1
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
2
|
Yurdabak Karaca G, Bulbul YE, Oksuz AU. Gold-hyaluranic acid micromotors and cold atmospheric plasma for enhanced drug delivery and therapeutic applications. Int J Biol Macromol 2023; 253:127075. [PMID: 37769768 DOI: 10.1016/j.ijbiomac.2023.127075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Micro/nanomotors have emerged as promising platforms for various applications, including drug delivery and controlled release. These tiny machines, built from nanoscale materials such as carbon nanotubes, graphene, metal nanoparticles, or nanowires, can convert different forms of energy into mechanical motion. In the field of medicine, nanomotors offer potential for targeted drug delivery and diagnostic applications, revolutionizing areas such as cancer treatment and lab-on-a-chip devices. One prominent material used in drug delivery is hyaluronic acid (HA), known for its biocompatibility and non-immunogenicity. HA-based drug delivery systems have shown promise in improving the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX). Additionally, micro/nanomotors controlled by external stimuli enable precise drug delivery to specific areas of the body. Cold atmospheric plasma (CAP) has also emerged as a promising technology for drug delivery, utilizing low-temperature plasma to enhance drug release and bioavailability. CAP offers advantages such as localized delivery and compatibility with various drug types. However, further research is needed to optimize CAP drug delivery systems and understand their mechanisms. In this study, gold-hyaluronic acid (Au-HA) micromotors were synthesized for the first time, utilizing acoustic force for self-motion. The release profile of DOX, a widely used anticancer drug, was investigated in pH-dependent conditions, and the effect of CAP on drug release from the micromotors was examined. Following exposure to the CAP jet for 1 min, the micromotors released approximately 29 μg mL-1 of DOX into the PBS (pH 5), which is significantly higher than the 17 μg mL-1 released without CAP. The research aims to minimize side effects, increase drug loading and release efficiency, and highlight the potential of HA-based micromotors in cancer therapy. This study contributes to the advancement of micro-motor technology and provides insights into the utilization of pH and cold plasma technology for enhancing drug delivery systems.
Collapse
Affiliation(s)
- Gozde Yurdabak Karaca
- Department of Medical Services and Techniques, Isparta Health Services Vocational School, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Y Emre Bulbul
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Aysegul Uygun Oksuz
- Department of Chemistry, Faculty of Arts and Science, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
3
|
Hu Y, Fan Y, Chen B, Li H, Zhang G, Su J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. J Drug Target 2023:1-17. [PMID: 37469142 DOI: 10.1080/1061186x.2023.2236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumours, with increasing mortality around the world, have bothered human beings for decades. Enhancing the targeting of antitumor drugs to tumour tissues is the key to enhancing their antitumor effects. The tumour microenvironment is characterised by a relatively low pH, overexpression of certain enzymes, redox imbalance, etc. Therefore, smart drug delivery systems that respond to the tumour microenvironment have been proposed to selectively release antitumor drugs. Among them, peptide hydrogels as a local drug delivery system have received much attention due to advantages such as high biocompatibility, degradability and high water-absorbing capacity. The combination of peptide segments with different physiological functions allows for tumour targeting, self-aggregation, responsiveness, etc. Morphological and microstructural changes in peptide hydrogels can occur when utilising the inherent pathological microenvironment of tumours to trigger drug release, which endows such systems with limited adverse effects and improved therapeutic efficiency. Herein, this review outlined the driving forces, impact factors, and sequence design in peptide hydrogels. We also discussed the triggers to induce the transformation of peptide-based hydrogels in the tumour microenvironment and described the advancements of peptide-based hydrogels for local drug delivery in tumour treatment. Finally, we gave a brief perspective on the prospects and challenges in this field.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing, P.R. China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, P.R. China
| | - Gang Zhang
- Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, P.R. China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| |
Collapse
|
4
|
Ding N, He K, Tian H, Li L, Li Q, Lu S, Ding K, Liu J, Nice EC, Zhang W, Huang C, Tang Y, Shen Z. Carrier-free delivery of thymopentin-regulated injectable nanogels via an enhanced cancer immunity cycle against melanoma metastasis. Mater Today Bio 2023; 20:100645. [PMID: 37206879 PMCID: PMC10189275 DOI: 10.1016/j.mtbio.2023.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Thymopentin (TP5), a clinically used immunomodulatory pentapeptide, can efficiently promote thymocyte differentiation and influence mature T-cell function, thus playing an essential role in the cancer immunotherapy. However, the excellent water solubility and high IC50 of TP5 result in an uncontrolled release behavior, requiring a high loading efficiency to achieve high dosage. Here in, we reported that TP5, combined with specific chemotherapeutic agents, can co-assemble into nanogels due to multiple hydrogen bonding sites. The co-assembly of TP5 with chemotherapeutic agent doxorubicin (DOX) into a carrier-free and injectable chemo-immunotherapy nanogel can enhance the cancer immunity cycle against melanoma metastasis. In this study, the designed nanogel guarantees high drug loading of TP5 and DOX and ensures a site-specific and controlled release of TP5 and DOX with minimal side effects, thus addressing the bottlenecks encountered by current chemo-immunotherapy. Moreover, the released DOX can effectively induce tumor cell apoptosis and immunogenic cell death (ICD) to activate immune initiation. Meanwhile, TP5 can significantly promote the proliferation and differentiation of dendritic cells (DCs) and T lymphocytes to amplify the cancer immunity cycle. As a result, this nanogel shows excellent immunotherapeutic efficacy against melanoma metastasis, as well as an effective strategy for TP5 and DOX application.
Collapse
Affiliation(s)
- Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Hailong Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Qiong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuaijun Lu
- Ningbo Hospital of Ningbo University 247 Renmin Road, Jiangbei District Ningbo, Zhejiang, 315020, China
| | - Ke Ding
- Clinical Genetics Laboratory, Affiliated Hospital, Chengdu University, Chengdu 610081, China
| | - Jiaqi Liu
- International School of Public Health and Whole Health, Hainan Medical University, Haikou, 571199, PR China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Tang
- Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040 Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Zhu J, Gao R, Wang Z, Cheng Z, Xu Z, Liu Z, Wu Y, Wang M, Zhang Y. Sustained and Targeted Delivery of Self-Assembled Doxorubicin Nonapeptides Using pH-Responsive Hydrogels for Osteosarcoma Chemotherapy. Pharmaceutics 2023; 15:pharmaceutics15020668. [PMID: 36839990 PMCID: PMC9961168 DOI: 10.3390/pharmaceutics15020668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
While chemotherapeutic agents have particularly potent effects in many types of cancer, their clinical applications are still far from satisfactory due to off-target drug exposure, chemotherapy resistance, and adverse effects, especially in osteosarcoma. Therefore, it is clinically promising to construct a novel tumor-targeted drug delivery system to control drug release and alleviate side effects. In this study, a pH-responsive nonapeptide hydrogel was designed and fabricated for the tumor-targeted drug delivery of doxorubicin (DOX). Using a solid-phase synthesis method, a nonapeptide named P1 peptide that is structurally akin to surfactant-like peptides (SLPs) due to its hydrophobic tail and hydrophilic head was synthesized. The physicochemical properties of the P1 hydrogel were characterized via encapsulation capacity, transmission electron microscopy (TEM), circular dichroism (CD), zeta potential, rheological analysis, and drug release studies. We also used in vitro and in vivo experiments to investigate the cytocompatibility and tumor inhibitory efficacy of the drug-loaded peptide hydrogel. The P1 peptide could self-assemble into biodegradable hydrogels under neutral conditions, and the prepared drug-loaded hydrogels exhibited good injectability and biocompatibility. The in vitro drug release studies showed that DOX-P1 hydrogels had high sensitivity to acidic conditions (pH 5.8 versus 7.4, up to 3.6-fold). Furthermore, the in vivo experiments demonstrated that the DOX-P1 hydrogel could not only amplify the therapeutic effect but also increase DOX accumulation at the tumor site. Our study proposes a promising approach to designing a pH-responsive hydrogel with controlled doxorubicin-release action based on self-assembled nonapeptides for targeted chemotherapy.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Rui Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongshi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiming Cheng
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Zhonghua Xu
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Zaiyang Liu
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
| | - Yiqun Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Min Wang
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
- Correspondence: (M.W.); (Y.Z.)
| | - Yuan Zhang
- Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China
- Correspondence: (M.W.); (Y.Z.)
| |
Collapse
|
6
|
Veloso SRS, Tiryaki E, Spuch C, Hilliou L, Amorim CO, Amaral VS, Coutinho PJG, Ferreira PMT, Salgueiriño V, Correa-Duarte MA, Castanheira EMS. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. NANOSCALE 2022; 14:5488-5500. [PMID: 35332904 DOI: 10.1039/d1nr08158f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembled short peptide-based gels are highly promising drug delivery systems. However, implementing a stimulus often requires screening different structures to obtain gels with suitable properties, and drugs might not be well encapsulated and/or cause undesirable effects on the gel's properties. To overcome this challenge, a new design approach is presented to modulate the release of doxorubicin as a model chemotherapeutic drug through the interplay of (di)phenylalanine-coated magnetic nanoparticles, PEGylated liposomes and doxorubicin co-assembly in dehydropeptide-based gels. The composites enable an enhancement of the gelation kinetics in a concentration-dependent manner, mainly through the use of PEGylated liposomes. The effect of the co-assembly of phenylalanine-coated nanoparticles with the hydrogel displays a concentration and size dependence. Finally, the integration of liposomes as doxorubicin storage units and of nanoparticles as composites that co-assemble with the gel matrix enables the tuneability of both passive and active doxorubicin release through a thermal, and a low-frequency alternating magnetic field-based trigger. In addition to the modulation of the gel properties, the functionalization with (di)phenylalanine improves the cytocompatibility of the nanoparticles. Hereby, this work paves a way for the development of peptide-based supramolecular systems for on-demand and controlled release of drugs.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ecem Tiryaki
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain
| | - Loic Hilliou
- Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - C O Amorim
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - V S Amaral
- Physics Department and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo J G Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M T Ferreira
- Centro de Química (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Verónica Salgueiriño
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
- CINBIO, Universidad de Vigo, 36310 Vigo, Spain.
| | | | - Elisabete M S Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET (Laboratory of Physics for Materials and Emergent Technologies), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
7
|
Chen M, Tan Y, Hu J, Jiang Y, Wang Z, Liu Z, Chen Q. Injectable Immunotherapeutic Thermogel for Enhanced Immunotherapy Post Tumor Radiofrequency Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104773. [PMID: 34729889 DOI: 10.1002/smll.202104773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Tumor radiofrequency ablation (RFA) is a local and minimally invasive application using high temperature to induce coagulative necrosis of tumor, which has been commonly used in clinic. Although the tumor fragments generated by RFA can activate the host's immune system, it may be insufficient to inhibit cancer recurrence due to many factors such as the inefficient antigen presentation by dendritic cells (DCs). In this research, a convenient local administration strategy by blocking rho-associated kinases (ROCK) is applied to amplify the immune responses triggered by RFA via promoting the phagocytosis capacity of DCs. Briefly, ROCK inhibitor, Y27632, is successfully dispersed in the amphiphilic copolymer poly(D,L-lactide-co-glycolide)-b-poly(ethyleneglycol)-b-poly(D,L-lactideco-glycolide) (PLGA-PEG-PLGA) solution, which is sol at room temperature and forms hydrogel quickly at body temperature, obviously prolonging the retention of Y27632 after injection. Interestingly, in the melanoma tumor model, the generated tumor fragments after RFA treatment are swallowed by DCs and undergo reinforced antigen presentation process with the help of gradual released Y27632, further effectively activating T cell mediated anti-tumor immune responses and significantly improving the therapeutic efficiency of RFA. Overall, such strategy remarkably prolongs the survival of mice after RFA treatment, showing great potential for clinical translation as an improvement strategy for RFA.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiaying Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yanping Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zixian Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
8
|
Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 2021; 171:240-256. [PMID: 33561451 DOI: 10.1016/j.addr.2021.02.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Supramolecular binding motifs are increasingly employed in the design of biomaterials. The ability to rationally engineer specific yet reversible associations into polymer networks with supramolecular chemistry enables injectable or sprayable hydrogels that can be applied via minimally invasive administration. In this review, we highlight two main areas where supramolecular binding motifs are being used in the design of drug delivery systems: engineering network mechanics and tailoring drug-material affinity. Throughout, we highlight many of the established and emerging chemistries or binding motifs that are useful for the design of supramolecular hydrogels for drug delivery applications.
Collapse
|
9
|
Diaferia C, Rosa E, Accardo A, Morelli G. Peptide-based hydrogels as delivery systems for doxorubicin. J Pept Sci 2021; 28:e3301. [PMID: 33491262 DOI: 10.1002/psc.3301] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
Hydrogels (HGs) and nanogels (NGs) have been recently identified as innovative supramolecular materials for many applications in biomedical field such as in tissue engineering, optoelectronic, and local delivery of active pharmaceutical ingredients (APIs). Due to their in vivo biocompatibility, synthetic accessibility, low cost, and tunability, peptides have been used as suitable building blocks for preparation of HGs and NGs formulations. Peptide HGs have shown an outstanding potential to deliver small drugs, protein therapeutics, or diagnostic probes, maintaining the efficacy of their loaded molecules, preventing degradation phenomena, and responding to external physicochemical stimuli. In this review, we discuss the possible use of peptide-based HGs and NGs as vehicles for the delivery of the anticancer drug doxorubicin (Dox). This anthracycline is clinically used for leukemia, stomach, lung, ovarian, breast, and bladder cancer therapy. The loading of Dox into supramolecular systems (liposomes, micelles, hydrogels, and nanogels) allows reducing its cardiotoxicity. According to a primary sequence classification of the constituent peptide, doxorubicin-loaded systems are here classified in short and ultra-short peptide-based HGs, RGD, or RADA-peptide-based HGs and peptide-based NGs.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Elisabetta Rosa
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Naples, 80134, Italy
| |
Collapse
|
10
|
Behera SK, Mohanty ME, Mohapatra M. A Fluorescence Study of the Interaction of Anticancer Drug Molecule Doxorubicin Hydrochloride in Pluronic P123 and F127 Micelles. J Fluoresc 2021; 31:17-27. [PMID: 33037527 DOI: 10.1007/s10895-020-02630-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Drug delivery systems for the sustained and target delivery of doxorubicin to tumor cells are a topic of interest due to the efficacy of the doxorubicin in cancer treatment. The use of polymers such as Pluronic is being studied widely for the formulation of doxorubicin hydrochloride. However, the basic understanding of the physicochemical properties of pluronic micelles in presence of doxorubicin hydrochloride is a very essential topic of study. Doxorubicin hydrochloride is fluorescent; this helped us to study its sensitivity towards the Pluronic microenvironment using the fluorescence technique. In this work, the interaction and place of location of doxorubicin hydrochloride in Pluronic F127 and P123 micelles has been studied extensively using steady-state fluorescence intensity, dynamic fluorescence lifetime, quenching studies, dynamic light scattering, and zeta potential measurements, at different Pluronic concentrations. Using a fluorescence quenching experiment, doxorubicin hydrochloride was found to reside near the hydrophilic PEO corona region of the Pluronic micelles. For both the Pluronic, in the concentration range of study, the micellar size was found to be below 30 nm; this may have a greater advantage for various applications.
Collapse
Affiliation(s)
- Sagar Kumar Behera
- Department of Chemistry, VSS University of Technology, Burla, Odisha, 768018, India
| | - Maneesha Esther Mohanty
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Monalisa Mohapatra
- Department of Chemistry, VSS University of Technology, Burla, Odisha, 768018, India.
- School of Chemistry, Gangadhar Meher University, Sambalpur, Odisha, 768004, India.
| |
Collapse
|
11
|
Yamada Y. Dimerization of Doxorubicin Causes Its Precipitation. ACS OMEGA 2020; 5:33235-33241. [PMID: 33403285 PMCID: PMC7774281 DOI: 10.1021/acsomega.0c04925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 05/25/2023]
Abstract
Doxorubicin (DOX) is commonly used in chemotherapy and biomedical research because of its potent anticancer activity. Although DOX is water soluble, it precipitates when interacting with buffers, such as phosphate-buffered saline, or with drugs such as 5-fluorouracil (5-FU) and heparin. This study reports that DOX precipitates in neutral buffers and 5-FU solution because of the formation of covalently bonded DOX dimers. Additionally, this study proposes a structure for the DOX dimer and a mechanism for dimerization on the basis of mass spectrometry in combination with an experiment to establish the reaction model. The DOX dimer/precipitate formation might be an important phenomenon, considering the frequent use of DOX in chemotherapy and biomedical research.
Collapse
|
12
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
13
|
Park KH, Jung J, Yim S, Kang MJ, Kwon G, Hwang DY, Yang SY, Seo S. Mussel‐Inspired Surface Acrylation on Graphene Oxide Using Acrylic Surface Primers and Its Hydrogel‐Based Applications: Sustained Drug Release and Tissue Scaffolds. ChemistrySelect 2020. [DOI: 10.1002/slct.202000205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kyu Ha Park
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Jaewon Jung
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Sang‐Gu Yim
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Mi Ju Kang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering University of Kansas Lawrence Kansas 66045 United States
| | - Dae Youn Hwang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science College of Natural Resource and Life Sciences / Life and Industry Convergence Institute Pusan National University Miryang 50463, Republic of Korea
| |
Collapse
|
14
|
|
15
|
Mei L, Xu K, Zhai Z, He S, Zhu T, Zhong W. Doxorubicin-reinforced supramolecular hydrogels of RGD-derived peptide conjugates for pH-responsive drug delivery. Org Biomol Chem 2019; 17:3853-3860. [DOI: 10.1039/c9ob00046a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doxorubicin reinforced the self-assembly of RGD-derived peptide conjugates responsive to mild acidity.
Collapse
Affiliation(s)
- Leixia Mei
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Keming Xu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| | - Ziran Zhai
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Suyun He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Tingting Zhu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
16
|
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019; 7:7639-7655. [DOI: 10.1039/c9tb01842e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applications of nanoparticulate drug delivery have received abundant interest in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
| | - Hajra Zafar
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Asifullah Khan
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Liang Ge
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
17
|
Li S, Xing R, Chang R, Zou Q, Yan X. Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Qi Y, Min H, Mujeeb A, Zhang Y, Han X, Zhao X, Anderson GJ, Zhao Y, Nie G. Injectable Hexapeptide Hydrogel for Localized Chemotherapy Prevents Breast Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6972-6981. [PMID: 29409316 DOI: 10.1021/acsami.7b19258] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although postsurgical chemotherapy is frequently used for the treatment of breast cancer, tumor recurrence is still a frequent event. Enhancing the efficacy of chemotherapy via localized drug delivery may help to prevent breast cancer recurrence. To achieve this goal, we designed a hydrogel nanocarrier that could be injected at the tumor site by coassembly of tailor-made hexapeptide and doxorubicin. Evidently, on the basis of our findings, the sustained release of drug from the hydrogel led to a reduction in cancer recurrence, including the suppression of primary regrowth and distant metastasis. This localized chemotherapy strategy did not show any obvious side effects in vivo and represents a promising adjuvant therapeutic strategy for breast cancer recurrence.
Collapse
Affiliation(s)
- Yingqiu Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Ayeesha Mujeeb
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Greg J Anderson
- Royal Brisbane Hospital, QIMR Berghofer Medical Research Institute , Brisbane 4029, QLD, Australia
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
19
|
Hou Y, Jiang N, Zhang L, Li Y, Meng Y, Han D, Chen C, Yang Y, Zhu S. Oppositely Charged Polyurethane Microspheres with Tunable Zeta Potentials as an Injectable Dual-Loaded System for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25808-25817. [PMID: 28704028 DOI: 10.1021/acsami.7b06673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To effectively repair irregular shaped bone defects by a minimally invasive procedure, the exploration of an injectable gel to fill the defect is desirable. Herein, positively and negatively charged polyurethane microspheres (PU-A and PU-B) with adjustable zeta potentials as well as the hydroxyapatite-loaded PU microsphere (PU-A/HA) and the dexamethasone-loaded PU microsphere (PU-B/Dex) were successfully prepared, and the oppositely charged microspheres could self-assemble into injectable gels with 3D structures by a mutually electrostatic attraction. The self-assembly PU-A/HA+PU-B/Dex gel exhibited a much higher elastic modulus (about 0.20 MPa) and excellent shear-thinning and self-recovery behaviors, which would allow the gel to be injected through a fine syringe to fill the irregular defect. The in vitro and in vivo experiments demonstrated that the coexistence of HA and Dex in PU-A/HA+PU-B/Dex gel had a synergistic effect on cell differentiation and accelerating new bone formation, displaying a good prospect as an injectable gel for bone repair in minimally invasive surgery.
Collapse
Affiliation(s)
- Yi Hou
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| | - Li Zhang
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yubao Li
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuezhong Meng
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Dongmei Han
- The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province/State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong 510275, PR China
| | - Chen Chen
- Analytical & Testing Center, Sichuan University , Chengdu, Sichuan 610064, PR China
| | - Yuan Yang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario M5S 3E3, Canada
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan 610041, PR China
| |
Collapse
|
20
|
Abstract
The convergence of nanoscience and drug delivery has prompted the formation of the field of nanomedicine, one that exploits the novel physicochemical and biological properties of nanostructures for improved medical treatments and reduced side effects. Until recently, this nanostructure-mediated strategy considered the drug to be solely a biologically active compound to be delivered, and its potential as a molecular building unit remained largely unexplored. A growing trend within nanomedicine has been the use of drug molecules to build well-defined nanostructures of various sizes and shapes. This strategy allows for the creation of self-delivering supramolecular nanomedicines containing a high and fixed drug content. Through rational design of the number and type of the drug incorporated, the resulting nanostructures can be tailored to assume various morphologies (e.g. nanospheres, rods, nanofibers, or nanotubes) for a particular mode of administration such as systemic, topical, and local delivery. This review covers the recent advances in this rapidly developing field, with the aim of providing an in-depth evaluation of the exciting opportunities that this new field could create to improve the current clinical practice of nanomedicine.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
| | - Andrew G. Cheetham
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou, Henan 450052, China
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, USA
| |
Collapse
|
21
|
Shi Y, Wang Z, Zhang X, Xu T, Ji S, Ding D, Yang Z, Wang L. Multi-responsive supramolecular hydrogels for drug delivery. Chem Commun (Camb) 2015; 51:15265-7. [DOI: 10.1039/c5cc05792b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We reported a versatile method to prepare responsive supramolecular hydrogels.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
| | - Zhongyan Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
| | - Xiaoli Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Tengyan Xu
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education
- College of Life Sciences
- Nankai University
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Design
- Nankai University
- Tianjin 300071
| |
Collapse
|