1
|
Recktenwald CV, Karlsson G, Garcia-Bonete MJ, Katona G, Jensen M, Lymer R, Bäckström M, Johansson MEV, Hansson GC, Trillo-Muyo S. The structure of the second CysD domain of MUC2 and role in mucin organization by transglutaminase-based cross-linking. Cell Rep 2024; 43:114207. [PMID: 38733585 DOI: 10.1016/j.celrep.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance. CysD2 shows a stable stalk region predicted to be partly covered by adjacent O-glycans attached to neighboring PTS sequences, whereas the CysD2 tip with three flexible loops is suggested to be well exposed. It shows transient dimer interactions at acidic pH, weakened at physiological pH. This transient interaction can be stabilized in vitro and in vivo by transglutaminase 3-catalyzed isopeptide bonds, preferring a specific glutamine residue on one flexible loop. This covalent dimer is modeled suggesting that CysD domains act as connecting hubs for covalent stabilization of mucins to form a protective mucus.
Collapse
Affiliation(s)
- Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Göran Karlsson
- Swedish NMR Centre, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Lymer
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
2
|
Pandey M, Bhattacharyya J. Gut microbiota and epigenetics in colorectal cancer: implications for carcinogenesis and therapeutic intervention. Epigenomics 2024; 16:403-418. [PMID: 38410915 DOI: 10.2217/epi-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The occurrence of CRC is associated with various genetic and epigenetic mutations in intestinal epithelial cells that transform them into adenocarcinomas. There is increasing evidence indicating the gut microbiota plays a crucial role in the regulation of host physiological processes. Alterations in gut microbiota composition are responsible for initiating carcinogenesis through diverse epigenetic modifications, including histone modifications, ncRNAs and DNA methylation. This work was designed to comprehensively review recent findings to provide insight into the associations between the gut microbiota and CRC at an epigenetic level. These scientific insights can be used in the future to develop effective strategies for early detection and treatment of CRC.
Collapse
Affiliation(s)
- Monu Pandey
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| |
Collapse
|
3
|
Cai H, Yang X, Yang Y, Feng Y, Wen A, Yang Y, Wen M, Ou D. Untargeted metabolomics of the intestinal tract of DEV-infected ducks. Virol J 2023; 20:305. [PMID: 38115106 PMCID: PMC10731684 DOI: 10.1186/s12985-023-02266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Duck enteritis virus (DEV) mainly causes infectious diseases characterized by intestinal haemorrhage, inflammation and parenchymal organ degeneration in ducks and other poultry. However, the mechanism by which it causes intestinal damage in ducks is not well understood. Metabolomics can provide an in-depth understanding of the full complexity of the disease. METHODS In this study, 24 clinically healthy green-shell ducks (weight 1.5 kg ± 20 g) were randomly divided into 2 groups (experimental group, 18; control group, 6). The experimental group was intramuscularly injected with 0.2 mL of DEV virus in solution (TCID50 3.16 × 108 PFU/mL), and the control group was injected with 0.2 mL of sterile normal saline. Duck duodenum and ileum tissue samples were collected at 66 h, 90 h and 114 h post-injection (12 h of fasting before killing), and metabolomics analysis of duck duodenum and ileum tissues at the three time points (66, 90, 114 h) was performed by liquid chromatography-mass spectrometry (LC-MS) to screen for and analyse the potential differentiated metabolites and related signalling pathways. RESULTS Screening was performed in the positive/negative mode (Pos: Positive ion mode; the ionization of substances at the ion source with positive ions such as H+, NH4+, Na+ and K+; Neg: Negative ion mode; the ionization of substances at the ion source with negative ions such as Cl-, OAc-), and compound abundance was compared to that in the control group. The total number of differentially abundant compounds in the duodenum at 66 h, 90 h and 114 h of DEV infection gradually increased, and metabolites such as cytidine, 2'-deoxyriboside and 4-guanidinobutyric acid were differentially abundant metabolites common to all three time periods. The metabolic pathways related to inflammatory response and immune response were tryptophan acid metabolism, cysteine-methionine metabolism, histidine metabolism and other amino acid metabolism and fat metabolism. Among them, the metabolic pathways with more differentially abundant metabolites were amino acid biosynthesis, cysteine and methionine metabolism, tryptophan metabolism, unsaturated fatty acid biosynthesis and purine metabolism, and the metabolic pathways with more enrichment factors were the IgA-related intestinal immune network pathway and lysosome pathway. Compared with the control group, there were 16 differentially abundant metabolites in the ileum tissue of DEV-infected ducks at 66 h of infection, 52 at 90 h of infection, and 40 at 14 h of infection with TD114. The metabolic pathways with more enriched differentially abundant metabolites were pyrimidine metabolism, tyrosine metabolism, phenylalanine metabolism and tryptophan biosynthesis. The metabolic pathways with the most enrichment factors were the mTOR signalling pathway, ferroptosis pathway, tryptophan metabolism pathway and caffeine metabolism pathway. CONCLUSION Comparative analysis showed that the number of differentially abundant metabolites in the duodenum and ileum differed to some extent after DEV infection, with significantly more differentially abundant metabolites in duodenal tissues and fewer in ileal tissues; after DEV infection, the highest number of differentially abundant metabolites was obtained at 114 h of DEV infection, followed by the second highest at 90 h of infection and the lowest at 66 h of infection. The common differentially abundant metabolites in duodenal and ileal tissues were prostaglandins, arachidonic acid, and arachidonic ethanolamine. The main metabolic pathways in the duodenum were the IgA-associated intestinal immune network pathway and the lysosomal pathway, and the metabolic pathways with more enriched factors in the ileum were the mTOR signalling pathway, the ferroptosis pathway, and the tryptophan metabolism pathway.
Collapse
Affiliation(s)
- Haiqing Cai
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Xia Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Yunyun Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Yi Feng
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Anlin Wen
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ying Yang
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| | - Ming Wen
- School of Animal Science, Guizhou University, Guiyang, China.
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China.
| | - Deyuan Ou
- School of Animal Science, Guizhou University, Guiyang, China
- Guizhou Provincial Animal Biological Products Engineering Technology Research Center, Guiyang, China
| |
Collapse
|
4
|
Bachar-Wikstrom E, Dhillon B, Gill Dhillon N, Abbo L, Lindén SK, Wikstrom JD. Mass Spectrometry Analysis of Shark Skin Proteins. Int J Mol Sci 2023; 24:16954. [PMID: 38069276 PMCID: PMC10707392 DOI: 10.3390/ijms242316954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage in which proteins play a key role. While proteins in the skin mucus layer of various common bony fish species have been explored, the proteins of shark skin mucus remain unexplored. In this pilot study, we examine the protein composition of the skin mucus in spiny dogfish sharks and chain catsharks through mass spectrometry (NanoLC-MS/MS). Overall, we identified 206 and 72 proteins in spiny dogfish (Squalus acanthias) and chain catsharks (Scyliorhinus retifer), respectively. Categorization showed that the proteins belonged to diverse biological processes and that most proteins were cellular albeit a significant minority were secreted, indicative of mucosal immune roles. The secreted proteins are reviewed in detail with emphasis on their immune potentials. Moreover, STRING protein-protein association network analysis showed that proteins of closely related shark species were more similar as compared to a more distantly related shark and a bony fish, although there were also significant overlaps. This study contributes to the growing field of molecular shark studies and provides a foundation for further research into the functional roles and potential human biomedical implications of shark skin mucus proteins.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Braham Dhillon
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, IFAS, University of Florida, Davie, FL 33314, USA
| | - Navi Gill Dhillon
- Department of Biological Sciences, Nova Southeastern University, Davie, FL 33314, USA
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
5
|
Khmelnitsky L, Milo A, Dym O, Fass D. Diversity of CysD domains in gel-forming mucins. FEBS J 2023; 290:5196-5203. [PMID: 37526947 DOI: 10.1111/febs.16918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
CysD domains are disulfide-rich modules embedded within long O-glycosylated regions of mucin glycoproteins. CysD domains are thought to mediate intermolecular adhesion during the intracellular bioassembly of mucin polymers and perhaps also after secretion in extracellular mucus hydrogels. The human genome encodes 18 CysD domains distributed across three different mucins. To date, experimental structural information is available only for the first CysD domain (CysD1) of the intestinal mucin MUC2, which is one of the most divergent of the CysDs. To provide experimental data on a CysD that is representative of a larger branch of the fold family, we determined the crystal structure of the seventh CysD domain (CysD7) from MUC5AC, a mucin found in the respiratory tract and stomach. The MUC5AC CysD7 structure revealed a single calcium-binding site, contrasting with the two sites in MUC2 CysD1. The MUC5AC CysD7 structure also contained an additional α-helix absent from MUC2 CysD1, with potential functional implications for intermolecular interactions. Lastly, the experimental structure emphasized the flexibility of the loop analogous to the main adhesion loop of MUC2 CysD1, suggesting that both sequence divergence and physical plasticity in this region may contribute to the adaptation of mucin CysD domains.
Collapse
Affiliation(s)
- Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayala Milo
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Ilani T, Reznik N, Yeshaya N, Feldman T, Vilela P, Lansky Z, Javitt G, Shemesh M, Brenner O, Elkis Y, Varsano N, Jaramillo AM, Evans CM, Fass D. The disulfide catalyst QSOX1 maintains the colon mucosal barrier by regulating Golgi glycosyltransferases. EMBO J 2023; 42:e111869. [PMID: 36245281 PMCID: PMC9841341 DOI: 10.15252/embj.2022111869] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.
Collapse
Affiliation(s)
- Tal Ilani
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nava Reznik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Feldman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Patrick Vilela
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Zipora Lansky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gabriel Javitt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Shemesh
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | | | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ana M Jaramillo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Christopher M Evans
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA.,Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Lacroix G, Gouyer V, Rocher M, Gottrand F, Desseyn JL. A porous cervical mucus plug leads to preterm birth induced by experimental vaginal infection in mice. iScience 2022; 25:104526. [PMID: 35754724 PMCID: PMC9218384 DOI: 10.1016/j.isci.2022.104526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/12/2022] Open
Abstract
During gestation, the cervical mucus plug (CMP) acts to seal the cervical canal. Pilot studies in humans have suggested that a porous CMP may increase the risk of uterine infection and preterm birth. We examined the gel-forming content of the mouse vagina and the CMP. We experimentally infected pregnant mice by intravaginal administration of pathogens related to preterm birth in humans. We found that the epithelium in both the vagina and cervical canal of pregnant mice produced the two gel-forming mucins Muc5b and Muc5ac. The CMP was porous in Muc5b-deficient mice for which intravaginal administration of Escherichia coli O 55 led to the activation of an inflammatory response in the uterus and 100% preterm births. The pathogen was found in the mucus plug and uterus. This study shows that Muc5b is essential for the in vivo barrier function and the prevention of uterine infections during gestation. Muc5b and Muc5ac are the main gel-forming mucins of the mouse vagina and cervical canal During pregnancy, a cervical mucus plug (CMP) is formed and seals the cervical canal Muc5b-deficient CMP is highly porous Inflammation following vaginal infection causes preterm birth in Muc5b-deficient mice
Collapse
Affiliation(s)
- Guillaume Lacroix
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Valérie Gouyer
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Mylène Rocher
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| | - Jean-Luc Desseyn
- University Lille, Inserm, CHU Lille, U1286 - Infinite, 59000 Lille, France
| |
Collapse
|
8
|
Helical self-assembly of a mucin segment suggests an evolutionary origin for von Willebrand factor tubules. Proc Natl Acad Sci U S A 2022; 119:e2116790119. [PMID: 35377815 PMCID: PMC9169620 DOI: 10.1073/pnas.2116790119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular proteins with mechanical functions often require specialized assembly processes to form covalent oligomers. Progress in tissue bioengineering and repair will benefit from an understanding of how to harness and manipulate these processes. Here, we show that a particular supramolecular assembly mode was pre-encoded in the ancient domain organization common to gel-forming mucins and von Willebrand factor, glycoproteins that are deceptively different due to their divergence for distinct mechanical tasks. This finding highlights symmetry principles and building blocks retooled in nature to construct polymers with wide-ranging properties. These building blocks and knowledge of their self-assembly can be used to design new polymeric structures. The glycoprotein von Willebrand factor (VWF) contributes to hemostasis by stanching injuries in blood vessel walls. A distinctive feature of VWF is its assembly into long, helical tubules in endothelial cells prior to secretion. When VWF is released into the bloodstream, these tubules unfurl to release linear polymers that bind subendothelial collagen at wound sites, recruit platelets, and initiate the clotting cascade. VWF evolved from gel-forming mucins, the polymeric glycoproteins that coat and protect exposed epithelia. Despite the divergent function of VWF in blood vessel repair, sequence conservation and shared domain organization imply that VWF retained key aspects of the mucin bioassembly mechanism. Here, we show using cryo-electron microscopy that the ability to form tubules, a property hitherto thought to have arisen as a VWF adaptation to the vasculature, is a feature of the amino-terminal region of mucin. This segment of the human intestinal gel-forming mucin (MUC2) was found to self-assemble into tubules with a striking resemblance to those of VWF itself. To facilitate a comparison, we determined the residue-resolution structure of tubules formed by the homologous segment of VWF. The structures of the MUC2 and VWF tubules revealed the flexible joints and the intermolecular interactions required for tubule formation. Steric constraints in full-length MUC2 suggest that linear filaments, a previously observed supramolecular assembly form, are more likely than tubules to be the physiological mucin storage intermediate. Nevertheless, MUC2 tubules indicate a possible evolutionary origin for VWF tubules and elucidate design principles present in mucins and VWF.
Collapse
|
9
|
Yang X, Yang J, Ye Z, Zhang G, Nie W, Cheng H, Peng M, Zhang K, Liu J, Zhang Z, Shi J. Physiologically Inspired Mucin Coated Escherichia coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS NANO 2022; 16:4041-4058. [PMID: 35230097 DOI: 10.1021/acsnano.1c09681] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery of probiotics to the microbiota is a promising method to prevent and treat diseases. However, oral probiotics will suffer from gastrointestinal insults, especially the pathological microenvironment of inflammatory diseases such as reactive oxygen species (ROS) and the exhausted mucus layer, which can limit their survival and colonization in the intestinal tract. Inspired by the fact that probiotics colonized and grew in the mucus layer under physiological conditions, we developed a strategy for a super probiotic (EcN@TA-Ca2+@Mucin) coated with tannic acid and mucin via layer-by-layer technology. We demonstrated that mucin endows probiotics with superior resistance to the harsh environment of the gastrointestinal tract and with strong adhesiveness to the intestine through its interaction with mucus, which enhanced colonization and growth of probiotics in the mucus layer without removing the coating. Moreover, EcN@TA-Ca2+@Mucin can distinctly down-regulate inflammation with ROS scavenging and reduce the side effects of bacterial translocation in inflammatory bowel diseases, increasing the abundance and diversity of the gut microflora. We envision that it is a powerful platform to improve the colonization of probiotics by regulating the pathological microenvironment, which is expected to provide an important perspective for applying the intestinal colonization of probiotics to treat a variety of diseases.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Jiali Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Zihan Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Guizhen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Weimin Nie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Hui Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Mengyun Peng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, PR China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, PR China
| |
Collapse
|
10
|
Argüeso P. Human ocular mucins: The endowed guardians of sight. Adv Drug Deliv Rev 2022; 180:114074. [PMID: 34875287 PMCID: PMC8724396 DOI: 10.1016/j.addr.2021.114074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/22/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Mucins are an ancient group of glycoproteins that provide viscoelastic, lubricating and hydration properties to fluids bathing wet surfaced epithelia. They are involved in the protection of underlying tissues by forming a barrier with selective permeability properties. The expression, processing and spatial distribution of mucins are often determined by organ-specific requirements that in the eye involve protecting against environmental insult while allowing the passage of light. The human ocular surface epithelia have evolved to produce an extremely thin and watery tear film containing a distinct soluble mucin product secreted by goblet cells outside the visual axis. The adaptation to the ocular environment is notably evidenced by the significant contribution of transmembrane mucins to the tear film, where they can occupy up to one-quarter of its total thickness. This article reviews the tissue-specific properties of human ocular mucins, methods of isolation and detection, and current approaches to model mucin systems recapitulating the human ocular surface mucosa. This knowledge forms the fundamental basis to develop applications with a promising biological and clinical impact.
Collapse
Affiliation(s)
- Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydr Polym 2021; 258:117651. [DOI: 10.1016/j.carbpol.2021.117651] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
|
12
|
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188490. [PMID: 33321173 DOI: 10.1016/j.bbcan.2020.188490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a leading cause of cancer-related deaths worldwide. The stepwise accumulation of epigenetic alterations in the normal colorectal epithelium has been reported to act as a driving force for the initiation and promotion of tumorigenesis in CRC. From a mechanistic standpoint, emerging evidence indicates that within the colorectal epithelium, the diverse gut microbiota can interact with host cells to regulate multiple physiological processes. In fact, recent studies have found that the gut microbiota represents a potential cause of carcinogenesis, invasion, and metastasis via DNA methylation, histone modifications, and non-coding RNAs - providing an epigenetic perspective for the connection between the gut microbiota and CRC. Herein, we comprehensively review the recent research that provides a comprehensive yet succinct evidence connecting the gut microbiota to CRC at an epigenetic level, including carcinogenic mechanisms of cancer-related microbiota, and the potential for utilizing the gut microbiota as CRC biomarkers. These scientific findings highlight a promising future for manipulating the gut microbiota to improve clinical outcomes in patients suffering from CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
13
|
Hueso T, Ekpe K, Mayeur C, Gatse A, Joncquel-Chevallier Curt M, Gricourt G, Rodriguez C, Burdet C, Ulmann G, Neut C, Amini SE, Lepage P, Raynard B, Willekens C, Micol JB, De Botton S, Yakoub-Agha I, Gottrand F, Desseyn JL, Thomas M, Woerther PL, Seguy D. Impact and consequences of intensive chemotherapy on intestinal barrier and microbiota in acute myeloid leukemia: the role of mucosal strengthening. Gut Microbes 2020; 12:1800897. [PMID: 32893715 PMCID: PMC7524297 DOI: 10.1080/19490976.2020.1800897] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Induction chemotherapy (7 + 3 regimen) remains the gold standard for patients with acute myeloid leukemia (AML) but is responsible for gut damage leading to several complications such as bloodstream infection (BSI). We aimed to investigate the impact of induction chemotherapy on the intestinal barrier of patients with AML and in wild-type mice. Next, we assessed the potential benefit of strengthening the mucosal barrier in transgenic mice releasing a recombinant protein able to reinforce the mucus layer (Tg222). In patients, we observed a decrease of plasma citrulline, which is a marker of the functional enterocyte mass, of short-chain fatty acids and of fecal bacterial load, except for Escherichia coli and Enterococcus spp., which became dominant. Both the α and β-diversities of fecal microbiota decreased. In wild-type mice, citrulline levels decreased under chemotherapy along with an increase of E. coli and Enterococcus spp load associated with concomitant histologic impairment. By comparison with wild-type mice, Tg222 mice, 3 days after completing chemotherapy, had higher citrulline levels, a faster healing epithelium, and preserved α-diversity of their intestinal microbiota. This was associated with reduced bacterial translocations. Our results highlight the intestinal damage and the dysbiosis induced by the 7 + 3 regimen. As a proof of concept, our transgenic model suggests that strengthening the intestinal barrier is a promising approach to limit BSI and improve AML patients' outcome.
Collapse
Affiliation(s)
- Thomas Hueso
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Kenneth Ekpe
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Camille Mayeur
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Anna Gatse
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | | | - Guillaume Gricourt
- NGS Platform, IMRB, CHU Henri Mondor, Créteil, France,Institut Mondor de Recherche Biomédicale, Inserm U955, Créteil, France
| | - Christophe Rodriguez
- NGS Platform, IMRB, CHU Henri Mondor, Créteil, France,Institut Mondor de Recherche Biomédicale, Inserm U955, Créteil, France
| | - Charles Burdet
- School of Medicine, EA3964 University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Ulmann
- Department of Biochemistry, Cochin Hospital – HUPC, Paris, France
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Salah-Eddine Amini
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Patricia Lepage
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Raynard
- Nutrition Department, Gustave Roussy Cancer Centre, F-94805, Villejuif, France
| | - Christophe Willekens
- Hematology Departement, Gustave Roussy Cancer Centre, F-94805, Villejuif, France
| | - Jean-Baptiste Micol
- Hematology Departement, Gustave Roussy Cancer Centre, F-94805, Villejuif, France
| | - Stéphane De Botton
- Hematology Departement, Gustave Roussy Cancer Centre, F-94805, Villejuif, France
| | - Ibrahim Yakoub-Agha
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France,Allogeneic Stem Cell Department, CHU Lille, Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Muriel Thomas
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paul-Louis Woerther
- Department of Microbiology and Infection Control, Henri-Mondor Hospital, Créteil, France,EA 7380 Dynamyc, EnvA, UPEC, Paris-Est University, Créteil, France
| | - David Seguy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France,Nutrition Unit, CHU Lille, Lille, France,CONTACT David Seguy Nutrition Unit, Claude Huriez Hospital, F-59000 Lille, Lille, France
| |
Collapse
|
14
|
Lacroix G, Gouyer V, Gottrand F, Desseyn JL. The Cervicovaginal Mucus Barrier. Int J Mol Sci 2020; 21:ijms21218266. [PMID: 33158227 PMCID: PMC7663572 DOI: 10.3390/ijms21218266] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm births are a global health priority that affects 15 million babies every year worldwide. There are no effective prognostic and therapeutic strategies relating to preterm delivery, but uterine infections appear to be a major cause. The vaginal epithelium is covered by the cervicovaginal mucus, which is essential to health because of its direct involvement in reproduction and functions as a selective barrier by sheltering the beneficial lactobacilli while helping to clear pathogens. During pregnancy, the cervical canal is sealed with a cervical mucus plug that prevents the vaginal flora from ascending toward the uterine compartment, which protects the fetus from pathogens. Abnormalities of the cervical mucus plug and bacterial vaginosis are associated with a higher risk of preterm delivery. This review addresses the current understanding of the cervicovaginal mucus and the cervical mucus plug and their interactions with the microbial communities in both the physiological state and bacterial vaginosis, with a focus on gel-forming mucins. We also review the current state of knowledge of gel-forming mucins contained in mouse cervicovaginal mucus and the mouse models used to study bacterial vaginosis.
Collapse
|
15
|
Javitt G, Khmelnitsky L, Albert L, Bigman LS, Elad N, Morgenstern D, Ilani T, Levy Y, Diskin R, Fass D. Assembly Mechanism of Mucin and von Willebrand Factor Polymers. Cell 2020; 183:717-729.e16. [PMID: 33031746 PMCID: PMC7599080 DOI: 10.1016/j.cell.2020.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lev Khmelnitsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lis Albert
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lavi Shlomo Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
17
|
Jawhara M, Sørensen SB, Heitmann BL, Halldórsson ÞI, Pedersen AK, Andersen V. The Relation between Red Meat and Whole-Grain Intake and the Colonic Mucosal Barrier: A Cross-Sectional Study. Nutrients 2020; 12:nu12061765. [PMID: 32545531 PMCID: PMC7353246 DOI: 10.3390/nu12061765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022] Open
Abstract
The Colonic Mucosal Barrier (CMB) is the site of interaction between the human body and the colonic microbiota. The mucus is the outer part of the CMB and is considered as the front-line defense of the colon. It separates the host epithelial lining from the colonic content, and it has previously been linked to health and diseases. In this study, we assessed the relationship between red meat and whole-grain intake and (1) the thickness of the colonic mucus (2) the expression of the predominant mucin gene in the human colon (MUC2). Patients referred to colonoscopy at the University Hospital of Southern Denmark- Sonderjylland were enrolled between June 2017 and December 2018, and lifestyle data was collected in a cross-sectional study design. Colonic biopsies, blood, urine, and fecal samples were collected. The colonic mucus and bacteria were visualized by immunostaining and fluorescence in situ hybridization techniques. We found a thinner mucus was associated with high red meat intake. Similarly, the results suggested a thinner mucus was associated with high whole-grain intake, albeit to a lesser extent than red meat. This is the first study assessing the association between red meat and whole-grain intake and the colonic mucus in humans. This study is approved by the Danish Ethics Committee (S-20160124) and the Danish Data Protecting Agency (2008-58-035). A study protocol was registered at clinical trials.gov under NCT04235348.
Collapse
Affiliation(s)
- Mohamad Jawhara
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Institute of Regional Health Research, University Hospital of Southern Denmark- Sonderjylland, 6200 Aabenraa, Denmark; (S.B.S.); (V.A.)
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Department of Surgery, University Hospital of Southern Denmark-Sonderjylland, 6200 Aabenraa, Denmark
- Correspondence: ; Tel.: +45-7997-0000
| | - Signe Bek Sørensen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Institute of Regional Health Research, University Hospital of Southern Denmark- Sonderjylland, 6200 Aabenraa, Denmark; (S.B.S.); (V.A.)
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Berit Lilienthal Heitmann
- Research Unit for Dietary Studies, the Parker Institute, Bispebjerg and Frederiksberg, 2000 Frederiksberg, Denmark;
- Section for General Practice, Department of Public Health, University of Copenhagen, 2100 Copenhagen, Denmark
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, The University of Sydney, Sydney, NSW 2006, Australia
| | - Þórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland;
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, 2100 Copenhagen, Denmark
| | - Andreas Kristian Pedersen
- Lærings- og Forskningshuset, University Hospital of Southern Denmark, Sonderjylland, 6200 Aabenraa, Denmark;
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, Institute of Regional Health Research, University Hospital of Southern Denmark- Sonderjylland, 6200 Aabenraa, Denmark; (S.B.S.); (V.A.)
- Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
- Open Patient Data Explorative Network, University of Southern Jutland, 5230 Odense, Denmark
| |
Collapse
|
18
|
Chang CC, Chao KC, Huang CJ, Hung CS, Wang YC. Association between aberrant dynein cytoplasmic 1 light intermediate chain 1 expression levels, mucins and chemosensitivity in colorectal cancer. Mol Med Rep 2020; 22:185-192. [PMID: 32319648 PMCID: PMC7248515 DOI: 10.3892/mmr.2020.11086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/19/2020] [Indexed: 01/25/2023] Open
Abstract
Dynein transport along the cytoskeletal microtubules towards the minus end is essential for cell division, cell migration and other basic cellular functions. Dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) has been previously associated with pancreatic ductal adenocarcinoma, hepatocellular carcinoma and prostate cancer. Cytoskeletal structures are involved in the regulation of the mucosal barrier integrity. Thus, improving our understanding of the molecular mechanisms that regulate the mucosal barrier is critical for cancer management and treatment. The present study aimed to investigate DYNC1LI1 expression in colorectal cancer (CRC) tissues. The American Joint Committee on Cancer Stage II CRC cell line LS 174T was used to determine the association between the cellular expression levels of DYNC1LI1 and different types of mucin (MUC) by reverse transcription-quantitative PCR. The role of DYNC1LI1 in cell chemosensitivity and proliferation was also evaluated in the presence of the DNA analog 5-fluorouracil (5-FU) or the platinum-based drug, oxaliplatin by the MTT assay. LS 174T cells with decreased expression levels of DYNC1LI1 were discovered to be more sensitive to 5-FU compared with LS 174T cells with endogenous DYNC1LI1 expression levels. Moreover, LS 174T cells transfected with short hairpin RNA targeting DYNC1LI1 were associated with low MUC1 and high MUC2, MUC4 and MUC5AC expression levels. Notably, the CRC cells with low MUC1 expression levels and high expression levels of the other MUCs (MUC2, MU4 and MUC5AC) were shown to benefit from 5-FU treatment. In conclusion, the findings of the present study have suggested that DYNC1LI1 expression may be significantly associated with MUC expression levels and may be used to predict the chemotherapeutic efficiency. However, additional functional studies and clinical reports are required for an improved understanding of the significance of these molecular interactions in tumorigenesis.
Collapse
Affiliation(s)
- Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Kuo-Ching Chao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan, R.O.C
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Chih-Sheng Hung
- Division of Gastroenterology, Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Yen-Chieh Wang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| |
Collapse
|
19
|
Kawakami S, Ito R, Maruki-Uchida H, Kamei A, Yasuoka A, Toyoda T, Ishijima T, Nishimura E, Morita M, Sai M, Abe K, Okada S. Intake of a Mixture of Sake Cake and Rice Malt Increases Mucin Levels and Changes in Intestinal Microbiota in Mice. Nutrients 2020; 12:nu12020449. [PMID: 32053963 PMCID: PMC7071214 DOI: 10.3390/nu12020449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Amazake is a traditional Japanese beverage. Its main ingredients are sake cake and rice malt. In this study, we examined the effect of sake cake and rice malt on the intestinal barrier function and gut microbiota. BALB/c mice were fed a control diet or a diet containing a mixture of sake cake and rice malt powder (SRP) for four weeks. Fecal IgA values did not change between groups, but the fecal mucin level was significantly greater in the SRP-fed group. Gene expression analysis in the ileum by real-time PCR demonstrated Muc2 expression did not change, while the Muc3 expression was upregulated in the SRP-fed group. Furthermore, microbiota analysis demonstrated a change by SRP intake at the family level, and the proportion of Lactobacillaceae significantly increased in the SRP-fed group. At the genus level, the proportion of Lactobacillus also significantly increased in the SRP-fed group. These results suggest that the intake of a mixture of sake cake and rice malt improves intestinal barrier function by increasing mucin levels and inducing changes in intestinal microbiota.
Collapse
Affiliation(s)
- Shinpei Kawakami
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
- Correspondence: ; Tel.: +81-45-571-6140
| | - Ryouichi Ito
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
| | - Hiroko Maruki-Uchida
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
| | - Asuka Kamei
- Kanagawa Institute of Industrial Science and Technology, LiSE 4F C-4 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; (A.K.); (A.Y.); (K.A.)
| | - Akihito Yasuoka
- Kanagawa Institute of Industrial Science and Technology, LiSE 4F C-4 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; (A.K.); (A.Y.); (K.A.)
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (T.T.); (T.I.); (S.O.)
| | - Tsudoi Toyoda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (T.T.); (T.I.); (S.O.)
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (T.T.); (T.I.); (S.O.)
| | - Eisaku Nishimura
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
| | - Minoru Morita
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
| | - Masahiko Sai
- Health Science Research Center, Morinaga & Co., Ltd., 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan; (R.I.); (H.M.-U.); (E.N.); (M.M.); (M.S.)
| | - Keiko Abe
- Kanagawa Institute of Industrial Science and Technology, LiSE 4F C-4 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; (A.K.); (A.Y.); (K.A.)
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (T.T.); (T.I.); (S.O.)
| | - Shinji Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (T.T.); (T.I.); (S.O.)
| |
Collapse
|
20
|
Early life nutrition influences susceptibility to chronic inflammatory colitis in later life. Sci Rep 2019; 9:18111. [PMID: 31792267 PMCID: PMC6889478 DOI: 10.1038/s41598-019-54308-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022] Open
Abstract
The first thousand days of life are a critical time of development in humans during which the risk profile for diseases in later life can be modified. Nevertheless, long-term consequences of early environment on susceptibility to intestinal diseases have not yet been assessed. Using a mouse model of postnatal growth restriction (PNGR), we showed that early life nutrition influences intestinal maturation and gut health in later life. PNGR induced an alteration of the intestinal barrier in pups at weaning, resulting in increased intestinal permeability, and affected gut bacterial colonization. Specifically, pups with PNGR harbored a decreased bacterial diversity, higher Enterococcus spp., Staphylococcus spp., and Escherichia-Shigella spp., and lower Odoribacter spp. and several members of the Lachnospiraceae family. The lack of an efficient intestinal barrier in early life and the dysbiosis induced by PNGR were associated with a higher susceptibility to chronic colitis in adulthood.
Collapse
|
21
|
Demouveaux B, Gouyer V, Robbe-Masselot C, Gottrand F, Narita T, Desseyn JL. Mucin CYS domain stiffens the mucus gel hindering bacteria and spermatozoa. Sci Rep 2019; 9:16993. [PMID: 31740753 PMCID: PMC6861317 DOI: 10.1038/s41598-019-53547-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Mucus is the first biological barrier encountered by particles and pathogenic bacteria at the surface of secretory epithelia. The viscoelasticity of mucus is governed in part by low energy interactions that are difficult to assess. The CYS domain is a good candidate to support low energy interactions between GFMs and/or mucus constituents. Our aim was to stiffen the mucus from HT29-MTX cell cocultures and the colon of mice through the delivery of a recombinant protein made of hydrophobic CYS domains and found in multiple copies in polymeric mucins. The ability of the delivery of a poly-CYS molecule to stiffen mucus gels was assessed by probing cellular motility and particle diffusion. We demonstrated that poly-CYS enrichment decreases mucus permeability and hinders displacement of pathogenic flagellated bacteria and spermatozoa. Particle tracking microrheology showed a decrease of mucus diffusivity. The empirical obstruction scaling model evidenced a decrease of mesh size for mouse mucus enriched with poly-CYS molecules. Our data bring evidence that enrichment with a protein made of CYS domains stiffens the mucin network to provide a more impermeable and protective mucus barrier than mucus without such enrichment.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Catherine Robbe-Masselot
- CNRS, Univ. Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Frédéric Gottrand
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Tetsuharu Narita
- CNRS, PSL Research University, UPMC Univ. Paris 06, ESPCI Paris, UMR 7615, Laboratoire Sciences et Ingénierie de la Matière Molle, 10 rue Vauquelin, 75231, Paris, Cedex 05, France.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France.
| |
Collapse
|
22
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
23
|
Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3-GENES GENOMES GENETICS 2019; 9:1909-1919. [PMID: 30975702 PMCID: PMC6553539 DOI: 10.1534/g3.119.400065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.
Collapse
|
24
|
Amini SE, Gouyer V, Portal C, Gottrand F, Desseyn JL. Muc5b is mainly expressed and sialylated in the nasal olfactory epithelium whereas Muc5ac is exclusively expressed and fucosylated in the nasal respiratory epithelium. Histochem Cell Biol 2019; 152:167-174. [PMID: 31030254 DOI: 10.1007/s00418-019-01785-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2019] [Indexed: 01/03/2023]
Abstract
The nose is a complex organ that filters and warms breathing airflow. The nasal epithelium is the first barrier between the host and the external environment and is covered by a mucus gel that is poorly documented. Mucins are large, heavily O-glycosylated polymeric molecules secreted in the nose lumen by specialized cells, and they are responsible for the biochemical properties of the mucus gel. The mucus traps particles and clears them, and it also bathes microbiota, host molecules, and receptors that are all essential for odor perception in the olfactory epithelium. We used histology and immunohistochemistry to study the expression of the two main airway polymeric mucins, Muc5ac and Muc5b, in wild-type, green fluorescent protein-reporter Muc5b, and in genetically Muc5b-deficient mice. We report that Muc5ac is produced by goblet cells at the cell surface in the respiratory epithelium but is not expressed in the olfactory epithelium, whereas Muc5b is secreted by Bowman's glands situated in the lamina propria beneath the olfactory epithelium and also by goblet cells in the distal part of the respiratory epithelium. We also observed that Muc5b-deficient mice exhibited depletion of Bowman's glands. Using lectins, we found that terminally O-glycosylated chains of Muc5b were sialylated but not fucosylated, whereas Muc5ac was fucosylated but not sialylated. Specific localization and specific terminal glycosylation of the two mucins suggest different functions of the mucins.
Collapse
Affiliation(s)
- Salah-Eddine Amini
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Céline Portal
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
- Wilmer Eye Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, 21201, USA
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, 1 place de Verdun, 59000, Lille, France.
| |
Collapse
|
25
|
Demouveaux B, Gouyer V, Magnien M, Plet S, Gottrand F, Narita T, Desseyn JL. [Gel-forming mucins structure governs mucus gels viscoelasticity]. Med Sci (Paris) 2018; 34:806-812. [PMID: 30451674 DOI: 10.1051/medsci/2018206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mucus is the first line of innate mucosal defense in all mammals. Gel‑forming mucins control the rheological properties of mucus hydrogels by forming a network in which hydrophilic and hydrophobic regions coexist, and it has been revealed that the network is formed through both covalent links and reversible links such as hydrophobic interactions in order to modulate the structure as a function of the physiological necessities. Here, we review the structure and functions of the mucus in terms of the gel-forming mucins protein-protein interactions, also called interactome. Since it is difficult to characterize the low energy reversible interactions due to their dependence on physico-chemical environment, their role is not well understood. Still, they constitute a promising target to counteract mucus abnormalities observed in mucus-associated diseases.
Collapse
Affiliation(s)
- Bastien Demouveaux
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Valérie Gouyer
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Mylène Magnien
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Ségolène Plet
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- PSL Research University, UPMC Univ. Paris 06, ESPCI Paris, CNRS UMR 7615, Laboratoire Sciences et Ingénierie de la Matière Molle, 10, rue Vauquelin, 75231, Paris Cedex 05, France - Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japon
| | - Jean-Luc Desseyn
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| |
Collapse
|
26
|
Yamashita MSDA, Melo EO. Mucin 2 (MUC2) promoter characterization: an overview. Cell Tissue Res 2018; 374:455-463. [PMID: 30218241 DOI: 10.1007/s00441-018-2916-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Transgenic livestock have been studied with a well-known interest in improving quantitative and qualitative traits. In order to direct heterologous gene expression, it is indispensable to identify and characterize a promoter suitable for directing the expression of the gene of interest (GOI) in a tissue-specific way. The gastrointestinal tract is a desirable target for gene expression in several mammalian models. Throughout the surface of the intestinal epithelium, there is an intricate polymer network, formed by gel-forming mucins (especially MUC2 and MUC5AC, of which MUC2 is the major one), which plays a protective role due to the formation of a physical, chemical and immunological barrier between the organism and the environment. The characterization of the gel-forming mucins is difficult because of their large size and repetitive DNA sequences and domains. The main mucin in the small and large intestine, mucin 2 (MUC2), is expressed specifically in goblet cells. MUC2 plays an important role in intestinal homeostasis and its disruption is associated with several diseases and carcinomas. This mucin is also an important marker for elucidating mechanisms that regulate differentiation of the secretory cell lineage. This review presents the state of the art of MUC2 promoter structure and functional characterization.
Collapse
Affiliation(s)
| | - Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, PqEB Av W5 Norte, Brasilia, DF, 70770-917, Brazil
| |
Collapse
|
27
|
Abstract
Mucins are large glycoproteins that are ubiquitous in the animal kingdom. Mucins coat the surfaces of many cell types and can be secreted to form mucus gels that assume important physiological roles in many animals. Our growing understanding of the structure and function of mucin molecules and their functionalities has sparked interest in investigating the use of mucins as building blocks for innovative functional biomaterials. These pioneering studies have explored how new biomaterials can benefit from the barrier properties, hydration and lubrication properties, unique chemical diversity, and bioactivities of mucins. Owing to their multifunctionality, mucins have been used in a wide variety of applications, including as antifouling coatings, as selective filters, and artificial tears and saliva, as basis for cosmetics, as drug delivery materials, and as natural detergents. In this review, we summarize the current knowledge regarding key mucin properties and survey how they have been put to use. We offer a vision for how mucins could be used in the near future and what challenges await the field before biomaterials made of mucins and mucin-mimics can be translated into commercial products.
Collapse
Affiliation(s)
- Georgia Petrou
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Kungliga Tekniska Hogskolan, Stockholm, Sweden.
| | | |
Collapse
|
28
|
Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, Burgess JG. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes 2018; 4:14. [PMID: 30002868 PMCID: PMC6031612 DOI: 10.1038/s41522-018-0057-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/05/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Mucus layers often provide a unique and multi-functional hydrogel interface between the epithelial cells of organisms and their external environment. Mucus has exceptional properties including elasticity, changeable rheology and an ability to self-repair by re-annealing, and is therefore an ideal medium for trapping and immobilising pathogens and serving as a barrier to microbial infection. The ability to produce a functional surface mucosa was an important evolutionary step, which evolved first in the Cnidaria, which includes corals, and the Ctenophora. This allowed the exclusion of non-commensal microbes and the subsequent development of the mucus-lined digestive cavity seen in higher metazoans. The fundamental architecture of the constituent glycoprotein mucins is also evolutionarily conserved. Although an understanding of the biochemical interactions between bacteria and the mucus layer are important to the goal of developing new antimicrobial strategies, they remain relatively poorly understood. This review summarises the physicochemical properties and evolutionary importance of mucus, which make it so successful in the prevention of bacterial infection. In addition, the strategies developed by bacteria to counteract the mucus layer are also explored.
Collapse
Affiliation(s)
- Cassie R Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ana L Morales-Garcia
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mike Althaus
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Wilcox
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
30
|
Kootala S, Filho L, Srivastava V, Linderberg V, Moussa A, David L, Trombotto S, Crouzier T. Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans. Biomacromolecules 2018; 19:872-882. [PMID: 29451983 DOI: 10.1021/acs.biomac.7b01670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.
Collapse
Affiliation(s)
- Sujit Kootala
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Luimar Filho
- Department of Engineering Sciences, Applied Materials Science , Uppsala University , 752 37 Uppsala , Sweden
| | - Vaibhav Srivastava
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Victoria Linderberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Amani Moussa
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| |
Collapse
|
31
|
Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn JL. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018; 252:69-82. [PMID: 29329667 DOI: 10.1016/j.cis.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology. This approach can be used to investigate both the nature of gel-forming mucins interactions and factors that influence hydrogel formation. This knowledge is directly relevant to the development of new drugs to modulate mucus viscoelasticity and to restore normal mucus functions in diseases such as in cystic fibrosis. The aim of the present review is to summarize the current knowledge about the relationship between the mucus protein matrix and its functions, with emphasis on mucus viscoelasticity.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University, UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France.
| |
Collapse
|
32
|
Amat CB, Motta JP, Fekete E, Moreau F, Chadee K, Buret AG. Cysteine Protease-Dependent Mucous Disruptions and Differential Mucin Gene Expression in Giardia duodenalis Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2486-2498. [PMID: 28823873 DOI: 10.1016/j.ajpath.2017.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 02/08/2023]
Abstract
The intestinal mucous layer provides a critical host defense against pathogen exposure and epithelial injury, yet little is known about how enteropathogens may circumvent this physiologic barrier. Giardia duodenalis is a small intestinal parasite responsible for diarrheal disease and chronic postinfectious illness. This study reveals a complex interaction at the surface of epithelial cells, between G. duodenalis and the intestinal mucous layer. Here, we reveal mechanisms whereby G. duodenalis evades and disrupts the first line of host defense by degrading human mucin-2 (MUC2), depleting mucin stores and inducing differential gene expression in the mouse small and large intestines. Human colonic biopsy specimens exposed to G. duodenalis were depleted of mucus, and in vivo mice infected with G. duodenalis had a thinner mucous layer and demonstrated differential Muc2 and Muc5ac mucin gene expression. Infection in Muc2-/- mice elevated trophozoite colonization in the small intestine and impaired weight gain. In vitro, human LS174T goblet-like cells were depleted of mucus and had elevated levels of MUC2 mRNA expression after G. duodenalis exposure. Importantly, the cysteine protease inhibitor E64 prevented mucous degradation, mucin depletion, and the increase in MUC2 expression. This article describes a novel role for Giardia's cysteine proteases in pathogenesis and how Giardia's disruptions of the mucous barrier facilitate bacterial translocation that may contribute to the onset and propagation of disease.
Collapse
Affiliation(s)
- Christina B Amat
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Paul Motta
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Elena Fekete
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Calgary, Alberta, Canada.
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
33
|
Portal C, Gouyer V, Gottrand F, Desseyn JL. Preclinical mouse model to monitor live Muc5b-producing conjunctival goblet cell density under pharmacological treatments. PLoS One 2017; 12:e0174764. [PMID: 28355261 PMCID: PMC5371386 DOI: 10.1371/journal.pone.0174764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/15/2017] [Indexed: 01/30/2023] Open
Abstract
Purpose Modification of mucous cell density and gel-forming mucin production are established hallmarks of mucosal diseases. Our aim was to develop and validate a mouse model to study live goblet cell density in pathological situations and under pharmacological treatments. Methods We created a reporter mouse for the gel-forming mucin gene Muc5b. Muc5b-positive goblet cells were studied in the eye conjunctiva by immunohistochemistry and probe-based confocal laser endomicroscopy (pCLE) in living mice. Dry eye syndrome (DES) model was induced by topical application of benzalkonium chloride (BAK) and recombinant interleukine (rIL) 13 was administered to reverse the goblet cell loss in the DES model. Results Almost 50% of the total of conjunctival goblet cells are Muc5b+ in unchallenged mice. The decrease density of Muc5b+ conjunctival goblet cell population in the DES model reflects the whole conjunctival goblet cell loss. Ten days of BAK in one eye followed by 4 days without any treatment induced a −18.3% decrease in conjunctival goblet cell density. A four days of rIL13 application in the DES model restored the normal goblet cell density. Conclusion Muc5b is a biological marker of DES mouse models. We bring the proof of concept that our model is unique and allows a better understanding of the mechanisms that regulate gel-forming mucin production/secretion and mucous cell differentiation in the conjunctiva of living mice and can be used to test treatment compounds in mucosal disease models.
Collapse
Affiliation(s)
- Céline Portal
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
| | | | - Jean-Luc Desseyn
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, Lille, France
- * E-mail:
| |
Collapse
|
34
|
Portal C, Gouyer V, Magnien M, Plet S, Gottrand F, Desseyn JL. In vivo imaging of the Muc5b gel-forming mucin. Sci Rep 2017; 7:44591. [PMID: 28294161 PMCID: PMC5353722 DOI: 10.1038/srep44591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Gel-forming mucins are macromolecules produced by goblet cells and responsible for the mucus gel formation. Changes in goblet cell density and in gel-forming mucin production have emerged as sensitive indicators for mucosal diseases. A Muc5b-GFP tagged reporter mouse was used to assess Muc5b production in mouse tissues by immunofluorescence microscopy and fluorescent activity using stereromicroscopy and probe-based confocal laser endomicroscopy. Muc5b production was followed longitudinally by recording the fluorescent activity in vagina and in embryonic lung explants under stimulation by interleukin 13. We show that the GFP is easily visualized in the mouse adult ear, nose, trachea, gallbladder, and cervix. Live Muc5b is also easily monitored in the nasal cavity, trachea and vagina where its production varies during the estrus cycle with a peak at the proestrus phase and in pregnant mice. Explant culture of reporter mouse embryonic whole lung shows that interleukin 13 stimulates Muc5b production. The transgenic Muc5b-GFP mouse is unique and suitable to study the mechanisms that regulate Muc5b production/secretion and mucous cell differentiation by live imaging and can be applied to test drug efficacy in mucosal disease models.
Collapse
Affiliation(s)
- Céline Portal
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Valérie Gouyer
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Mylène Magnien
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Ségolène Plet
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Frédéric Gottrand
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Jean-Luc Desseyn
- LIRIC UMR 995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| |
Collapse
|
35
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
36
|
The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Sci Rep 2017; 7:40128. [PMID: 28045137 PMCID: PMC5206730 DOI: 10.1038/srep40128] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/02/2016] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects.
Collapse
|
37
|
Santos do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, Albernaz MDS, Bernardes ES, Missailidis S, Santos-Oliveira R. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int J Nanomedicine 2016; 12:53-60. [PMID: 28053523 PMCID: PMC5191850 DOI: 10.2147/ijn.s118482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The early and specific detection of tumors remains a barrier in oncology, especially in cases such as the triple-negative breast cancer (TNBC). To address this gap, aptamers have found an important application in the recognition of tumor biomarkers such as mucin 1 (MUC1). However, there are still some difficulties in the use of aptamer, as their rapid biological clearance makes their use as drugs limited. In this study, the anti-MUC1 aptamer was used as a drug delivery system (DDS) for a radioactive polymeric nanoparticle (NP) in the imaging of TNBCs. Thus, poly(lactic-co-glycolic acid) NPs loaded with the anti-MUC1 aptamer and labeled with technetium-99m were used for a biodistribution study and imaging of TNBC. The results confirmed that the NP was successfully obtained, with a mean size of 262 nm, according to the dynamic light scattering data. The biodistribution assay in induced animal models with TNBC showed that although there was a high capture by intestine (>30%), the DDS developed had a high tumor uptake (5%) and with great in vivo imaging properties, corroborating the possibility of use of this DDS as an imaging drug for TNBC.
Collapse
Affiliation(s)
- Fagner Santos do Carmo
- Rio de Janeiro State University, Biology Institute Roberto Alcantara Gomes; Brazilian Nuclear Energy Commission, Nuclear Engineering Institute
| | | | | | - Marta de Souza Albernaz
- Rio de Janeiro State University, Biology Institute Roberto Alcantara Gomes; University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro
| | | | - Sotiris Missailidis
- Institute of Technology in Immunobiologics Bio-Manguinhos, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
38
|
Desseyn JL, Gouyer V, Gottrand F. Biological modeling of mucus to modulate mucus barriers. Am J Physiol Gastrointest Liver Physiol 2016; 310:G225-7. [PMID: 26660538 DOI: 10.1152/ajpgi.00274.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A recent study using a transgenic mouse, whose intestinal mucus contains a molecule made of 12 copies of a domain found in many gelling mucins, demonstrates that it is possible to strengthen mucus properties in situ, leading to promising new treatment strategies in diseases in which the mucosal barrier is impaired.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- LIRIC-UMR 995, Inserm, University of Lille, Lille, France
| | | |
Collapse
|
39
|
Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients 2016; 8:nu8010044. [PMID: 26784223 PMCID: PMC4728657 DOI: 10.3390/nu8010044] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, numerous studies have shown that disruption of the mucus barrier plays an important role in the exacerbation of inflammatory bowel disease, particularly in ulcerative colitis. Alterations in the mucus barrier are well supported by published data and are widely accepted. The use of fluorescence in situ hybridization and Carnoy’s fixation has revealed the importance of the mucus barrier in maintaining a mutualistic relationship between host and bacteria. Studies have raised the possibility that modulation of the mucus barrier may provide therapies for the disease, using agents such as short-chain fatty acids, prebiotics and probiotics. This review describes changes in the mucus barrier of patients with inflammatory bowel disease and in animal models of the disease. We also review the involvement of the mucus barrier in the exacerbation of the disease and explore the therapeutic potential of modifying the mucus barrier with short-chain fatty acids, prebiotics, probiotics, fatty acid synthase, H2S, neutrophil elastase inhibitor and phophatidyl choline.
Collapse
|
40
|
Desseyn JL, Gouyer V, Gottrand F. Modification à façon des propriétés physiques du mucus. Med Sci (Paris) 2015; 31:1063-6. [DOI: 10.1051/medsci/20153112005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|