1
|
Zhu YJ, Li JW, Meng H, He WJ, Yang Y, Wei JH. Effects of ethephon on heartwood formation and related physiological indices of Dalbergia odorifera T. Chen. FRONTIERS IN PLANT SCIENCE 2024; 14:1281877. [PMID: 38333038 PMCID: PMC10850394 DOI: 10.3389/fpls.2023.1281877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024]
Abstract
Introduction Dalbergia odorifera T. Chen, known as fragrant rosewood, is a rare and endangered tree species. Studies have shown that plant growth regulators can effectively promote heartwood formation. This study aimed to investigate the effects of ethephon (ETH) on heartwood formation and the influence of ethephon and hydrogen peroxide (H2O2) on the physiological characteristics in D. odorifera. Methods D. odorifera branches underwent treatment with 2.5% plant growth regulators, including ETH, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), H2O2, and inhibitors such as ascorbic acid (AsA) to inhibit H2O2 synthesis, and (S) -trans 2-amino-4 - (2-aminoethoxy) -3-butene (AVG) to inhibit ethylene synthesis. After a 14-day period, we conducted an analysis to evaluate the impact of these plant growth regulators on elongation distance, vessel occlusion percentage, and trans-nerol content. Additionally, the effects of ETH and H2O2 on endogenous plant hormones, H2O2 content, soluble protein content, and enzyme activity were investigated within 0-48 h of treatment. Results After treatment with ETH for 14 days, the extension distance of the heartwood material was 15 cm, while the trans-nerolol content was 15 times that of the ABA group. ETH and H2O2 promoted endogenous ethylene synthesis; Ethylene content peaked at 6 and 18 h. The peak ethylene content in the ETH group was 68.07%, 12.89%, and 20.87% higher than the initial value of the H2O2 group and ddH2O group, respectively, and 29.64% higher than that in the AVG group. The soluble protein content and activity of related enzymes were significantly increased following ETH treatment. Discussion ETH exhibited the most impact on heartwood formation while not hindering tree growth. This treatment effectively triggered the production of endogenous ethylene in plants and enhanced the activity of essential enzymes involved in heartwood formation. These findings serve as a valuable reference for future investigations into heartwood formation.
Collapse
Affiliation(s)
- Yuan-Jing Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jia-Wen Li
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Hui Meng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wen-Jie He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yun Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
2
|
Wang Y, Xu J, Zhao W, Li J, Chen J. Genome-wide identification, characterization, and genetic diversity of CCR gene family in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2022; 13:1064262. [PMID: 36600926 PMCID: PMC9806228 DOI: 10.3389/fpls.2022.1064262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Lignin is a complex aromatic polymer plays major biological roles in maintaining the structure of plants and in defending them against biotic and abiotic stresses. Cinnamoyl-CoA reductase (CCR) is the first enzyme in the lignin-specific biosynthetic pathway, catalyzing the conversion of hydroxycinnamoyl-CoA into hydroxy cinnamaldehyde. Dalbergia odorifera T. Chen is a rare rosewood species for furniture, crafts and medicine. However, the CCR family genes in D. odorifera have not been identified, and their function in lignin biosynthesis remain uncertain. METHODS AND RESULTS Here, a total of 24 genes, with their complete domains were identified. Detailed sequence characterization and multiple sequence alignment revealed that the DoCCR protein sequences were relatively conserved. They were divided into three subfamilies and were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that seven DoCCRs were grouped together with functionally characterized CCRs of dicotyledons involved in developmental lignification. Synteny analysis showed that segmental and tandem duplications were crucial in the expansion of CCR family in D. odorifera, and purifying selection emerged as the main force driving these genes evolution. Cis-acting elements in the putative promoter regions of DoCCRs were mainly associated with stress, light, hormones, and growth/development. Further, analysis of expression profiles from the RNA-seq data showed distinct expression patterns of DoCCRs among different tissues and organs, as well as in response to stem wounding. Additionally, 74 simple sequence repeats (SSRs) were identified within 19 DoCCRs, located in the intron or untranslated regions (UTRs), and mononucleotide predominated. A pair of primers with high polymorphism and good interspecific generality was successfully developed from these SSRs, and 7 alleles were amplified in 105 wild D. odorifera trees from 17 areas covering its whole native distribution. DISCUSSION Overall, this study provides a basis for further functional dissection of CCR gene families, as well as breeding improvement for wood properties and stress resistance in D. odorifera.
Collapse
Affiliation(s)
- Yue Wang
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jieru Xu
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Wenxiu Zhao
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jia Li
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Hainan Yazhou Bay Seed Laboratory, School of Forestry, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Research Institute of Forestry, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| |
Collapse
|
3
|
Li X, Yang S, Liu X, Xia H, Chen Q, Liu Y, Hong Z, Wang J. Iso-Seq and RNA-Seq analyses uncover the molecular response of Dalbergia odorifera T. Chen to low temperature. Gene X 2022; 847:146844. [PMID: 36041593 DOI: 10.1016/j.gene.2022.146844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
In previous studies, we found young plants propagated from acclimated D. odorifera T. Chen trees displayed increased cold tolerance. To understand the molecular and physiological mechanisms underlying this phenomenon, we prepared acclimated and non-acclimated young D. odorifera T. Chen trees for physiological, RNA-Seq, and Iso-Seq analyses. First, both the acclimated and non-acclimated young trees were grown in 10 ℃ condition, then treated at -3 ℃ for one day, and finally recovered at 10 ℃. The measurement of physiological parameters, including superoxide dismutase, peroxidase, malondialdehyde, thiobarbituric acid, and soluble sugar, showed that the physiological change of acclimated plants is smoother than non-acclimated plants. The RNA-Seq analyses pointed out that cold acclimation already fixed the different gene expression patterns of D. odorifera T. Chen trees. The hormone-related, secondary metabolic, and signal transduction related biological genes tend to show different expressions between the acclimated and non-acclimated D. odorifera T. Chen trees. Moreover, the change of gene expression for some biological processes, such as alpha-Linolenic acid metabolism and its response to hydrogen peroxide, seems to occur earlier in non-acclimated than acclimated plants. The ISO-Seq analyses pointed out that alternative splicing (AS) of some genes was also found, and these AS events were predicted to play important roles in regulating different expression patterns between non-acclimated and acclimated plants. Therefore, according to the performance of this study, we are able to provide some novel understanding of cold tolerance enhanced by cold acclimation in perennial trees.
Collapse
Affiliation(s)
- Xiaowen Li
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Sheng Yang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Xing Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Haitao Xia
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Qiuxia Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Yu Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jinwang Wang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China.
| |
Collapse
|
4
|
Xiang LS, Miao LF, Yang F. Drought and Nitrogen Application Modulate the Morphological and Physiological Responses of Dalbergia odorifera to Different Niche Neighbors. FRONTIERS IN PLANT SCIENCE 2021; 12:664122. [PMID: 34276727 PMCID: PMC8283204 DOI: 10.3389/fpls.2021.664122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Mixed stands can be more productive if growth facilitation via niche segregation occurs. Dalbergia odorifera T. Chen, a tropical tree species endemic to Hainan Island with great economic values, belongs to the family Leguminosae. However, selecting mixed species with suitable ecological niches to efficiently construct mixed forests of D. odorifera in the context of abiotic stress [drought, nitrogen (N) deposition] remained obscure. In the present study, the target plant D. odorifera was planted with the same species D. odorifera, heterogeneous but the same family Delonix regia and non-Leguminous Family Swietenia mahagoni in the root interaction and isolated models under two watering regimes [100% and 30% field capacity (FC)] and two N applications (application, non-application), respectively. Principle component analysis based on the performances of growth, phenotype, and physiology was performed to identify the main factors affected by the treatments and the most discriminatory effects of water, N level, and species interaction models. Both comprehensive evaluation values and comprehensive index values were calculated to evaluate the influences of different niche neighbors on D. odorifera. Results showed that D. odorifera was benefited from S. mahagoni but inhibited from D. odorifera in all treatments under root system interaction. Drought stress aggravated the inhibitory effects on D. odorifera from D. odorifera. N application stimulated the promoted effects on D. odorifera from S. mahagoni but enhanced competition intensity of D. odorifera from D. regia under the 100% FC condition. N application alleviated the inhibitory effect of drought stress on D. odorifera from D. odorifera and S. mahagoni. Furthermore, the responses of D. odorifera to different niche neighbors were dominated by belowground interaction rather than the negligible aboveground one. Therefore, the feasibility of niche segregation as the criterion for selecting neighbors to construct D. odorifera mixed stands was confirmed. In addition, water level and N application could alter responses of D. odorifera to different niche neighbors under the root system interaction. Appropriate N application could alleviate the inhibitory effect of drought stress on D. odorifera in its mixed forests. A mixture with S. mahagoni under appropriate N application could be the optimal planting model.
Collapse
Affiliation(s)
- Li-Shan Xiang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- School of Forestry, Hainan University, Haikou, China
| | - Ling-Feng Miao
- School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, China
| | - Fan Yang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, China
- Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou, China
| |
Collapse
|
5
|
Sun K, Su C, Li W, Gong Z, Sha C, Liu R. Quality markers based on phytochemical analysis and anti-inflammatory screening: An integrated strategy for the quality control of Dalbergia odorifera by UHPLC-Q-Orbitrap HRMS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 84:153511. [PMID: 33652358 DOI: 10.1016/j.phymed.2021.153511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Quality control, key for the clinical application of traditional Chinese medicines (TCMs), should be connected to the authentication and efficacy of TCMs. The heartwood of Dalbergia odorifera has been widely used to treat inflammation-related diseases. However, in the Chinese pharmacopeia, only the total volatile oil, which does not sufficiently reflect the clinical efficacy, is used as a quality control indicator. PURPOSE Establishing a "phytochemical-specificity-effectiveness-Q-marker" analytical strategy to improve the quality control of D. odorifera. METHODS Combined with biosynthetic pathway analysis, phytochemical compositions identified by UHPLC-Q-Orbitrap HRMS were used to build substantial phytochemical groups and further discover specific Q-markers. Then, lipopolysaccharide-stimulated RAW 264.7 cells were used to screen effective anti-inflammatory ingredients. Finally, a UHPLC-HRMS method was developed and validated to quantify the selected Q-markers in D. odorifera samples. RESULTS Along the constructed biosynthetic pathways, 93 phytochemical components were identified in D. odorifera, including 7 chalcones, 13 flavanones, 21 isoflavones, 21 isoflavanones, 3 flavonols, 19 neoflavones, etc. Among them, 31 compounds representing these 6 categories were further evaluated for their anti-inflammatory activities. It revealed that the extract of D. odorifera and nine flavonoids in the noncytotoxic range could alleviated lipopolysaccharide-stimulated inflammation in RAW 264.7 cells by decreasing the production of proinflammatory mediators such as nitric oxide and interleukin-6. Notably, neoflavones, as species-specific components, exhibited superior anti-inflammatory activities among the representative compounds. Finally, 12 Q-markers (butin, liquiritigenin, eriodictyol, melanettin, naringenin, butein, genistein, 4'-hydroxy-4-methoxydalbergione, isoliquiritigenin, 2,4-dihydroxy-5-methoxybenzophenone, medicarpin, and pinocembrin), which reflect specificity and effectiveness, were successfully quantified in 10 batches of samples from different origins. The origins and consistency of D. odorifera could be efficiently discriminated by hierarchical cluster analysis (HCA). CONCLUSION The analysis strategy that combines phytochemical analysis with anti-inflammatory screening clarified the therapeutic material basis and discovered Q-markers, which possibly offers a more comprehensive quality assessment of D. odorifera.
Collapse
Affiliation(s)
- Kang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chaonan Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenjing Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhao Gong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chunjie Sha
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Hong Z, Li J, Liu X, Lian J, Zhang N, Yang Z, Niu Y, Cui Z, Xu D. The chromosome-level draft genome of Dalbergia odorifera. Gigascience 2020; 9:giaa084. [PMID: 32808664 PMCID: PMC7433187 DOI: 10.1093/gigascience/giaa084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/09/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dalbergia odorifera T. Chen (Fabaceae) is an International Union for Conservation of Nature red-listed tree. This tree is of high medicinal and commercial value owing to its officinal, insect-proof, durable heartwood. However, there is a lack of genome reference, which has hindered development of studies on the heartwood formation. FINDINGS We presented the first chromosome-scale genome assembly of D. odorifera obtained on the basis of Illumina paired-end sequencing, Pacific Biosciences single-molecule real-time sequencing, 10x Genomics linked reads, and Hi-C technology. We assembled 97.68% of the 653.45 Mb D. odorifera genome with scaffold N50 and contig sizes of 56.16 and 5.92 Mb, respectively. Ten super-scaffolds corresponding to the 10 chromosomes were assembled, with the longest scaffold reaching 79.61 Mb. Repetitive elements account for 54.17% of the genome, and 30,310 protein-coding genes were predicted from the genome, of which ∼92.6% were functionally annotated. The phylogenetic tree showed that D. odorifera diverged from the ancestor of Arabidopsis thaliana and Populus trichocarpa and then separated from Glycine max and Cajanus cajan. CONCLUSIONS We sequence and reveal the first chromosome-level de novo genome of D. odorifera. These studies provide valuable genomic resources for the research of heartwood formation in D. odorifera and other timber trees. The high-quality assembled genome can also be used as reference for comparative genomics analysis and future population genetic studies of D. odorifera.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jiang Li
- Biozeron Shenzhen Inc., Shenzhen 518000, China
| | - Xiaojin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jinmin Lian
- Biozeron Shenzhen Inc., Shenzhen 518000, China
| | - Ningnan Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zengjiang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | | | - Zhiyi Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Daping Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
7
|
Fatty Acids, Tocopherols, and Phytosterol Composition of Seed Oil and Phenolic Compounds and Antioxidant Activity of Fresh Seeds from Three Dalbergia Species Grown in Vietnam. Processes (Basel) 2020. [DOI: 10.3390/pr8050542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This research aimed to investigate the chemical composition of seed oils extracted from three Vietnamese Dalbergia species (D. tonkinensis, D. mammosa, and D. entadoides). The fatty acid profiles and contents of tocopherols and sterols of the seed oils, and total phenolic compounds extracted from the fresh seeds were characterized using different methods. Among the examined samples, D. tonkinensis seed oils showed high contents of linoleic acid (64.7%), whereas in D. mammosa, oleic acid (51.2%) was predominant. In addition, α- and γ-tocopherol and β-sitosterol were major ingredients in the seed oils, whereas ferulic acid and rosmarinic acid are usually predominant in the seeds of these species. Regarding sterol composition, the D. entadoides seed oil figured for remarkably high content of Δ5,23-stigmastadienol (1735 mg/kg) and Δ7-stigmastenol (1298 mg/kg). In addition, extracts with methanol/water (80:20, v/v) of seeds displayed significant in vitro antioxidant activity which was determined by DPPH free radical scavenging assay.
Collapse
|
8
|
Sun Y, Gao M, Kang S, Yang C, Meng H, Yang Y, Zhao X, Gao Z, Xu Y, Jin Y, Zhao X, Zhang Z, Han J. Molecular Mechanism Underlying Mechanical Wounding-Induced Flavonoid Accumulation in Dalbergia odorifera T. Chen, an Endangered Tree That Produces Chinese Rosewood. Genes (Basel) 2020; 11:genes11050478. [PMID: 32353985 PMCID: PMC7291145 DOI: 10.3390/genes11050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/27/2023] Open
Abstract
Dalbergia odorifera, a critically endangered tree species, produces heartwood containing a vast variety of flavonoids. This heartwood, also known as Chinese rosewood, has high economic and medicinal value, but its formation takes several decades. In this study, we showed that discolored wood induced by pruning displays similar color, structure, and flavonoids content to those of natural heartwood, suggesting that wounding is an efficient method for inducing flavonoid production in D. odorifera. Transcriptome analysis was performed to investigate the mechanism underlying wounding-induced flavonoids production in D. odorifera heartwood. Wounding upregulated the expression of 90 unigenes, which covered 19 gene families of the phenylpropanoid and flavonoid pathways, including PAL, C4H, 4CL, CHS, CHI, 6DCS, F3’5’H, F3H, FMO, GT, PMAT, CHOMT, IFS, HI4’OMT, HID, IOMT, I2’H, IFR, and I3’H. Furthermore, 47 upregulated unigenes were mapped to the biosynthesis pathways for five signal molecules (ET, JA, ABA, ROS, and SA). Exogenous application of these signal molecules resulted in the accumulation of flavonoids in cell suspensions of D. odorifera, supporting their role in wounding-induced flavonoid production. Insights from this study will help develop new methods for rapidly inducing the formation of heartwood with enhanced medicinal value.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Mei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Chengmin Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Hui Meng
- Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (H.M.); (Y.Y.); (X.Z.)
| | - Yun Yang
- Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (H.M.); (Y.Y.); (X.Z.)
| | - Xiangsheng Zhao
- Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (H.M.); (Y.Y.); (X.Z.)
| | - Zhihui Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Yanhong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Yue Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Xiaohong Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
- Hainan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China; (H.M.); (Y.Y.); (X.Z.)
- Correspondence: (Z.Z.); (J.H.); Tel.: +86-10-57833363 (Z.Z.); +86-10-57833198 (J.H.)
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Chinese Peking Union Medical College, Beijing 100193, China; (Y.S.); (M.G.); (C.Y.); (Z.G.); (Y.X.); (Y.J.); (X.Z.)
- Correspondence: (Z.Z.); (J.H.); Tel.: +86-10-57833363 (Z.Z.); +86-10-57833198 (J.H.)
| |
Collapse
|
9
|
Zhao X, Wang C, Meng H, Yu Z, Yang M, Wei J. Dalbergia odorifera: A review of its traditional uses, phytochemistry, pharmacology, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112328. [PMID: 31654799 DOI: 10.1016/j.jep.2019.112328] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia odorifera, a traditional herbal medicine, has long been used in China for dissipating blood stasis, regulating the flow of qi, and relieving pain. AIM OF THIS REVIEW This review aims to provide comprehensive and up-to-date information about the traditional uses, phytochemistry, pharmacology, and quality control of D. odorifera. Additionally, perspectives for possible future investigations on D. odorifera are also discussed. MATERIALS AND METHODS Information on D. odorifera was obtained from a library database and electronic searches (e.g., Elsevier, Springer, ScienceDirect, Wiley, Web of Science, PubMed, Google Scholar, China Knowledge Resource Integrated). RESULTS According to classical Chinese herbal texts and the Chinese Pharmacopoeia, D. odorifera promotes blood circulation, relieves pain, and eliminates blood stasis, and it can be used to treat cardio-cerebrovascular diseases in traditional Chinese medicine prescriptions. The chemical constituents of D. odorifera have been well studied, with approximately 175 metabolites having been identified, including flavonoids, phenols, arylbenzofurans, and quinones. The species also contains well-studied volatile oil. Its flavonoids and volatile oil are generally considered to be essential for its pharmacological activity. Modern pharmacology research has confirmed that isolated components and crude extracts of D. odorifera possess wide-ranging pharmacological effects, including anti-inflammatory, anti-angina, anti-oxidative, and other activities. Additionally, there are few quality control studies on D. odorifera. CONCLUSIONS To date, significant progress has been made in D. odorifera phytochemistry and pharmacology. Thus, modern pharmacological research has provided some evidence for local or traditional uses. D. odorifera also showed therapeutic potential in cardiovascular and coronary heart diseases. However, the present findings are insufficient to explain its mechanisms of action. Additionally, the mechanism of heartwood formation, artificial induction technology for heartwood production, and quality control of D. odorifera require further detailed research.
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Canhong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Hui Meng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Zhangxin Yu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Meihua Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
10
|
Zhao X, Zhang S, Liu D, Yang M, Wei J. Analysis of Flavonoids in Dalbergia odorifera by Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2020; 25:molecules25020389. [PMID: 31963485 PMCID: PMC7024225 DOI: 10.3390/molecules25020389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Dalbergia odorifera, a traditional Chinese medicine, has been used to treat cardio- and cerebrovascular diseases in China for thousands of years. Flavonoids are major active compounds in D. odorifera. In this paper, a rapid and sensitive ultra-high performance liquid chromatography-triple quadrupole mass spectrometry method was developed and validated for simultaneous determination of 17 flavonoids in D. odorifera. Quantification was performed by multiple reaction monitoring using electrospray ionization in negative ion mode. Under the optimum conditions, calibration curves for the 17 analytes displayed good linearity (r2 > 0.9980). The intra- and inter-day precisions (relative standard deviations) were lower than 5.0%. The limit of quantitation ranged from 0.256 to 18.840 ng/mL. The mean recovery range at three spiked concentrations was 94.18-101.97%. The validated approach was successfully applied to 18 samples of D. odorifera. Large variation was observed for the contents of the 17 analytes. Sativanone and 3'-O-methylviolanone were the dominant compounds. The fragmentation behaviors of six flavonoids were investigated using UPLC with quadrupole time-of-flight tandem mass spectrometry. In negative ion electrospray ionization mass spectrometry, all the flavonoids yielded prominent [M - H]- ions. Fragments for losses of CH3, CO, and CO2 were observed in the mass spectra. Formononetin, liquiritigenin, isoliquiritigenin, sativanone, and alpinetin underwent retro-Diels-Alder fragmentations. The proposed method will be helpful for quality control of D. odorifera.
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (X.Z.); (S.Z.); (M.Y.)
| | - Shihui Zhang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (X.Z.); (S.Z.); (M.Y.)
| | - Dan Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Meihua Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (X.Z.); (S.Z.); (M.Y.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; (X.Z.); (S.Z.); (M.Y.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-57833358
| |
Collapse
|
11
|
Hydroxyobtustyrene protects neuronal cells from chemical hypoxia-induced cell death. J Nat Med 2018; 72:915-921. [PMID: 29987461 DOI: 10.1007/s11418-018-1224-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Hydroxyobtustyrene is a derivative of cinnamyl phenol isolated from Dalbergia odorifera T. Chen. The heartwood, known as 'JiangXiang', is a traditional Chinese medicine. Previous studies showed that hydroxyobtustyrene inhibited the biosynthesis of prostaglandins, which are mediators of neuronal cell death in ischemia. However, it currently remains unclear whether hydroxyobtustyrene protects neurons against ischemic stress. In the present study, we investigated the protective effects of hydroxyobtustyrene against sodium cyanide (NaCN)-induced chemical ischemia. Hippocampal neurons were cultured from the cerebral cortices of E18 Wistar rats. The effects of hydroxyobtustyrene on neuronal survival and trophic effects were estimated under lower and higher cell density conditions. After the treatment of 1 mM NaCN with or without hydroxyobtustyrene, an MTT assay, Hoechst staining, and immunocytochemistry for cyclooxygenase (COX)-2 were performed. Hydroxyobtustyrene increased cell viability under lower, but not normal density conditions. Neither the neurite number nor the length was influenced by hydroxyobtustyrene. NaCN significantly decreased viability and increased fragmentation in cell nuclei, and these changes were prevented by hydroxyobtustyrene. Moreover, NaCN increased the number of COX-2-positive neurons, and this was significantly prevented by the co-treatment with hydroxyobtustyrene. Therefore, hydroxyobtustyrene protected cultured hippocampal neurons against NaCN-induced chemical ischemia, which may be mediated by the inhibition of COX-2 production.
Collapse
|
12
|
A Review on the Medicinal Plant Dalbergia odorifera Species: Phytochemistry and Biological Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7142370. [PMID: 29348771 PMCID: PMC5733943 DOI: 10.1155/2017/7142370] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022]
Abstract
The crucial medicinal plant Dalbergia odorifera T. Chen species belongs to genus Dalbergia, with interesting secondary metabolites, consisting of main classes of flavonoid, phenol, and sesquiterpene derivatives, as well as several arylbenzofurans, quinones, and fatty acids. Biological studies were carried out on extracts, fractions, and compounds from this species involved in cytotoxic assays; antibacterial, antioxidative, anti-inflammatory, antithrombotic, antiplatelet, antiosteosarcoma, antiosteoporosis, antiangiogenesis, and prostaglandin biosynthetic enzyme inhibition activities; vasorelaxant activities; alpha-glucosidase inhibitory activities; and many other effects. In terms of the valuable resources for natural new drugs development, D. odorifera species are widely used as medicinal drugs in many countries for treatment of cardiovascular diseases, cancer, diabetes, blood disorders, ischemia, swelling, necrosis, or rheumatic pain. Although natural products from this plant have been increasingly playing an important role in drug discovery programs, there is no supportive evidence to provide a general insight into phytochemical studies on D. odorifera species and biological activities of extracts, fractions, and isolated compounds. To a certain extent, this review deals with an overview of almost naturally occurring compounds from this species, along with extensive coverage of their biological evaluations.
Collapse
|
13
|
Singh DK, Sharma VK, Kumar J, Mishra A, Verma SK, Sieber TN, Kharwar RN. Diversity of endophytic mycobiota of tropical tree Tectona grandis Linn.f.: Spatiotemporal and tissue type effects. Sci Rep 2017; 7:3745. [PMID: 28623306 PMCID: PMC5473821 DOI: 10.1038/s41598-017-03933-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/09/2017] [Indexed: 11/03/2022] Open
Abstract
Fungal endophytes were isolated from leaf, bark and stem of Tectona grandis Linn.f. sampled at four geographical locations in winter, summer and monsoon seasons. The recovered 5089 isolates were assigned to 45 distinct morphotypes based on morphology. The sequences of the internal transcribed spacers (ITS) of the nrDNA of some morphotypes were identical, but morphological differences were strong enough to consider these morphotypes as separate species. Forty-three morphotypes were assigned to ascomycotina and two to basidiomycotina. Ascomycotina was the predominating group with 99.7% of total isolates followed by basidiomycotina with only 0.3% of total isolates. Diaporthe (Phomopsis) species dominated the communities independently on tissue type, location or season. More than 60% of the examined tissue pieces were colonized by members of this species complex. While these endophytes are ubiquitous others were tissue or location specific. Tissue type had the strongest effect on the species evenness of the endophytic assemblage followed by geographical location and season. However, Shannon-Wiener index (H') significantly (p ≤ 0.001) varied with all three factors i.e. season, location and tissue type. Leaves supported the highest diversity across all the seasons and locations. In conclusion, all the three factors together determined the structure of endophytic mycobiota assemblage of T. grandis.
Collapse
Affiliation(s)
- Dheeraj K Singh
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Vijay K Sharma
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Jitendra Kumar
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Ashish Mishra
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Satish K Verma
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Thomas N Sieber
- ETH Zurich, Institute of Integrative Biology, Forest Pathology and Dendrology, 8092, Zurich, Switzerland
| | - Ravindra N Kharwar
- Mycopathology and Microbial Technology Laboratory, Department of Botany, Banaras Hindu University (BHU), Varanasi, 221005, India.
| |
Collapse
|
14
|
Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, Sánchez-Carbente MDR, Sánchez-Reyes A, Dobson ADW, Folch-Mallol JL. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 2017; 12:e0173750. [PMID: 28339473 PMCID: PMC5365110 DOI: 10.1371/journal.pone.0173750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/24/2017] [Indexed: 12/03/2022] Open
Abstract
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.
Collapse
Affiliation(s)
- Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Thomas Sutton
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Edgar Balcázar-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | - Ayixon Sánchez-Reyes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
15
|
Tanvir R, Javeed A, Bajwa AG. Endophyte bioprospecting in South Asian medicinal plants: an attractive resource for biopharmaceuticals. Appl Microbiol Biotechnol 2017; 101:1831-1844. [DOI: 10.1007/s00253-017-8115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/03/2023]
|
16
|
Cui J, Guo T, Chao J, Wang M, Wang J. Potential of the Endophytic Fungus Phialocephala fortinii Rac56 Found in Rhodiola Plants to Produce Salidroside and p-Tyrosol. Molecules 2016; 21:502. [PMID: 27092483 PMCID: PMC6273359 DOI: 10.3390/molecules21040502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 01/09/2023] Open
Abstract
2-(4-Hydroxyphenyl)ehyl-β-D-glucopyranoside (salidroside) and 4-(2-hydroxyethyl)phenol (p-tyrosol) are famous food and medicine additives originally derived from alpine Rhodiola plants. Salidroside or p-tyrosol production by the endophytic fungus Rac56 (Phialocephala fortinii) was confirmed by UPLC/Q-TOF-MS and ¹H-NMR. The fermentation conditions were optimized by orthogonal design using data processing system software. The broth fermentation results showed that salidroside and p-tyrosol extraction yields from Rac56 were stable and reached 1.729 ± 0.06 mg and 1.990 ± 0.05 mg per mL of culture medium, respectively. The optimal conditions for salidroside and p-tyrosol production in fermentation culture of Rac56 were determined to be 25 °C, pH values of 7 and 5, Czapek-Dox culture medium volumes of 150 mL and 50 mL in 250 mL flasks, rotation speeds of 100× g and 200× g, and fermentation durations of 7 and 15 days, respectively. Under these optimal conditions, stable yields of 2.339 ± 0.1093 mg and 2.002 ± 0.0009 mg per mL of culture medium of salidroside and p-tyrosol, respectively, were obtained, indicating that the P. fortinii Rac56 strain is a promising source of these compounds.
Collapse
Affiliation(s)
- Jinlong Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Tingting Guo
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Jianbin Chao
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Mengliang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| | - Junhong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
17
|
Oxalic acid and sclerotial differentiation of Polyporus umbellatus. Sci Rep 2015; 5:10759. [PMID: 26030006 PMCID: PMC5377064 DOI: 10.1038/srep10759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 01/02/2023] Open
Abstract
The present investigation aimed to uncover the effects of exogenous oxalic acid during the sclerotial formation of Polyporus umbellatus, with an emphasis on determining the content of the endogenic oxalic acid in the fungus. To this end, the oxalic acid content of the vegetative mycelia, sclerotia, culture mediums and sclerotial exudate were measured using High Performance Liquid Chromatography (HPLC). Furthermore, the lipid peroxidation was estimated by detecting thiobarbituric bituric acid reactive substances (TBARS). The results showed that the exogenous oxalic acid caused a delay in sclerotial differentiation (of up to 9 or more days), suppressed the sclerotial biomass and decreased the lipid peroxidation significantly in a concentration-dependent manner. Oxalic acid was found at very low levels in the mycelia and the maltose medium, whereas it was found at high levels in the mycelia and sucrose medium. After sclerotial differentiation, oxalic acid accumulated at high levels in both the sclerotia and the sclerotial exudate. Oxalic acid was therefore found to inhibit P. umbellatus sclerotial formation.
Collapse
|