1
|
Grasemann L, Thiel Pizarro P, Maerkl SJ. C2CAplus: A One-Pot Isothermal Circle-to-Circle DNA Amplification System. ACS Synth Biol 2023; 12:3137-3142. [PMID: 37729629 PMCID: PMC10594867 DOI: 10.1021/acssynbio.3c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 09/22/2023]
Abstract
Rolling circle amplification (RCA) is a widely used DNA amplification method that uses circular template DNA as input and produces multimeric, linear single- or double-stranded DNA. Circle-to-circle amplification (C2CA) has further expanded this method by implementing product recircularization using restriction and ligation, leading to a higher amplification yield and enabling the generation of circular products. However, C2CA is a multistep, nonisothermal method, requiring multiple fluid manipulations and thereby compromises several advantages of RCA. Here, we improved C2CA to implement a one-pot, single step, isothermal reaction at temperatures ranging from 25 to 37 °C. Our C2CAplus method is simple, robust, and produces large quantities of product DNA that can be seen with the naked eye.
Collapse
Affiliation(s)
- Laura Grasemann
- Institute of Bioengineering,
School of Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Paula Thiel Pizarro
- Institute of Bioengineering,
School of Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering,
School of Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Seo K, Ichihashi N. Investigation of Compatibility between DNA Replication, Transcription, and Translation for in Vitro Central Dogma. ACS Synth Biol 2023; 12:1813-1822. [PMID: 37271965 DOI: 10.1021/acssynbio.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent advances in in vitro synthetic biology have made it possible to reconstitute various cellular functions in a test tube. However, the integration of these functions remains a major challenge. This study aimed to identify a suitable condition to achieve all three reactions that constitute the central dogma: transcription, translation, and DNA replication. Specifically, we investigated the effect of the concentrations of 11 nonprotein factors required for in vitro transcription, translation, and DNA replication on each of these reactions. Our results indicate that certain factors have opposing effects on the three reactions. For example, while dNTP is necessary for DNA replication, it inhibited translation, and both rNTP and tRNA, which are essential for transcription and translation, inhibited DNA replication with several DNA polymerases. We also found that these opposing effects were partially alleviated by optimizing the magnesium concentration. Using this knowledge, we successfully demonstrated transcription/translation-coupled DNA replication with higher levels of transcription and translation while maintaining a certain level of DNA replication. These findings not only provide useful insights for the development of a complex artificial system with the central dogma but also raise the question of how natural cells overcome the incompatibility between the three reactions.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Hagino K, Ichihashi N. In Vitro Transcription/Translation-Coupled DNA Replication through Partial Regeneration of 20 Aminoacyl-tRNA Synthetases. ACS Synth Biol 2023; 12:1252-1263. [PMID: 37053032 DOI: 10.1021/acssynbio.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The in vitro reconstruction of life-like self-reproducing systems is a major challenge in in vitro synthetic biology. Self-reproduction requires regeneration of all molecules involved in DNA replication, transcription, and translation. This study demonstrated the continuous DNA replication and partial regeneration of major translation factors, 20 aminoacyl-tRNA synthetases (aaRS), in a reconstituted transcription/translation system (PURE system) for the first time. First, we replicated each DNA that encodes one of the 20 aaRSs through aaRS expression from the DNA by serial transfer experiments. Thereafter, we successively increased the number of aaRS genes and achieved simultaneous, continuous replication of DNA that encodes all 20 aaRSs, which comprised approximately half the number of protein factors in the PURE system, except for ribosomes, by employing dialyzed reaction and sequence optimization. This study provides a step-by-step methodology for continuous DNA replication with an increasing number of self-regenerative genes toward self-reproducing artificial systems.
Collapse
Affiliation(s)
- Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
De Capitani J, Mutschler H. The Long Road to a Synthetic Self-Replicating Central Dogma. Biochemistry 2023; 62:1221-1232. [PMID: 36944355 PMCID: PMC10077596 DOI: 10.1021/acs.biochem.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Indexed: 03/23/2023]
Abstract
The construction of a biochemical system capable of self-replication is a key objective in bottom-up synthetic biology. Throughout the past two decades, a rapid progression in the design of in vitro cell-free systems has provided valuable insight into the requirements for the development of a minimal system capable of self-replication. The main limitations of current systems can be attributed to their macromolecular composition and how the individual macromolecules use the small molecules necessary to drive RNA and protein synthesis. In this Perspective, we discuss the recent steps that have been taken to generate a minimal cell-free system capable of regenerating its own macromolecular components and maintaining the homeostatic balance between macromolecular biogenesis and consumption of primary building blocks. By following the flow of biological information through the central dogma, we compare the current versions of these systems to date and propose potential alterations aimed at designing a model system for self-replicative synthetic cells.
Collapse
Affiliation(s)
- Jacopo De Capitani
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical
Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Pavão G, Sfalcin I, Bonatto D. Biocontainment Techniques and Applications for Yeast Biotechnology. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Biocontainment techniques for genetically modified yeasts (GMYs) are pivotal due to the importance of these organisms for biotechnological processes and also due to the design of new yeast strains by using synthetic biology tools and technologies. Due to the large genetic modifications that many yeast strains display, it is highly desirable to avoid the leakage of GMY cells into natural environments and, consequently, the spread of synthetic genes and circuits by horizontal or vertical gene transfer mechanisms within the microorganisms. Moreover, it is also desirable to avoid patented yeast gene technologies spreading outside the production facility. In this review, the different biocontainment technologies currently available for GMYs were evaluated. Interestingly, uniplex-type biocontainment approaches (UTBAs), which rely on nutrient auxotrophies induced by gene mutation or deletion or the expression of the simple kill switches apparatus, are still the major biocontainment approaches in use with GMY. While bacteria such as Escherichia coli account for advanced biocontainment technologies based on synthetic biology and multiplex-type biocontainment approaches (MTBAs), GMYs are distant from this scenario due to many reasons. Thus, a comparison of different UTBAs and MTBAs applied for GMY and genetically engineered microorganisms (GEMs) was made, indicating the major advances of biocontainment techniques for GMYs.
Collapse
|
6
|
Abstract
Nucleic acids are paving the way for advanced therapeutics. Unveiling the genome enabled a better understanding of unique genotype-phenotype profiling. Methods for engineering and analysis of nucleic acids, from polymerase chain reaction to Cre-Lox recombination, are contributing greatly to biomarkers' discovery, mapping of cellular signaling cascades, and smart design of therapeutics in precision medicine. Investigating the different subtypes of DNA and RNA via sequencing and profiling is empowering the scientific community with valuable information, to be used in advanced therapeutics, tracking epigenetics linked to disease. Recent results from the application of nucleic acids in novel therapeutics and precision medicine are very encouraging, demonstrating great potential to treat cancer, viral infections via inoculation (e.g., SAR-COV-2 mRNA vaccines), along with metabolic and genetic disorders. Limitations posed by challenges in delivery mode are being addressed to enable efficient guided-gene-programmed precision therapies. With the focus on genetic engineering and novel therapeutics, more precisely, in precision medicine, this chapter discusses the advance enabled by knowledge derived from these innovative branches of biotechnology.
Collapse
|
7
|
Han F, Xu B, Lu N, Caliari A, Lu H, Xia Y, Su'etsugu M, Xu J, Yomo T. Optimization and compartmentalization of a cell-free mixture of DNA amplification and protein translation. Appl Microbiol Biotechnol 2022; 106:8139-8149. [PMID: 36355086 DOI: 10.1007/s00253-022-12278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.
Collapse
Affiliation(s)
- Fuhai Han
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Nan Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
8
|
Miyachi R, Shimizu Y, Ichihashi N. Transfer RNA Synthesis-Coupled Translation and DNA Replication in a Reconstituted Transcription/Translation System. ACS Synth Biol 2022; 11:2791-2799. [PMID: 35848947 DOI: 10.1021/acssynbio.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfer RNAs (tRNAs) are key molecules involved in translation. In vitro synthesis of tRNAs and their coupled translation are important challenges in the construction of a self-regenerative molecular system. Here, we first purified EF-Tu and ribosome components in a reconstituted translation system of Escherichia coli to remove residual tRNAs. Next, we expressed 15 types of tRNAs in the repurified translation system and performed translation of the reporter luciferase gene depending on the expression. Furthermore, we demonstrated DNA replication through expression of a tRNA encoded by DNA, mimicking information processing within the cell. Our findings highlight the feasibility of an in vitro self-reproductive system, in which tRNAs can be synthesized from replicating DNA.
Collapse
Affiliation(s)
- Ryota Miyachi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita 565-0874, Osaka, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Sierra AMR, Arold ST, Grünberg R. Efficient multi-gene expression in cell-free droplet microreactors. PLoS One 2022; 17:e0260420. [PMID: 35312702 PMCID: PMC8936439 DOI: 10.1371/journal.pone.0260420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Cell-free transcription and translation systems promise to accelerate and simplify the engineering of proteins, biological circuits and metabolic pathways. Their encapsulation on microfluidic platforms can generate millions of cell-free reactions in picoliter volume droplets. However, current methods struggle to create DNA diversity between droplets while also reaching sufficient protein expression levels. In particular, efficient multi-gene expression has remained elusive. We here demonstrate that co-encapsulation of DNA-coated beads with a defined cell-free system allows high protein expression while also supporting genetic diversity between individual droplets. We optimize DNA loading on commercially available microbeads through direct binding as well as through the sequential coupling of up to three genes via a solid-phase Golden Gate assembly or BxB1 integrase-based recombineering. Encapsulation with an off-the-shelf microfluidics device allows for single or multiple protein expression from a single DNA-coated bead per 14 pL droplet. We envision that this approach will help to scale up and parallelize the rapid prototyping of more complex biological systems.
Collapse
Affiliation(s)
- Ana Maria Restrepo Sierra
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Bionanoscience Department/Applied Sciences, Technische Universiteit Delft, Delft, The Netherlands
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- Centre de Biologie Structurale (CBS)/CNRS/INSERM, Université Montpellier, Montpellier, France
| | - Raik Grünberg
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
10
|
Okauchi H, Ichihashi N. Continuous Cell-Free Replication and Evolution of Artificial Genomic DNA in a Compartmentalized Gene Expression System. ACS Synth Biol 2021; 10:3507-3517. [PMID: 34781676 DOI: 10.1021/acssynbio.1c00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In all living organisms, genomic DNA continuously replicates by the proteins encoded in itself and undergoes evolution through many generations of replication. This continuous replication coupled with gene expression and the resultant evolution are fundamental functions of living things, but they have not previously been reconstituted in cell-free systems. In this study, we combined an artificial DNA replication scheme with a reconstituted gene expression system and microcompartmentalization to realize these functions. Circular DNA replicated through rolling-circle replication followed by homologous recombination catalyzed by the proteins, phi29 DNA polymerase, and Cre recombinase expressed from the DNA. We encapsulated the system in microscale water-in-oil droplets and performed serial dilution cycles. Isolated circular DNAs at Round 30 accumulated several common mutations, and the isolated DNA clones exhibited higher replication abilities than the original DNA due to its improved ability as a replication template, increased polymerase activity, and a reduced inhibitory effect of polymerization by the recombinase. The artificial genomic DNA, which continuously replicates using self-encoded proteins and autonomously improves its sequence, provides a useful starting point for the development of more complex artificial cells.
Collapse
Affiliation(s)
- Hiroki Okauchi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Frischmon C, Sorenson C, Winikoff M, Adamala KP. Build-a-Cell: Engineering a Synthetic Cell Community. Life (Basel) 2021; 11:life11111176. [PMID: 34833052 PMCID: PMC8618533 DOI: 10.3390/life11111176] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Build-a-Cell is a global network of researchers that aims to develop synthetic living cells within the next decade. These cells will revolutionize the biotechnology industry by providing scientists and engineers with a more complete understanding of biology. Researchers can already replicate many cellular functions individually, but combining them into a single cell remains a significant challenge. This integration step will require the type of large-scale collaboration made possible by Build-a-Cell's open, collective structure. Beyond the lab, Build-a-Cell addresses policy issues and biosecurity concerns associated with synthetic cells. The following review discusses Build-a-Cell's history, function, and goals.
Collapse
Affiliation(s)
- Caroline Frischmon
- Science Communication Lab., BioTechnology Institute, University of Minnesota, Minneapolis, MN 55108, USA; (C.F.); (M.W.)
| | - Carlise Sorenson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Michael Winikoff
- Science Communication Lab., BioTechnology Institute, University of Minnesota, Minneapolis, MN 55108, USA; (C.F.); (M.W.)
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
12
|
Olivi L, Berger M, Creyghton RNP, De Franceschi N, Dekker C, Mulder BM, Claassens NJ, Ten Wolde PR, van der Oost J. Towards a synthetic cell cycle. Nat Commun 2021; 12:4531. [PMID: 34312383 PMCID: PMC8313558 DOI: 10.1038/s41467-021-24772-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
13
|
Gaut NJ, Adamala KP. Reconstituting Natural Cell Elements in Synthetic Cells. Adv Biol (Weinh) 2021; 5:e2000188. [DOI: 10.1002/adbi.202000188] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nathaniel J. Gaut
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| | - Katarzyna P. Adamala
- Department of Genetics Cell Biology and Development University of Minnesota 420 Washington Ave SE Minneapolis MN 55455 USA
| |
Collapse
|
14
|
Sakatani Y, Mizuuchi R, Ichihashi N. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication. Protein Eng Des Sel 2020; 32:481-487. [PMID: 32533140 DOI: 10.1093/protein/gzaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/20/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Phi29 DNA polymerase is widely used for DNA amplification through rolling-circle replication or multiple displacement amplification. Here, we performed completely in vitro artificial evolution of phi29 DNA polymerase by combining the in vitro compartmentalization and the gene expression-coupled rolling-circle replication of a circular DNA encoding the polymerase. We conducted the experiments in six different conditions composed of three different levels of inhibitor concentrations with two different DNA labeling methods. One of the experiments was performed in our previous study and the other five experiments were newly conducted in this study. Under all conditions, we found several mutations that enhance the rolling-circle amplification by the polymerase when it was expressed in the reconstituted gene expression system. Especially, a combinatorial mutant polymerase (K555T/D570N) exhibits significantly higher rolling-circle activity than the wild type. These highly active mutant polymerases would be useful for various applications.
Collapse
Affiliation(s)
- Yoshihiro Sakatani
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
15
|
Laohakunakorn N. Cell-Free Systems: A Proving Ground for Rational Biodesign. Front Bioeng Biotechnol 2020; 8:788. [PMID: 32793570 PMCID: PMC7393481 DOI: 10.3389/fbioe.2020.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems present an alternative approach to synthetic biology, where biological gene expression is harnessed inside non-living, in vitro biochemical reactions. Taking advantage of a plethora of recent experimental innovations, they easily overcome certain challenges for computer-aided biological design. For instance, their open nature renders all their components directly accessible, greatly facilitating model construction and validation. At the same time, these systems present their own unique difficulties, such as limited reaction lifetimes and lack of homeostasis. In this Perspective, I propose that cell-free systems are an ideal proving ground to test rational biodesign strategies, as demonstrated by a small but growing number of examples of model-guided, forward engineered cell-free biosystems. It is likely that advances gained from this approach will contribute to our efforts to more reliably and systematically engineer both cell-free as well as living cellular systems for useful applications.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Okauchi H, Sakatani Y, Otsuka K, Ichihashi N. Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach. ACS Synth Biol 2020; 9:1771-1780. [PMID: 32674580 DOI: 10.1021/acssynbio.0c00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA replication is one of the central functions of the cell. The complexity of modern DNA replication systems raises a question: is it possible to achieve a simpler continuous isothermal DNA replication using fewer proteins? Here, we searched such replication using an evolutionary approach. Through a long-term serial dilution experiment with phi29 DNA polymerase, we found that large repetitive DNAs spontaneously appear and continuously replicate. The repetitive sequence is critical for replication. Arbitrary sequences can replicate if they contain many repeats. We also demonstrated continuous DNA replication using expressed polymerase from the DNA for 10 rounds. This study revealed that continuous isothermal DNA replication can be achieved in a scheme simpler than that employed by modern organisms, providing an alternative strategy for simpler artificial cell synthesis and a clue to possible primitive forms of DNA replication.
Collapse
Affiliation(s)
- Hiroki Okauchi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshihiro Sakatani
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kensuke Otsuka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Libicher K, Hornberger R, Heymann M, Mutschler H. In vitro self-replication and multicistronic expression of large synthetic genomes. Nat Commun 2020; 11:904. [PMID: 32060271 PMCID: PMC7021806 DOI: 10.1038/s41467-020-14694-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
The generation of a chemical system capable of replication and evolution is a key objective of synthetic biology. This could be achieved by in vitro reconstitution of a minimal self-sustaining central dogma consisting of DNA replication, transcription and translation. Here, we present an in vitro translation system, which enables self-encoded replication and expression of large DNA genomes under well-defined, cell-free conditions. In particular, we demonstrate self-replication of a multipartite genome of more than 116 kb encompassing the full set of Escherichia coli translation factors, all three ribosomal RNAs, an energy regeneration system, as well as RNA and DNA polymerases. Parallel to DNA replication, our system enables synthesis of at least 30 encoded translation factors, half of which are expressed in amounts equal to or greater than their respective input levels. Our optimized cell-free expression platform could provide a chassis for the generation of a partially self-replicating in vitro translation system.
Collapse
Affiliation(s)
- K Libicher
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - R Hornberger
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - M Heymann
- Intelligent Biointegrative Systems Group, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - H Mutschler
- Biomimetic Systems, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
19
|
Ichihashi N. What can we learn from the construction of in vitro replication systems? Ann N Y Acad Sci 2019; 1447:144-156. [PMID: 30957237 DOI: 10.1111/nyas.14042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Replication is a central function of living organisms. Several types of replication systems have been constructed in vitro from various molecules, including peptides, DNA, RNA, and proteins. In this review, I summarize the progress in the construction of replication systems over the past few decades and discuss what we can learn from their construction. I introduce various types of replication systems, supporting the feasibility of the spontaneous appearance of replication early in Earth's history. In the latter part of the review, I focus on parasitic replicators, one of the largest obstacles for sustainable replication. Compartmentalization is discussed as a possible solution.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Graduate School of Arts and Sciences and Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Le Vay K, Weise LI, Libicher K, Mascarenhas J, Mutschler H. Templated Self‐Replication in Biomimetic Systems. ACTA ACUST UNITED AC 2019; 3:e1800313. [DOI: 10.1002/adbi.201800313] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/06/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Laura Isabel Weise
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Kai Libicher
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| | - Judita Mascarenhas
- Department of Systems and Synthetic MicrobiologyMax Planck Institute for Terrestrial Microbiology Marburg Germany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of Biochemistry Martinsried Germany
| |
Collapse
|
21
|
Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci Rep 2018; 8:13089. [PMID: 30166584 PMCID: PMC6117322 DOI: 10.1038/s41598-018-31585-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
A major challenge in constructing artificial cells is the establishment of a recursive genome replication system coupled with gene expression from the genome itself. One of the simplest schemes of recursive DNA replication is the rolling-circle replication of a circular DNA coupled with recombination. In this study, we attempted to develop a replication system based on this scheme using self-encoded phi29 DNA polymerase and externally supplied Cre recombinase. We first identified that DNA polymerization is significantly inhibited by Cre recombinase. To overcome this problem, we performed in vitro evolution and obtained an evolved circular DNA that can replicate efficiently in the presence of the recombinase. We also showed evidence that during replication of the evolved DNA, the circular DNA was reproduced through recombination by Cre recombinase. These results demonstrate that the evolved circular DNA can reproduce itself through gene expression of a self-encoded polymerase. This study provides a step forward in developing a simple recursive DNA replication system for use in an artificial cell.
Collapse
|
22
|
Yoshiyama T, Ichii T, Yomo T, Ichihashi N. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci Rep 2018; 8:11867. [PMID: 30089835 PMCID: PMC6082869 DOI: 10.1038/s41598-018-30374-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023] Open
Abstract
Automation is a useful strategy to make laborious evolutionary experiments faster and easier. To date, several types of continuous flow reactors have been developed for the automated evolutionary experiments of viruses and bacteria. However, the development of a flow reactor applicable to compartmentalized in vitro self-replication systems is still a challenge. In this study, we demonstrate automated in vitro evolution of a translation-coupled RNA system in a droplet flow reactor for the first time. This reactor contains approximately 1010 micro-scale droplets (average diameter is approximately 0.8 μm), which continuously fuse and divide among each other at a controllable rate. In the droplets, an RNA (artificial genomic RNA) replicate through the translation of self-encoded RNA replicase with spontaneously appearing parasitic RNA. We performed two automated replication experiments for more than 400 hours with different mixing intensities. We found that several mutations displayed increased frequencies in the genomic RNA populations and the dominant RNA mutants acquired the ability to replicate faster or acquired resistance to the parasitic RNA, demonstrating that Darwinian evolution occurred during the long-term replication. The droplet flow reactor we developed can be a useful tool to perform in vitro evolutionary experiments of translation-coupled systems.
Collapse
Affiliation(s)
- Tomoaki Yoshiyama
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Tetsuo Ichii
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Tetsuya Yomo
- Institute of Biology and Information Science, East China Normal University, 3663 Zhongshan North Rd., Shanghai, 200062, P.R. China
| | - Norikazu Ichihashi
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
23
|
van Nies P, Westerlaken I, Blanken D, Salas M, Mencía M, Danelon C. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat Commun 2018; 9:1583. [PMID: 29679002 PMCID: PMC5910420 DOI: 10.1038/s41467-018-03926-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Replication of DNA-encoded information and its conversion into functional proteins are universal properties of life. In an effort toward the construction of a synthetic minimal cell, we implement here the DNA replication machinery of the Φ29 virus in a cell-free gene expression system. Amplification of a linear DNA template by self-encoded, de novo synthesized Φ29 proteins is demonstrated. Complete information transfer is confirmed as the copied DNA can serve as a functional template for gene expression, which can be seen as an autocatalytic DNA replication cycle. These results show how the central dogma of molecular biology can be reconstituted and form a cycle in vitro. Finally, coupled DNA replication and gene expression is compartmentalized inside phospholipid vesicles providing the chassis for evolving functions in a prospective synthetic cell relying on the extant biology.
Collapse
Affiliation(s)
- Pauline van Nies
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Duco Blanken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | - Mario Mencía
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
24
|
Berenguer J, Mencía M, Hidalgo A. Are in vivo selections on the path to extinction? Microb Biotechnol 2017; 10:46-49. [PMID: 28044417 PMCID: PMC5270727 DOI: 10.1111/1751-7915.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/03/2022] Open
Abstract
Droplet microfluidics will become a disruptive technology in the field of library screening and replace biological selections if the central dogma of biology and other processes are successfully implemented within microdroplets.
![]()
Collapse
Affiliation(s)
- José Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Mario Mencía
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology 'Severo-Ochoa' (UAM-CSIC), Nicolás Cabrera 1, Madrid, 28049, Spain
| |
Collapse
|
25
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
26
|
Ichihashi N, Yomo T. Constructive Approaches for Understanding the Origin of Self-Replication and Evolution. Life (Basel) 2016; 6:life6030026. [PMID: 27420098 PMCID: PMC5041002 DOI: 10.3390/life6030026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022] Open
Abstract
The mystery of the origin of life can be divided into two parts. The first part is the origin of biomolecules: under what physicochemical conditions did biomolecules such as amino acids, nucleotides, and their polymers arise? The second part of the mystery is the origin of life-specific functions such as the replication of genetic information, the reproduction of cellular structures, metabolism, and evolution. These functions require the coordination of many different kinds of biological molecules. A direct strategy to approach the second part of the mystery is the constructive approach, in which life-specific functions are recreated in a test tube from specific biological molecules. Using this approach, we are able to employ design principles to reproduce life-specific functions, and the knowledge gained through the reproduction process provides clues as to their origins. In this mini-review, we introduce recent insights gained using this approach, and propose important future directions for advancing our understanding of the origins of life.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tetsuya Yomo
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|