1
|
M. Sheta N, A. El-Gazar A, M. Ragab G, A. Essa M, M. Abdel-Haleem K, El-Dahmy RM. Transcending Traditional Treatment: The Therapeutical Potential of Nanovesicles for Transdermal Baclofen Delivery in Repeated Traumatic Brain Injury. Adv Pharm Bull 2024; 14:346-363. [PMID: 39206406 PMCID: PMC11347745 DOI: 10.34172/apb.2024.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose The repositioning of previously approved drugs is occupying the researchers' plans. Baclofen (Bac) was our candidate for its established neuroprotective capacity, with a proposal of efficient drug delivery as non-ionic surfactant-based nanovesicles (NISNV) formulae against mild repetitive traumatic brain injury (mRTBI) in rats, thus reducing the number of orally or injected medications, especially in severely comatose patients or pediatrics. Methods A (23) factorial design was implemented for confining Bac-loaded NISNV formulae, where a bunch of variables were inspected. An in-vivo experiment was done to test the prepared formula's efficacy transdermally. The following parameters were measured: brain expression of gamma amino butyric acid B (GABAB), protein kinase C- α (PKC-α), focal adhesion kinase (FAK), TNF-α and nuclear factor kappa B (NF-κB) p65, malondialdehyde (MDA), superoxide dismutase (SOD), and histopathology. Results The particle size (PS) and entrapment efficiency percent (EE%) speckled from 60.40±0.28% to 88.02±0.01% for the former and 174.64±0.93 to 1174.50±3.54 nm for the latter. In vitro release% after 8 hours ranged from 63.25±5.47% to 84.79±3.75%. The optimized formula (F4) illustrated desirability=1, with 630.09±3.53 µg/cm2 of Bac permeated over 8 hours, which equates to 100% of Bac. Bac post-trauma treatment restored brain expression of GABAB and PKC-α, while decreasing FAK. Besides enhancing the histological findings, the anti-inflammatory effect was clear by decreasing TNF-α and NF-κB p65. Consequently, significant antioxidant sequelae were revealed herein by diminishing MDA levels and restoring SOD activity. Conclusion Transdermal delivery of Bac-loaded niosomes confirmed neuroprotection and succeeded in surpassing skin-to-brain barriers, which makes it a promising therapeutic option for repeated traumas.
Collapse
Affiliation(s)
- Nermin M. Sheta
- Pharmaceutics Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Amira A. El-Gazar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ghada M. Ragab
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science & Technology (MUST), Giza, Egypt
| | - Marwa A. Essa
- Biochemistry Department, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | | | | |
Collapse
|
2
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
3
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
4
|
Morrill NK, Joly-Amado A, Li Q, Prabhudeva S, Weeber EJ, Nash KR. Reelin central fragment supplementation improves cognitive deficits in a mouse model of Fragile X Syndrome. Exp Neurol 2022; 357:114170. [PMID: 35863501 DOI: 10.1016/j.expneurol.2022.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.
Collapse
Affiliation(s)
- Nicole K Morrill
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Qingyou Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Sahana Prabhudeva
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa FL-33612, USA.
| |
Collapse
|
5
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
6
|
D’Incal C, Broos J, Torfs T, Kooy RF, Vanden Berghe W. Towards Kinase Inhibitor Therapies for Fragile X Syndrome: Tweaking Twists in the Autism Spectrum Kinase Signaling Network. Cells 2022; 11:cells11081325. [PMID: 35456004 PMCID: PMC9029738 DOI: 10.3390/cells11081325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022] Open
Abstract
Absence of the Fragile X Mental Retardation Protein (FMRP) causes autism spectrum disorders and intellectual disability, commonly referred to as the Fragile X syndrome. FMRP is a negative regulator of protein translation and is essential for neuronal development and synapse formation. FMRP is a target for several post-translational modifications (PTMs) such as phosphorylation and methylation, which tightly regulate its cellular functions. Studies have indicated the involvement of FMRP in a multitude of cellular pathways, and an absence of FMRP was shown to affect several neurotransmitter receptors, for example, the GABA receptor and intracellular signaling molecules such as Akt, ERK, mTOR, and GSK3. Interestingly, many of these molecules function as protein kinases or phosphatases and thus are potentially amendable by pharmacological treatment. Several treatments acting on these kinase-phosphatase systems have been shown to be successful in preclinical models; however, they have failed to convincingly show any improvements in clinical trials. In this review, we highlight the different protein kinase and phosphatase studies that have been performed in the Fragile X syndrome. In our opinion, some of the paradoxical study conclusions are potentially due to the lack of insight into integrative kinase signaling networks in the disease. Quantitative proteome analyses have been performed in several models for the FXS to determine global molecular processes in FXS. However, only one phosphoproteomics study has been carried out in Fmr1 knock-out mouse embryonic fibroblasts, and it showed dysfunctional protein kinase and phosphatase signaling hubs in the brain. This suggests that the further use of phosphoproteomics approaches in Fragile X syndrome holds promise for identifying novel targets for kinase inhibitor therapies.
Collapse
Affiliation(s)
- Claudio D’Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Jitse Broos
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - Thierry Torfs
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (C.D.); (J.B.); (T.T.)
- Correspondence: ; Tel.: +0032-(0)-32-652-657
| |
Collapse
|
7
|
Wang Y, Gai S, Zhang W, Huang X, Ma S, Huo Y, Wu Y, Tu H, Pin JP, Rondard P, Xu C, Liu J. The GABA B receptor mediates neuroprotection by coupling to G 13. Sci Signal 2021; 14:eaaz4112. [PMID: 34665640 DOI: 10.1126/scisignal.aaz4112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yunyun Wang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Siyu Gai
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Wenhua Zhang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xuetao Huang
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shumin Ma
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yujia Huo
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yichen Wu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Haijun Tu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chanjuan Xu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jianfeng Liu
- Cellular Signaling laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| |
Collapse
|
8
|
Abstract
GABAB receptors are implicated in numerous central nervous system-based behaviours and mechanisms, including cognitive processing in preclinical animal models. Homeostatic changes in the expression and function of these receptors across brain structures have been found to affect cognitive processing. Numerous preclinical studies have focused on the role of GABAB receptors in learning, memory and cognition per se with some interesting, although sometimes contradictory, findings. The majority of the existing clinical literature focuses on alterations in GABAB receptor function in conditions and disorders whose main symptomatology includes deficits in cognitive processing. The aim of this chapter is to delineate the role of GABAB receptors in cognitive processes in health and disease of animal models and human clinical populations. More specifically, this review aims to present literature on the role of GABAB receptors in animal models with cognitive deficits, especially those of learning and memory. Further, it aims to capture the progress and advances of research studies on the effects of GABAB receptor compounds in neurodevelopmental and neurodegenerative conditions with cognitive dysfunctions. The neurodevelopmental conditions covered include autism spectrum disorders, fragile X syndrome and Down's syndrome and the neurodegenerative conditions discussed are Alzheimer's disease, epilepsy and autoimmune anti-GABAB encephalitis. Although some findings are contradictory, results indicate a possible therapeutic role of GABAB receptor compounds for the treatment of cognitive dysfunction and learning/memory impairments for some of these conditions, especially in neurodegeneration. Moreover, future research efforts should aim to develop selective GABAB receptor compounds with minimal, if any, side effects.
Collapse
|
9
|
GABA B Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators. Curr Top Behav Neurosci 2021; 52:81-118. [PMID: 34036555 DOI: 10.1007/7854_2021_232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The GABAB receptors are metabotropic G protein-coupled receptors (GPCRs) that mediate the actions of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA). In the CNS, GABA plays an important role in behavior, learning and memory, cognition, and stress. GABA is also located throughout the gastrointestinal (GI) tract and is involved in the autonomic control of the intestine and esophageal reflex. Consequently, dysregulated GABAB receptor signaling is associated with neurological, mental health, and gastrointestinal disorders; hence, these receptors have been identified as key therapeutic targets and are the focus of multiple drug discovery efforts for indications such as muscle spasticity disorders, schizophrenia, pain, addiction, and gastroesophageal reflex disease (GERD). Numerous agonists, antagonists, and allosteric modulators of the GABAB receptor have been described; however, Lioresal® (Baclofen; β-(4-chlorophenyl)-γ-aminobutyric acid) is the only FDA-approved drug that selectively targets GABAB receptors in clinical use; undesirable side effects, such as sedation, muscle weakness, fatigue, cognitive deficits, seizures, tolerance and potential for abuse, limit their therapeutic use. Here, we review GABAB receptor chemistry and pharmacology, presenting orthosteric agonists, antagonists, and positive and negative allosteric modulators, and highlight the therapeutic potential of targeting GABAB receptor modulation for the treatment of various CNS and peripheral disorders.
Collapse
|
10
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
11
|
Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 2021; 91:505-518. [PMID: 33161163 DOI: 10.1016/j.bbi.2020.11.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that excessive inflammatory responses play a crucial role in the pathophysiology of psychiatric diseases, including depression and anxiety disorders. The dysfunctional neural plasticity in amygdala has long been proposed as the vital cause for the progression of psychiatric disorders. However, the effect of neuroinflammation on the functional changes of the amygdala remains largely unknown. Here, by using a mouse model of inflammation induced by lipopolysaccharide (LPS) injection, we investigated the effect of LPS-induced neuroinflammation on the synaptic and non-synaptic plasticity in basolateral amygdala (BLA) projection neurons (PNs) and their contribution to the LPS-induced anxiety- and depressive-like behavior. The results showed that LPS treatment led to the activation of microglia and production of proinflammatory cytokines in the BLA. Furthermore, LPS treatment increased excitatory but not inhibitory synaptic transmission due to the enhanced presynaptic glutamate release, thus leading to the shift of excitatory/inhibitory balance towards excitatory. In addition, the intrinsic neuronal excitability of BLA PNs was also increased by LPS treatment through the loss of expression and function of small-conductance, calcium-activated potassium channel. Chronic fluoxetine pretreatment significantly prevented these neurophysiological changes induced by LPS, and alleviated anxiety and depressive-like behavior, indicating that LPS-induced neuronal dysregulation of BLA PNs may contribute to the development of psychiatry disorders. Collectively, these findings provide evidence that dysregulation of synaptic and non-synaptic transmission in the BLA PNs may account for neuroinflammation-induced anxiety- and depressive-like behavior.
Collapse
Affiliation(s)
- Zhi-Heng Zheng
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Jiang-Long Tu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiao-Han Li
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, PR China
| | - Qing Hua
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, PR China
| | - Wei-Zhu Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Yu Liu
- Rehabilitation Department, Second Affiliated Hospital of Nanchang University, PR China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, PR China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
12
|
Serrano-Regal MP, Bayón-Cordero L, Ordaz RP, Garay E, Limon A, Arellano RO, Matute C, Sánchez-Gómez MV. Expression and Function of GABA Receptors in Myelinating Cells. Front Cell Neurosci 2020; 14:256. [PMID: 32973453 PMCID: PMC7472887 DOI: 10.3389/fncel.2020.00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
Myelin facilitates the fast transmission of nerve impulses and provides metabolic support to axons. Differentiation of oligodendrocyte progenitor cells (OPCs) and Schwann cell (SC) precursors is critical for myelination during development and myelin repair in demyelinating disorders. Myelination is tightly controlled by neuron-glia communication and requires the participation of a wide repertoire of signals, including neurotransmitters such as glutamate, ATP, adenosine, or γ-aminobutyric acid (GABA). GABA is the main inhibitory neurotransmitter in the central nervous system (CNS) and it is also present in the peripheral nervous system (PNS). The composition and function of GABA receptors (GABARs) are well studied in neurons, while their nature and role in glial cells are still incipient. Recent studies demonstrate that GABA-mediated signaling mechanisms play relevant roles in OPC and SC precursor development and function, and stand out the implication of GABARs in oligodendrocyte (OL) and SC maturation and myelination. In this review, we highlight the evidence supporting the novel role of GABA with an emphasis on the molecular identity of the receptors expressed in these glial cells and the possible signaling pathways involved in their actions. GABAergic signaling in myelinating cells may have potential implications for developing novel reparative therapies in demyelinating diseases.
Collapse
Affiliation(s)
- Mari Paz Serrano-Regal
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Laura Bayón-Cordero
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Rainald Pablo Ordaz
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Garay
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Rogelio O. Arellano
- Laboratorio de Neurofisiología Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Carlos Matute
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Laboratory of Neurobiology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
13
|
Kang JY, Chadchankar J, Vien TN, Mighdoll MI, Hyde TM, Mather RJ, Deeb TZ, Pangalos MN, Brandon NJ, Dunlop J, Moss SJ. Deficits in the activity of presynaptic γ-aminobutyric acid type B receptors contribute to altered neuronal excitability in fragile X syndrome. J Biol Chem 2017; 292:6621-6632. [PMID: 28213518 PMCID: PMC5399111 DOI: 10.1074/jbc.m116.772541] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The behavioral and anatomical deficits seen in fragile X syndrome (FXS) are widely believed to result from imbalances in the relative strengths of excitatory and inhibitory neurotransmission. Although modified neuronal excitability is thought to be of significance, the contribution that alterations in GABAergic inhibition play in the pathophysiology of FXS are ill defined. Slow sustained neuronal inhibition is mediated by γ-aminobutyric acid type B (GABAB) receptors, which are heterodimeric G-protein-coupled receptors constructed from R1a and R2 or R1b and R2 subunits. Via the activation of Gi/o, they limit cAMP accumulation, diminish neurotransmitter release, and induce neuronal hyperpolarization. Here we reveal that selective deficits in R1a subunit expression are seen in Fmr1 knock-out mice (KO) mice, a widely used animal model of FXS, but the levels of the respective mRNAs were unaffected. Similar trends of R1a expression were seen in a subset of FXS patients. GABAB receptors (GABABRs) exert powerful pre- and postsynaptic inhibitory effects on neurotransmission. R1a-containing GABABRs are believed to mediate presynaptic inhibition in principal neurons. In accordance with this result, deficits in the ability of GABABRs to suppress glutamate release were seen in Fmr1-KO mice. In contrast, the ability of GABABRs to suppress GABA release and induce postsynaptic hyperpolarization was unaffected. Significantly, this deficit contributes to the pathophysiology of FXS as the GABABR agonist (R)-baclofen rescued the imbalances between excitatory and inhibitory neurotransmission evident in Fmr1-KO mice. Collectively, our results provided evidence that selective deficits in the activity of presynaptic GABABRs contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Ji-Yong Kang
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Jayashree Chadchankar
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Thuy N Vien
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Thomas M Hyde
- the Lieber Institute for Brain Development and
- Departments of Neurology and Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J Mather
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Tarek Z Deeb
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Menelas N Pangalos
- Innovative Medicines and Early Development, AstraZeneca, Melbourn Science Park, Cambridge Road, Royston Herts SG8 6EE, United Kingdom, and
| | - Nicholas J Brandon
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - John Dunlop
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
| | - Stephen J Moss
- From the AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111,
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Waltham, Massachusetts 02451
- the Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Lecat-Guillet N, Monnier C, Rovira X, Kniazeff J, Lamarque L, Zwier JM, Trinquet E, Pin JP, Rondard P. FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABA B Receptor. Cell Chem Biol 2017; 24:360-370. [PMID: 28286129 DOI: 10.1016/j.chembiol.2017.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/21/2016] [Accepted: 02/10/2017] [Indexed: 01/11/2023]
Abstract
The main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), modulates many synapses by activating the G protein-coupled receptor GABAB, which is a target for various therapeutic applications. It is an obligatory heterodimer made of GB1 and GB2 that can be regulated by positive allosteric modulators (PAMs). The molecular mechanism of activation of the GABAB receptor remains poorly understood. Here, we have developed FRET-based conformational GABAB sensors compatible with high-throughput screening. We identified conformational changes occurring within the extracellular and transmembrane domains upon receptor activation, which are smaller than those observed in the related metabotropic glutamate receptors. These sensors also allow discrimination between agonists of different efficacies and between PAMs that have different modes of action, which has not always been possible using conventional functional assays. Our study brings important new information on the activation mechanism of the GABAB receptor and should facilitate the screening and identification of new chemicals targeting this receptor.
Collapse
Affiliation(s)
- Nathalie Lecat-Guillet
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Carine Monnier
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Xavier Rovira
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Julie Kniazeff
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | | | | | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle (IGF), CNRS, INSERM, University of Montpellier, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
15
|
Muzar Z, Lozano R, Kolevzon A, Hagerman RJ. The neurobiology of the Prader-Willi phenotype of fragile X syndrome. Intractable Rare Dis Res 2016; 5:255-261. [PMID: 27904820 PMCID: PMC5116860 DOI: 10.5582/irdr.2016.01082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism, caused by a CGG expansion to greater than 200 repeats in the promoter region of FMR1 on the bottom of the X chromosome. A subgroup of individuals with FXS experience hyperphagia, lack of satiation after meals and severe obesity, this subgroup is referred to have the Prader-Willi phenotype of FXS. Prader-Willi syndrome is one of the most common genetic severe obesity disorders known and it is caused by the lack of the paternal 15q11-13 region. Affected individuals suffer from hyperphagia, lack of satiation, intellectual disability, and behavioral problems. Children with fragile X syndrome Prader-Willi phenotye and those with Prader Willi syndrome have clinical and molecular similarities reviewed here which will impact new treatment options for both disorders.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, b)Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Department of Histology, Universitas Muhammadiyah Sumatera Utara (UMSU) Faculty of Medicine, Medan, North Sumatera, Indonesia
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, d)Departments of Genetics and Genomic Sciences, e)Psychiatry, and f)Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Address correspondence to: Dr. Reymundo Lozano, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10025, USA. E-mail: Dr. Randi J. Hagerman, MIND Institute, UC Davis Health System, 2825 50th Street, Sacramento, CA 95817, USA. E-mail:
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, d)Departments of Genetics and Genomic Sciences, e)Psychiatry, and f)Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Randi J. Hagerman
- Seaver Autism Center for Research and Treatment, d)Departments of Genetics and Genomic Sciences, e)Psychiatry, and f)Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Address correspondence to: Dr. Reymundo Lozano, Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY 10025, USA. E-mail: Dr. Randi J. Hagerman, MIND Institute, UC Davis Health System, 2825 50th Street, Sacramento, CA 95817, USA. E-mail:
| |
Collapse
|
16
|
Fatemi SH, Folsom TD, Liesch SB, Kneeland RE, Karkhane Yousefi M, Thuras PD. The effects of prenatal H1N1 infection at E16 on FMRP, glutamate, GABA, and reelin signaling systems in developing murine cerebellum. J Neurosci Res 2016; 95:1110-1122. [PMID: 27735078 DOI: 10.1002/jnr.23949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/28/2022]
Abstract
Prenatal viral infection has been identified as a potential risk factor for the development of neurodevelopmental disorders such as schizophrenia and autism. Additionally, dysfunction in gamma-aminobutyric acid, Reelin, and fragile X mental retardation protein (FMRP)-metabotropic glutamate receptor 5 signaling systems has also been demonstrated in these two disorders. In the current report, we have characterized the developmental profiles of selected markers for these systems in cerebella of mice born to pregnant mice infected with human influenza (H1N1) virus on embryonic day 16 or sham-infected controls using SDS-PAGE and Western blotting techniques and evaluated the presence of abnormalities in the above-mentioned markers during brain development. The cerebellum was selected in light of emerging evidence that it plays roles in learning, memory, and emotional processing-all of which are disrupted in autism and schizophrenia. We identified unique patterns of gene and protein expression at birth (postnatal day 0 [P0]), childhood (P14), adolescence (P35), and young adulthood (P56) in both exposed and control mouse progeny. We also identified significant differences in protein expression for FMRP, very-low-density lipoprotein receptor, and glutamic acid decarboxylase 65 and 67 kDa proteins at specific postnatal time points in cerebella of the offspring of exposed mice. Our results provide evidence of disrupted FMRP, glutamatergic, and Reelin signaling in the exposed mouse offspring that explains the multiple brain abnormalities observed in this animal model. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Stephanie B Liesch
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Rachel E Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Mahtab Karkhane Yousefi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Paul D Thuras
- VA Medical Center, Department of Psychiatry, Minneapolis, Minnesota
| |
Collapse
|
17
|
Hu P, He J, Liu S, Wang M, Pan B, Zhang W. β2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol Rep 2016; 36:1757-63. [PMID: 27460700 DOI: 10.3892/or.2016.4966] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is one of the most common cancers worldwide and accounts for 28% of all cancer-related deaths. The expression of the β2‑adrenergic receptor (β2‑AR), one of the stress‑inducible receptors, has been reported to be closely correlated with malignant tumors. However, the role of β2‑AR activation in human lung epithelial‑derived cancer A549 cells and the underlying mechanisms are not fully understood. In the present study, we found that activation of β2‑AR but not β1‑AR promoted the proliferation of A549 cells. Isoproterenol (ISO) stimulation of β2‑AR induced extracellular signal‑regulated kinase 1/2 (ERK1/2) and cyclic adenosine monophosphate response element‑binding protein (CREB) phosphorylation. Blocking the ERK1/2 pathway by U0126 inhibited CREB phosphorylation and also suppressed A549 cell proliferation. Moreover, ISO treatment enhanced the expression of matrix metalloproteinase (MMP) family proteins such as MMP‑2, MMP‑9, and also vascular endothelial growth factor (VEGF), which were able to be blocked by knockdown of CREB. In conclusion, our data revealed that β2‑AR induced ERK1/2 phosphorylation which in turn activated CREB to promote A549 cell proliferation. These findings elucidate potential therapeutic targets for lung cancer treatment.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Jingjing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Shiling Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Meng Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Bingxing Pan
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Wenhua Zhang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
18
|
Beas BS, Setlow B, Bizon JL. Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats. Psychopharmacology (Berl) 2016; 233:2787-97. [PMID: 27256354 PMCID: PMC4919234 DOI: 10.1007/s00213-016-4321-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE The ability to adjust response strategies when faced with changes in the environment is critical for normal adaptive behavior. Such behavioral flexibility is compromised by experimental disruption of cortical GABAergic signaling, as well as in conditions such as schizophrenia and normal aging that are characterized by cortical hyperexcitability. The current studies were designed to determine whether stimulation of GABAergic signaling using the GABA(B) receptor agonist baclofen can facilitate behavioral flexibility. METHODS Male Fischer 344 rats were trained in a set-shifting task in which they learned to discriminate between two response levers to obtain a food reward. Correct levers were signaled in accordance with two distinct response rules (rule 1: correct lever signaled by a cue light; rule 2: correct lever signaled by its left/right position). The order of rule presentation varied, but they were always presented sequentially, with the trials and errors to reach criterion performance on the second (set shift) rule providing the measure of behavioral flexibility. Experiments determined the effects of the GABA(B) receptor agonist baclofen (intraperitoneal, 0, 1.0, 2.5, and 4.0 mg/kg) administered acutely before the shift to the second rule. RESULTS Baclofen enhanced set-shifting performance. Control experiments demonstrated that this enhancement was not simply due to improved discrimination learning, nor was it due to impaired recall of the initial discrimination rule. CONCLUSIONS The results demonstrate that baclofen can facilitate behavioral flexibility, suggesting that GABA(B) receptor agonists may have utility for treating behavioral dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- B. Sofia Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Barry Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| | - Jennifer L. Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL,Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|