater with high ammonium concentrations (∼1 gNH4-N L(-1)). Extension of the operational window of this energy and resource efficient process is restricted by the "supposed" low growth rate of the responsible microorganisms. Here we demonstrate that the maximum specific growth rate (μ(max)) of anammox bacteria can be increased to a μ(max) value of 0.33 d(-1) by applying a novel selection strategy based on the maximization of the electron transfer capacity in a membrane bioreactor. This value is four times higher than the highest previously reported value. The microbial community was strongly dominated by anammox bacteria closely related (99%) to Candidatus Brocadia sp.40 throughout the experiment. The results described here demonstrate the remarkable capacity of a phylogenetically stable anammox community to adjust its growth rate in response to a change in the cultivation conditions imposed.
Collapse
Affiliation(s)
- T Lotti
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands.
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - J M Abelleira-Pereira
- Department of Chemical Engineering and Food Technologies, University of Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - B Abbas
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| |
Collapse
|