1
|
Nakanishi S, Suda T, Tanaka K, Yonamine T, Numahata K, Sugawa A, Oshiro T, Oshiro Y, Saito S, Inokuchi J. MUC1 expression is associated with ST3GAL2 and negatively correlated with the androgen receptor in castration-resistant prostate cancer. Glycoconj J 2024; 41:381-394. [PMID: 39718721 PMCID: PMC11735536 DOI: 10.1007/s10719-024-10173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Stage-specific embryonic antigen-4 (SSEA-4) is a developmentally regulated antigen, while expression level of SSEA-4 and / or its synthase ST3GAL2 is associated with prognosis in various malignancies. We have reported a prominent increase of SSEA-4 in castration-resistant prostate cancer (CRPC) and its negative correlation with the androgen receptor (AR). Meanwhile, loss of AR has increased to approximately 30% with the growing use of androgen receptor signaling inhibitor for metastatic CRPC (mCRPC). However, monitoring the progression status of AR-negative prostate cancer is a challenge because it does not produce prostate-specific antigen. Based on the negative relationship of expression between AR and SSEA-4, we hypothesized that a soluble molecule synchronized with SSEA-4 in expression could be a serum marker candidate for AR-negative prostate cancer. Thus, we investigated the molecular background of SSEA-4 expression by ST3GAL2-knockout in DU145 cells. Here we show that MUC1 is identified as a molecule associated with ST3GAL2 and expressed in AR-negative prostate cancer. A negative correlation of expression between AR and MUC1 was observed in prostate cancer cell lines and CRPC tissues. The average rate of MUC1 expression was nearly 60% in AR-negative prostate cancer cells in CRPC tissues. Level of serum CA15-3 (MUC1) was the highest in mCRPC among various stages and its higher level was associated with faster progression of mCRPC. Our results demonstrate that MUC1 is identified as a ST3GAL2-associated molecule and expressed in AR-negative CRPC cells. Furthermore, level of serum CA15-3 may reflect the progression status of mCRPC.
Collapse
MESH Headings
- Male
- Humans
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/blood
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Mucin-1/genetics
- Mucin-1/metabolism
- Mucin-1/blood
- Cell Line, Tumor
- Sialyltransferases/metabolism
- Sialyltransferases/genetics
- Stage-Specific Embryonic Antigens/metabolism
- beta-Galactoside alpha-2,3-Sialyltransferase
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Shotaro Nakanishi
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| | - Tetsuji Suda
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| | - Kei Tanaka
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| | - Tomoko Yonamine
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| | - Kenji Numahata
- Department of Urology, Yamagata Prefectural Central Hospital, 1800 Aoyagi, Yamagata, 990-2292, Japan
| | - Ai Sugawa
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| | - Takuma Oshiro
- Department of Urology, Naha City Hospital, 2-31-1 Furujima, Naha, 902-8511, Japan
| | - Yoshinori Oshiro
- Department of Urology, Chubu Tokushukai Hospital, 801 Higa, Kitanakagusuku-son, Nakagami-gun, Okinawa, 901-2393, Japan
| | - Seiichi Saito
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan.
- Medical Corporation Yoshinkai, 123 Daido, Naha, Okinawa, 902-0066, Japan.
| | - Junichi Inokuchi
- Department of Urology, University of the Ryukyus Graduate School of Medicine, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan.
| |
Collapse
|
2
|
Jamitzky S, Altvater B, Krekeler C, Hoen L, Brandes C, Ebbinghaus J, Richter L, Kosel L, Ochs L, Farwick N, Urban K, Kluge L, Bücker L, Görlich D, Johnston ICD, Pfeifer R, Hartmann W, Rossig C, Kailayangiri S. Ganglioside SSEA-4 in Ewing sarcoma marks a tumor cell population with aggressive features and is a potential cell-surface immune target. Sci Rep 2024; 14:11935. [PMID: 38789477 PMCID: PMC11126692 DOI: 10.1038/s41598-024-62849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Carbohydrate markers of immature cells during prenatal human development can be aberrantly expressed in cancers and deserve evaluation as immune targets. A candidate target in Ewing sarcoma is the globo-series ganglioside stage-specific embryonic antigen-4 (SSEA-4). We detected SSEA-4 expression on the cell surface of all of 14 EwS cell lines and in 21 of 31 (68%) primary EwS tumor biopsies. Among paired subpopulations of tumor cells with low versus high SSEA-4 expression, SSEA-4high expression was significantly and consistently associated with functional characteristics of tumor aggressiveness, including higher cell proliferation, colony formation, chemoresistance and propensity to migrate. SSEA-4low versus SSEA-4high expression was not related to expression levels of the EWSR1-FLI1 fusion transcript or markers of epithelial/mesenchymal plasticity. SSEA-4low cells selected from bulk populations regained higher SSEA-4 expression in vitro and during in vivo tumor growth in a murine xenograft model. T cells engineered to express SSEA-4-specific chimeric antigen receptors (CARs) specifically interacted with SSEA-4 positive EwS cells and exerted effective antigen-specific tumor cell lysis in vitro. In conclusion, with its stable expression and functional significance in EwS, SSEA-4 is an attractive therapeutic immune target in this cancer that deserves further evaluation for clinical translation.
Collapse
Affiliation(s)
- Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Carolin Krekeler
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laura Hoen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Caroline Brandes
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Julia Ebbinghaus
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Richter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Kosel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laurin Ochs
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Katja Urban
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lena Kluge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lara Bücker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstr. 56, 48149, Muenster, Germany
| | - Ian C D Johnston
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Domagkstr. 17, 48149, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Roentgenstr. 16, 48149, Muenster, Germany.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
3
|
Lee RH, Wang YJ, Lai TY, Hsu TL, Chuang PK, Wu HC, Wong CH. Combined Effect of Anti-SSEA4 and Anti-Globo H Antibodies on Breast Cancer Cells. ACS Chem Biol 2021; 16:1526-1537. [PMID: 34369155 DOI: 10.1021/acschembio.1c00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The globo-series glycosphingolipids (SSEA3, SSEA4, and Globo H) were shown to express in many cancers selectively, and a combination of anti-SSEA4 and anti-Globo H antibodies was able to suppress tumor growth in mice inoculated with breast cancer cell lines. To further understand the effect, we focused on the combined effect of the two antibodies in target binding and antibody-dependent cellular cytotoxicity (ADCC) in vitro. Here, we report that the binding of anti-Globo H antibody (VK9) to MDA-MB231 breast cancer cells was influenced by anti-SSEA4 antibody (MC813-70), and a combination of both antibodies induced a similar effect as did anti-SSEA4 antibodies alone in a reporter-based ADCC assay, indicating that SSEA4 is a major target in breast cancer due to its higher expression than Globo H. Furthermore, we showed that a homogeneous anti-SSEA4 antibody (chMC813-70-SCT) designed to maximize the ADCC activity can be used to isolate a subpopulation of natural killer (NK) cells that exhibit an ∼23% increase in killing the target cells as compared to the unseparated NK cells. These findings can be used to predict a therapy outcome based on the expression levels of antigens and evaluate therapeutic antibody development.
Collapse
Affiliation(s)
- Ruey-Herng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jen Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Kai Chuang
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Targetable Intercellular Signaling Pathways Facilitate Lung Colonization in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32767237 DOI: 10.1007/978-3-030-43085-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Outcomes for young people diagnosed with osteosarcoma hinge almost exclusively on whether they develop lung metastasis. The striking predilection that osteosarcoma shows for metastatic spread to lung suggests properties and/or lung interactions that generate tissue-specific survival and proliferation advantages. While these mechanisms remain overall poorly defined, studies have begun to describe biological elements important to metastasis. Mechanisms described to date include both cell-autonomous adaptations that allow disseminated tumor cells to survive the stressors imposed by metastasis and intercellular signaling networks that tumor cells exploit to pirate needed signals from surrounding tissues or to recruit other cells that create a more favorable niche. Evidence suggests that cell-autonomous changes are largely driven by epigenetic reprogramming of disseminated tumor cells that facilitates resistance to late apoptosis, manages endoplasmic reticulum (ER) stressors, promotes translation of complex transcripts, and activates clotting pathways. Tumor-host signaling pathways important for lung colonization drive interactions with lung epithelium, mesenchymal stem cells, and mediators of innate and adaptive immunity. In this chapter, we highlight one particular pathway that integrates cell-autonomous adaptations with lung-specific tumor-host interactions. In this mechanism, aberrant ΔNp63 expression primes tumor cells to produce IL6 and CXCL8 upon interaction with lung epithelial cells. This tumor-derived IL6 and CXCL8 then initiates autocrine, osteosarcoma-lung paracrine, and osteosarcoma-immune paracrine interactions that facilitate metastasis. Importantly, many of these pathways appear targetable with clinically feasible therapeutics. Ongoing work to better understand metastasis is driving efforts to improve outcomes by targeting the most devastating complication of this disease.
Collapse
|
5
|
Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:249-271. [PMID: 32057288 PMCID: PMC7310212 DOI: 10.1089/ten.teb.2019.0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Investigations of cancer biology and screening of potential therapeutics for efficacy and safety begin in the preclinical laboratory setting. A staple of most basic research in cancer involves the use of tissue culture plates, on which immortalized cell lines are grown in monolayers. However, this practice has been in use for over six decades and does not account for vital elements of the tumor microenvironment that are thought to aid in initiation, propagation, and ultimately, metastasis of cancer. Furthermore, information gleaned from these techniques does not always translate to animal models or, more crucially, clinical trials in cancer patients. Osteosarcoma (OS) and Ewing sarcoma (ES) are the most common primary tumors of bone, but outcomes for patients with metastatic or recurrent disease have stagnated in recent decades. The unique elements of the bone tumor microenvironment have been shown to play critical roles in the pathogenesis of these tumors and thus should be incorporated in the preclinical models of these diseases. In recent years, the field of tissue engineering has leveraged techniques used in designing scaffolds for regenerative medicine to engineer preclinical tumor models that incorporate spatiotemporal control of physical and biological elements. We herein review the clinical aspects of OS and ES, critical elements present in the sarcoma microenvironment, and engineering approaches to model the bone tumor microenvironment. Impact statement The current paradigm of cancer biology investigation and therapeutic testing relies heavily on monolayer, monoculture methods developed over half a century ago. However, these methods often lack essential hallmarks of the cancer microenvironment that contribute to tumor pathogenesis. Tissue engineers incorporate scaffolds, mechanical forces, cells, and bioactive signals into biological environments to drive cell phenotype. Investigators of bone sarcomas, aggressive tumors that often rob patients of decades of life, have begun to use tissue engineering techniques to devise in vitro models for these diseases. Their efforts highlight how critical elements of the cancer microenvironment directly affect tumor signaling and pathogenesis.
Collapse
Affiliation(s)
- Eric R. Molina
- Department of Bioengineering, Rice University, Houston, Texas
| | - Letitia K. Chim
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergio Barrios
- Department of Bioengineering, Rice University, Houston, Texas
| | - Joseph A. Ludwig
- Division of Cancer Medicine, Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | | |
Collapse
|
6
|
Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020; 10:13. [PMID: 32082995 PMCID: PMC7006476 DOI: 10.3389/fonc.2020.00013] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a malignant primary tumor of bone, arising from transformed progenitor cells with osteoblastic differentiation and osteoid production. While categorized as a rare tumor, most patients diagnosed with osteosarcoma are adolescents in their second decade of life and underscores the potential for life changing consequences in this vulnerable population. In the setting of localized disease, conventional treatment for osteosarcoma affords a cure rate approaching 70%; however, survival for patients suffering from metastatic disease remain disappointing with only 20% of individuals being alive past 5 years post-diagnosis. In patients with incurable disease, pulmonary metastases remain the leading cause for osteosarcoma-associated mortality; yet identifying new strategies for combating metastatic progression remains at a scientific and clinical impasse, with no significant advancements for the past four decades. While there is resonating clinical urgency for newer and more effective treatment options for managing osteosarcoma metastases, the discovery of druggable targets and development of innovative therapies for inhibiting metastatic progression will require a deeper and more detailed understanding of osteosarcoma metastasis biology. Toward the goal of illuminating the processes involved in cancer metastasis, a convergent science approach inclusive of diverse disciplines spanning the biology and physical science domains can offer novel and synergistic perspectives, inventive, and sophisticated model systems, and disruptive experimental approaches that can accelerate the discovery and characterization of key processes operative during metastatic progression. Through the lens of trans-disciplinary research, the field of comparative oncology is uniquely positioned to advance new discoveries in metastasis biology toward impactful clinical translation through the inclusion of pet dogs diagnosed with metastatic osteosarcoma. Given the spontaneous course of osteosarcoma development in the context of real-time tumor microenvironmental cues and immune mechanisms, pet dogs are distinctively valuable in translational modeling given their faithful recapitulation of metastatic disease progression as occurs in humans. Pet dogs can be leveraged for the exploration of novel therapies that exploit tumor cell vulnerabilities, perturb local microenvironmental cues, and amplify immunologic recognition. In this capacity, pet dogs can serve as valuable corroborative models for realizing the science and best clinical practices necessary for understanding and combating osteosarcoma metastases.
Collapse
Affiliation(s)
- Timothy M Fan
- Comparative Oncology Research Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, The James Comprehensive Cancer Center at The Ohio State University, Columbus, OH, United States
| | - Michael M Lizardo
- Poul Sorensen Laboratory, Department of Molecular Oncology, BC Cancer, Part of the Provincial Health Services Authority in British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Molina ER, Chim LK, Salazar MC, Mehta SM, Menegaz BA, Lamhamedi-Cherradi SE, Satish T, Mohiuddin S, McCall D, Zaske AM, Cuglievan B, Lazar AJ, Scott DW, Grande-Allen JK, Ludwig JA, Mikos AG. Mechanically tunable coaxial electrospun models of YAP/TAZ mechanoresponse and IGF-1R activation in osteosarcoma. Acta Biomater 2019; 100:38-51. [PMID: 31542501 PMCID: PMC7027943 DOI: 10.1016/j.actbio.2019.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023]
Abstract
Current in vitro methods for assessing cancer biology and therapeutic response rely heavily on monolayer cell culture on hard, plastic surfaces that do not recapitulate essential elements of the tumor microenvironment. While a host of tumor models exist, most are not engineered to control the physical properties of the microenvironment and thus may not reflect the effects of mechanotransduction on tumor biology. Utilizing coaxial electrospinning, we developed three-dimensional (3D) tumor models with tunable mechanical properties in order to elucidate the effects of substrate stiffness and tissue architecture in osteosarcoma. Mechanical properties of coaxial electrospun meshes were characterized with a series of macroscale testing with uniaxial tensile testing and microscale testing utilizing atomic force microscopy on single fibers. Calculated moduli in our models ranged over three orders of magnitude in both macroscale and microscale testing. Osteosarcoma cells responded to decreasing substrate stiffness in 3D environments by increasing nuclear localization of Hippo pathway effectors, YAP and TAZ, while downregulating total YAP. Additionally, a downregulation of the IGF-1R/mTOR axis, the target of recent clinical trials in sarcoma, was observed in 3D models and heralded increased resistance to combination chemotherapy and IGF-1R/mTOR targeted agents compared to monolayer controls. In this study, we highlight the necessity of incorporating mechanical cues in cancer biology investigation and the complexity in mechanotransduction as a confluence of stiffness and culture architecture. Our models provide a versatile, mechanically variable substrate on which to study the effects of physical cues on the pathogenesis of tumors. STATEMENT OF SIGNIFICANCE: The tumor microenvironment plays a critical role in cancer pathogenesis. In this work, we engineered 3D, mechanically tunable, coaxial electrospun environments to determine the roles of the mechanical environment on osteosarcoma cell phenotype, morphology, and therapeutic response. We characterize the effects of varying macroscale and microscale stiffnesses in 3D environments on the localization and expression of the mechanoresponsive proteins, YAP and TAZ, and evaluate IGF-1R/mTOR pathway activation, a target of recent clinical trials in sarcoma. Increased nuclear YAP/TAZ was observed as stiffness in 3D was decreased. Downregulation of the IGF-1R/mTOR cascade in all 3D environments was observed. Our study highlights the complexity of mechanotransduction in 3D culture and represents a step towards controlling microenvironmental elements in in vitro cancer investigations.
Collapse
Affiliation(s)
- Eric R Molina
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Letitia K Chim
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Maria C Salazar
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Shail M Mehta
- Department of Applied Physics, Rice University, Houston, TX, United States
| | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Salah-Eddine Lamhamedi-Cherradi
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Tejus Satish
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Sana Mohiuddin
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - David McCall
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Maria Zaske
- The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Branko Cuglievan
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander J Lazar
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States; Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - David W Scott
- Department of Statistics, Rice University, Houston, TX, United States
| | | | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
8
|
Kaur H, Moreau R. Role of mTORC1 in intestinal epithelial repair and tumorigenesis. Cell Mol Life Sci 2019; 76:2525-2546. [PMID: 30944973 PMCID: PMC11105546 DOI: 10.1007/s00018-019-03085-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
mTORC1 signaling is the prototypical pathway regulating protein synthesis and cell proliferation. mTORC1 is active in stem cells located at the base of intestinal crypts but silenced as transit-amplifying cells differentiate into enterocytes or secretory cells along the epithelium. After an insult or injury, self-limiting and controlled activation of mTORC1 is critical for the renewal and repair of intestinal epithelium. mTORC1 promotes epithelial cell renewal by driving cryptic stem cell division, and epithelial cell repair by supporting the dedifferentiation and proliferation of enterocytes or secretory cells. Under repeated insult or injury, mTORC1 becomes constitutively active, triggering an irreversible return to stemness, cell division, proliferation, and inflammation among dedifferentiated epithelial cells. Epithelium-derived cytokines promulgate inflammation within the lamina propria, which in turn releases inflammatory factors that act back on the epithelium where undamaged intestinal epithelial cells participate in the pervading state of inflammation and become susceptible to tumorigenesis.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
9
|
Nakamura Y, Miyata Y, Matsuo T, Shida Y, Hakariya T, Ohba K, Taima T, Ito A, Suda T, Hakomori SI, Saito S, Sakai H. Stage-specific embryonic antigen-4 is a histological marker reflecting the malignant behavior of prostate cancer. Glycoconj J 2019; 36:409-418. [PMID: 31243630 PMCID: PMC6744380 DOI: 10.1007/s10719-019-09882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Stage-specific embryonic antigen-4 (SSEA-4), a specific marker for pluripotent stem cells, plays an important role in the malignant behavior of several cancers. Here, SSEA-4 expression was evaluated by immunohistochemistry using monoclonal antibody RM1 specific to SSEA-4 in 181 and 117 prostate cancer (PC) specimens obtained by biopsy and radical prostatectomy (RP), respectively. The relationships between SSEA-4 expression in cancer cells or the presence of SSEA-4-positive tumor-infiltrating immune cells (TICs) and clinicopathological parameters were analyzed. SSEA-4 expression in cancer cells was significantly associated with Gleason score, local progression, and lymph node and distant metastasis. In RP specimens, high SSEA-4 expression in cancer cells and the presence of SSEA-4-positive TICs were significant predictors of pT3, i.e., invasion and worse biochemical recurrence (BCR) after RP, respectively, in univariate analysis. In contrast, combination of high SSEA-4 expression in cancer cells and the presence of SSEA-4-positive TICs was an independent predictor for pT3 and BCR in multivariate analysis. Biologically this combination was also independently associated with suppression of apoptosis. Thus, the co-expression of SSEA-4 in cancer cells and TICs may have crucial roles in the malignant aggressiveness and prognosis of PC. Invasive potential and suppression of apoptosis may be linked to SSEA-4 expression.
Collapse
Affiliation(s)
- Yuichiro Nakamura
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yohei Shida
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tomoaki Hakariya
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takenobu Taima
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, 980-8574, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Miyagi, 980-8574, Japan
| | - Tetsuji Suda
- Department of Urology, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Sen-Itiroh Hakomori
- Departments of Pathobiology and Global Health, University of Washington, Seattle, WA, 98112, USA
| | - Seiichi Saito
- Department of Urology, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
10
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
11
|
Bao Q, Gong L, Wang J, Wen J, Shen Y, Zhang W. Extracellular Vesicle RNA Sequencing Reveals Dramatic Transcriptomic Alterations Between Metastatic and Primary Osteosarcoma in a Liquid Biopsy Approach. Ann Surg Oncol 2018; 25:2642-2651. [PMID: 29981024 DOI: 10.1245/s10434-018-6642-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a highly metastasizing bone malignancy despite wide surgical resection of the primary lesion. A liquid biopsy approach to detect residual disease and identify therapeutic targets is still lacking. In this report, we aimed to track the metastasis of OS via extracellular vesicle (EV) RNA profiling in a non-invasive manner. METHODS We applied RNA sequencing for 10 matched metastatic and primary OS EV samples, including two pairs of cell lines and three pairs of plasma, and compared the expressed mutation, gene expression, fusion transcript, and alternative splicing (AS) between metastatic and primary OS at the transcriptome-wide level. Additional paired tissue/EVs were sequenced and public datasets were used to validate the EV-based metastatic biopsy. RESULTS EVs were characterized through size-profiling, immunolabeling, and morphological examination. A drastic increase of mutation burden was observed in metastatic OS versus the non-metastatic counterpart. Hierarchical clustering of the expression profiles differentiated the metastatic EVs from the non-metastatic, with a signature enriched in cell-adhesion signaling and tyrosine kinase pathways. Moreover, 30 cancer-related gene fusions were identified in EV RNA as AS events tend to be more frequently observed in metastatic EVs. Further investigation suggested that over 70% of expressed point mutations from EVs could be validated in paired cell line/EV and tissue/EV analyses, and the expression signature significantly predicted 5-year survivorship of 42 patients from a public dataset. CONCLUSION We have demonstrated a liquid biopsy-based approach for tracking cancer transcriptomic alterations, which is a promising source of prognostic and therapeutic biomarkers for metastatic OS. CLINICAL TRIAL REGISTRATION NCT03108677.
Collapse
Affiliation(s)
- Qiyuan Bao
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liangzhi Gong
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junxiang Wen
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weibin Zhang
- Department of Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Adaptive Fibrogenic Reprogramming of Osteosarcoma Stem Cells Promotes Metastatic Growth. Cell Rep 2018; 24:1266-1277.e5. [DOI: 10.1016/j.celrep.2018.06.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
|
13
|
Gong L, Bao Q, Hu C, Wang J, Zhou Q, Wei L, Tong L, Zhang W, Shen Y. Exosomal miR-675 from metastatic osteosarcoma promotes cell migration and invasion by targeting CALN1. Biochem Biophys Res Commun 2018; 500:170-176. [PMID: 29626470 DOI: 10.1016/j.bbrc.2018.04.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Exosomal microRNAs(miRNAs) transfer from tumor to stromal cells is reportedly associated with cancer progression and metastasis in various epithelial cancers. However, the role of exosomal miRNA in the metastasis of osteosarcoma(OS) -the most common bone malignancy-still largely remains unknown. In this study, we purified exosomes with a median size close to 100 nm from cell culture media as well as patient serum, and proved that exosomes derived from the metastatic, but not the non-metastatic OS cells increase the migration and invasion of non-malignant fibroblast cells (hFOB1.19) in vitro. Furthermore, the differential miRNA cargo between metastatic and non-metastatic OS is identified by small RNA sequencing and RT-PCR validation, we found a highly expression of exosomal, but not cellular miR-675 level in the metastatic OS cell-lines compared with non-metastatic counterparts. Meanwhile, we also found that exosomal miR-675 could down-regulate CALN1 expression in recipient cell, which may influence the invasion and migration of hFOB1.19. Finally, the up regulation serum exosomal miR-675 and down regulation of CALN1 in tumor specimen was also found to be associated with the metastatic phenotype in OS patients. Our findings indicate that the exosomal miR-675 is a gene associated with OS and serum exosomal miR-675 expression may serve as a novel biomarker for the metastasis of OS.
Collapse
Affiliation(s)
- Liangzhi Gong
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Chuanzhen Hu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Jun Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Li Wei
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Shanghai, 200025, PR China
| | - Lei Tong
- Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| |
Collapse
|
14
|
Patient-derived osteosarcoma cells are resistant to methotrexate. PLoS One 2017; 12:e0184891. [PMID: 28934267 PMCID: PMC5608286 DOI: 10.1371/journal.pone.0184891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/01/2017] [Indexed: 01/12/2023] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and young adults. The median survival of osteosarcoma patients has not significantly improved since 1990, despite administration of different classes of chemotherapy agents, such as methotrexate, cisplatin and doxorubicin. Cancer stem cells (CSCs) are responsible for the resistance of osteosarcoma to chemotherapy and OCT4, SOX2 and SSEA4 have been used to identify CSCs in osteosarcoma. Here, we used low-passage patient-derived osteosarcoma cells and osteosarcoma cells directly isolated from patients before and after chemotherapy treatments to evaluate the effects of chemotherapy on stem cell markers expression. We demonstrate that primary osteosarcoma cells are resistant to methotrexate treatment and sensitive to cisplatin and doxorubicin in vitro. We also verified that cisplatin and doxorubicin reduce the expression of SOX2 and OCT4 in primary osteosarcoma cells whereas methotrexate does not alter SOX2 and OCT4 expression, however it increases SSEA4 expression in primary osteosarcoma cells. Finally, we found that, although the combination treatment cisplatin plus doxorubicin inhibited the in vivo growth of osteosarcoma cells in NOD-SCID gamma mice subcutaneously injected with SaOs2, the combination treatment cisplatin plus doxorubicin plus methotrexate did not inhibit the in vivo growth of these cells. These observations may provide an explanation for the poor response of osteosarcomas to chemotherapy and point to the need of reevaluating the therapeutic strategies for human osteosarcomas.
Collapse
|
15
|
Hu C, Chen X, Wen J, Gong L, Liu Z, Wang J, Liang J, Hu F, Zhou Q, Wei L, Shen Y, Zhang W. Antitumor effect of focal adhesion kinase inhibitor PF562271 against human osteosarcoma in vitro and in vivo. Cancer Sci 2017; 108:1347-1356. [PMID: 28406574 PMCID: PMC5497929 DOI: 10.1111/cas.13256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Focal adhesion kinase (FAK) overexpression is related to invasive and metastatic properties in different kinds of cancers. Target therapy by inhibiting FAK has achieved promising effect in some cancer treatments, but its effect in human osteosarcoma has not been well studied. In the present study, we analyzed the antitumor efficacy of PF562271, an FAK inhibitor, against osteosarcoma in vitro and in vivo. Phosphorylated FAK (Y397) was highly expressed in primary human osteosarcoma tumor samples and was associated with osteosarcoma prognosis and lung metastasis. PF562271 greatly suppressed proliferation and colony formation in human osteosarcoma cell lines. In addition, treatment of osteosarcoma cell lines with PF562271 induced apoptosis and downregulated the activity of the protein kinase B/mammalian target of rapamycin pathway. PF562271 also impaired the tube formation ability of endothelial cells in vitro. Finally, oral treatment with PF562271 in mice dramatically reduced tumor volume, weight, and angiogenesis of osteosarcoma xenografts in vivo. These results indicate that FAK inhibitor PF562271 can potentially be effectively used for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chuanzhen Hu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedics, Wuxi Xinrui Hospital, Wuxi Branch, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Wuxi, China
| | - Junxiang Wen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liangzhi Gong
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuochao Liu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Liang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqiong Hu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Wei
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopedics and Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget 2017; 8:75881-75892. [PMID: 29100277 PMCID: PMC5652671 DOI: 10.18632/oncotarget.17427] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023] Open
Abstract
Microenvironment at the metastatic locus usually differs greatly from that present in the site of primary tumor formation and it has a significant impact on the fate of the extravasated cancer cells. We compared gene expression signatures of primary tumors and lung metastatic tumors, and identified Thrombospondin-1 (TSP1) as highly up-regulated in the lung metastatic tumors. Immunohistochemical staining further indicated that TSP1 protein expression was higher in lung metastatic tumors compared to primary tumors in both osteosarcoma xenograft model and human clinical samples. TSP1 mRNA level is significantly associated with the Enneking stage of osteosarcoma and lung metastasis. TGF-β pathways could stimulate the TSP1 expression in osteosarcoma cells. Knockdown of TSP1 expression in osteosarcoma cells dramatically suppressed cell wound healing, migration and invasion. Treatment with recombinant TSP1 protein in osteosarcoma cells significantly promoted cell wound healing, migration and invasion. Meanwhile, suppression of TSP1 in osteosarcoma cells resulted in decreased pulmonary metastasis in vivo. Mechanistically, TSP1 increased expression of metastasis related genes, including MMP2, MMP9 and Fibronectin 1. TSP1 promoted osteosarcoma cell motility through the activation of FAK pathway. Taken together, our study provides evidence of the contributions of TSP1 to the lung metastasis of osteosarcoma and suggests that this protein may represent a potential therapeutic target for osteosarcoma lung metastasis.
Collapse
|