1
|
Feng S, Wang D, Qin Q, Chen K, Zhang W, He Y. Functions of Insulin-like Peptide Genes ( CsILP1 and CsILP2) in Female Reproduction of the Predatory Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae). INSECTS 2024; 15:981. [PMID: 39769583 PMCID: PMC11677109 DOI: 10.3390/insects15120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Insulin-like peptides (ILPs) are important peptide hormones in insects, particularly involved in regulating physiological processes such as growth, development, and reproduction. However, the specific roles of ILPs in the reproduction of natural enemy insects remain unknown. In this study, two ILP genes, CsILP1 and CsILP2, were cloned and their functions were analyzed in female Coccinella septempunctata L. (Coleoptera: Coccinellidae). The open reading frames (ORFs) of CsILP1 and CsILP2 were 384 bp and 357 bp, respectively. The expression of CsILP1 increased on the 6th day after eclosion, reaching its peak on the 12th day, while CsILP2 levels showed a significant increase on the 6th day and then stabilized. In different tissues, CsILP1 was highly expressed in ovaries, while CsILP2 predominated in elytra. Injection of dsRNA targeting CsILP1 and CsILP2 resulted in the down-regulation of insulin pathway genes. The relative expression of ovarian development-related genes Vasa, G2/M, and Vg was reduced by 82.50%, 89.55%. and 96.98% in dsCsILP1-treated females, and by 42.55%, 91.36%, and 55.63% in dsCsILP2-treated females. Furthermore, substantial decreases in 14-day fecundity were observed, with reductions of 89.99% for dsCsILP1 and 83.45% for dsCsILP2. These results confirm the regulatory functions of CsILP1 and CsILP2 in female C. septempunctata reproduction.
Collapse
Affiliation(s)
| | - Da Wang
- Correspondence: (D.W.); (Y.H.)
| | | | | | | | - Yunzhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China; (S.F.); (Q.Q.); (K.C.); (W.Z.)
| |
Collapse
|
2
|
Zhu Y, Han R, Zhang T, Yang J, Teng Z, Fan Y, Sun P, Lu Y, Ren Y, Wan F, Zhou H. The Food Source and Gut Bacteria Show Effects on the Invasion of Alien Pests-A Case of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). INSECTS 2024; 15:530. [PMID: 39057264 PMCID: PMC11277068 DOI: 10.3390/insects15070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2-3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect's food source and gut bacteria may have an important effect on insect invasions.
Collapse
Affiliation(s)
- Yanfei Zhu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Rui Han
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Tong Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Jiawen Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Yinjun Fan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Pengdong Sun
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia;
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 510642, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| |
Collapse
|
3
|
Yang Z, Wang K, Liu S, Li X, Wang H, Wang L, Zhang H, Yu H. Identification and functional analysis of isopentenyl pyrophosphate isomerase genes in the whiteflies Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:16. [PMID: 37335595 DOI: 10.1093/jisesa/iead041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
The juvenile hormone (JH) plays a vital role in the regulation of a number of physiological processes, including development, reproduction, and ovarian maturation. Isopentenyl pyrophosphate isomerase (IPPI) is a key enzyme in the biosynthetic pathway of JH. In this study, we identified an isopentenyl pyrophosphate isomerase protein from Bemisia tabaci and named it BtabIPPI. The open reading frame (ORF) of BtabIPPI is 768 bp and encodes a protein of 255 amino acids that contains a conserved domain of the Nudix family. The temporal and spatial expression profiles showed that BtabIPPI was highly expressed in the female adults.RNA interference (RNAi)-mediated silencing of BtabIPPI reduced JH titers and the relative expression of vitellogenin receptor (VgR) and JH signaling pathway genes, resulting in a dramatic reduction in fecundity and hatchability. These results indicate that the BtabIPPI gene plays an important role in the female fecundity of B. tabaci. This study will broaden our understanding of the function of IPPI in regulating insect reproduction and provide a theoretical basis for targeting IPPI for pest control in the future.
Collapse
Affiliation(s)
- Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
- Department of Plant Protection, College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongliang Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| | - Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, China
| |
Collapse
|
4
|
Wang J, Yu S, Wang L, Liu T, Yang X, Hu X, Wang Y. Capsaicin decreases fecundity in the Asian malaria vector Anopheles stephensi by inhibiting the target of rapamycin signaling pathway. Parasit Vectors 2022; 15:458. [PMID: 36510333 PMCID: PMC9743593 DOI: 10.1186/s13071-022-05593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.
Collapse
Affiliation(s)
- Jing Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Shasha Yu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Luhan Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Tingting Liu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xuesen Yang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xiaobing Hu
- Centers for Disease Control and Prevention of Western Theater Command, Lanzhou, 730020 China
| | - Ying Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| |
Collapse
|
5
|
Haroon, Li YX, Ye CX, Su J, Nabi G, Su XH, Xing LX. De Novo Transcriptome Assembly and Analysis of Longevity Genes Using Subterranean Termite ( Reticulitermes chinensis) Castes. Int J Mol Sci 2022; 23:13660. [PMID: 36362447 PMCID: PMC9657995 DOI: 10.3390/ijms232113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The longevity phenomenon is entirely controlled by the insulin signaling pathway (IIS-pathway). Both vertebrates and invertebrates have IIS-pathways that are comparable to one another, though no one has previously described de novo transcriptome assembly of IIS-pathway-associated genes in termites. In this research, we analyzed the transcriptomes of both reproductive (primary kings “PK” and queens “PQ”, secondary worker reproductive kings “SWRK” and queens “SWRQ”) and non-reproductive (male “WM” and female “WF” workers) castes of the subterranean termite Reticulitermes chinensis. The goal was to identify the genes responsible for longevity in the reproductive and non-reproductive castes. Through transcriptome analysis, we annotated 103,589,264 sequence reads and 184,436 (7G) unigenes were assembled, GC performance was measured at 43.02%, and 64,046 sequences were reported as CDs sequences. Of which 35 IIS-pathway-associated genes were identified, among 35 genes, we focused on the phosphoinositide-dependent kinase-1 (Pdk1), protein kinase B2 (akt2-a), tuberous sclerosis-2 (Tsc2), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E (EIF4E) and ribosomal protein S6 (RPS6) genes. Previously these genes (Pdk1, akt2-a, mTOR, EIF4E, and RPS6) were investigated in various organisms, that regulate physiological effects, growth factors, protein translation, cell survival, proliferation, protein synthesis, cell metabolism and survival, autophagy, fecundity rate, egg size, and follicle number, although the critical reason for longevity is still unclear in the termite castes. However, based on transcriptome profiling, the IIS-pathway-associated genes could prolong the reproductive caste lifespan and health span. Therefore, the transcriptomic shreds of evidence related to IIS-pathway genes provide new insights into the maintenance and relationships between biomolecular homeostasis and remarkable longevity. Finally, we propose a strategy for future research to decrypt the hidden costs associated with termite aging in reproductive and non-reproductive castes.
Collapse
Affiliation(s)
- Haroon
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Yu-Xin Li
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Chen-Xu Ye
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Jian Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, 31120 Krakow, Poland
| | - Xiao-Hong Su
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| | - Lian-Xi Xing
- College of Life Sciences, Northwest University, No. 229, North Taibai Rd., Xi’an 710069, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China
| |
Collapse
|
6
|
Liu Y, Zhang X, Wang W, Liu T, Ren J, Chen S, Lu T, Tie Y, Yuan X, Mo F, Yang J, Wei Y, Wei X. Ammonia promotes the proliferation of bone marrow-derived mesenchymal stem cells by regulating the Akt/mTOR/S6k pathway. Bone Res 2022; 10:57. [PMID: 36028500 PMCID: PMC9418171 DOI: 10.1038/s41413-022-00215-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022] Open
Abstract
Ammonia plays an important role in cellular metabolism. However, ammonia is considered a toxic product. In bone marrow-derived mesenchymal stem cells, multipotent stem cells with high expression of glutamine synthetase (GS) in bone marrow, ammonia and glutamate can be converted to glutamine via glutamine synthetase activity to support the proliferation of MSCs. As a major nutritional amino acid for biosynthesis, glutamine can activate the Akt/mTOR/S6k pathway to stimulate cell proliferation. The activation of mTOR can promote cell entry into S phase, thereby enhancing DNA synthesis and cell proliferation. Our studies demonstrated that mesenchymal stem cells can convert the toxic waste product ammonia into nutritional glutamine via GS activity. Then, the Akt/mTOR/S6k pathway is activated to promote bone marrow-derived mesenchymal stem cell proliferation. These results suggest a new therapeutic strategy and potential target for the treatment of diseases involving hyperammonemia.
Collapse
Affiliation(s)
- Yu Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Ting Liu
- Department of Clinical Laboratory, The West China Second University Hospital of Sichuan University (WCSUH-SCU), Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jun Ren
- Department of Prenatal Diagnosis Center, The West China Second University Hospital of Sichuan University (WCSUH-SCU), Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yan Tie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
7
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
8
|
Wang N, Zhang C, Chen M, Shi Z, Zhou Y, Shi X, Zhou W, Zhu Z. Characterization of MicroRNAs Associated with Reproduction in the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2022; 23:7808. [PMID: 35887156 PMCID: PMC9316625 DOI: 10.3390/ijms23147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Insects have a robust capacity to produce offspring for propagation, and the reproductive events of female insects have been achieved at the molecular and physiological levels via regulatory gene pathways. However, the roles of MicroRNAs (miRNAs) in the reproductive development of the brown planthopper (BPH), Nilaparvata lugens, remain largely unexplored. To understand the roles of miRNAs in reproductive development, miRNAs were identified by Solexa sequencing in short-winged (SW) female adults of BPH. Small RNA libraries derived from three developmental phases (1 day, 3 days, and 5 days after emergence) were constructed and sequenced. We identified 905 miRNAs, including 263 known and 642 novel miRNAs. Among them, a total of 43 miRNAs were differentially expressed in the three developmental phases, and 14,568 putative targets for 43 differentially expressed miRNAs (DEMs) were predicted by TargetScan and miRanda. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the predicted miRNA targets illustrated the putative roles for these DEMs in reproduction. The progress events were annotated, including oogenesis, lipid biosynthetic process, and related pathways such as apoptosis, ABC transporters, and amino acid metabolism. Four highly abundant DEMs (miR-9a-5p, miR-34-5p, miR-275-3p, and miR-317-3p) were further screened, and miR-34-5p was confirmed to be involved in the regulation of reproduction. Overexpression of miR-34-5p via injecting its mimics reduced fecundity and decreased Vg expression. Moreover, target genes prediction for miR-34-5p showed they might be involved in 20E signaling cascades, apoptosis, and gonadal development, including hormone receptor 4 (HR4), caspase-1 (Cp-1), and spermatogenesis-associated protein 20 (SPATA20). These findings provide a valuable resource for future studies on the role of miRNAs in BPH reproductive development.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Chao Zhang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Min Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zheyi Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Ying Zhou
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Xiaoxiao Shi
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| | - Zengrong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (N.W.); (C.Z.); (M.C.); (Z.S.); (X.S.); (W.Z.)
- Hainan Research Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
9
|
WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Curr Hypertens Rep 2022; 24:465-475. [PMID: 35788966 DOI: 10.1007/s11906-022-01209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Recent research has shown that older people with high blood pressure (BP), or hypertension, are more likely to have biomarkers of Alzheimer's disease (AD). Essential hypertension represents the most common cardiovascular disease worldwide and is thought to be responsible for about 13% of all deaths. People with essential hypertension who regularly take prescribed BP medications are half as likely to develop AD as those who do not take them. What then is the connection? RECENT FINDINGS We know that high BP can damage small blood vessels in the brain, affecting those parts that are responsible for memory and thinking. However, the link between AD and hypertension remains unclear. Recent advances in the field of molecular and cellular biology have revealed a downregulation of the canonical WNT/β-catenin pathway in both hypertension and AD. In AD, the glutamate transport function is decreased, a decrease that is associated with a loss of synapse and neuronal death. β-catenin signaling appears to act as a major regulator of glutamate transporters (EAAT and GS) expression and can be harnessed to remove excess glutamate in AD. This review focuses on the possible link between hypertension and AD through the decreased WNT/β-catenin which interacts with the glutamatergic pathway.
Collapse
|
10
|
Zhang R, Ji J, Li Y, Yu J, Yu X, Xu Y. Molecular Characterization and RNA Interference Analysis of SLC26A10 From Nilaparvata lugens (Stål). Front Physiol 2022; 13:853956. [PMID: 35370768 PMCID: PMC8969416 DOI: 10.3389/fphys.2022.853956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
SLC26A10 is a member of the SLC26 gene family, but its role in insects is still unclear. We cloned the SLC26A10 gene of Nilaparvata lugens (NlSLC26A10) and found NlSLC26A10 contained 11 transmembrane regions and a STAS domain. Expression pattern analysis showed NlSLC26A10 expression was more upregulated in adults than in nymphs, highest in the ovary. After injection of double-stranded RNA (dsRNA) of NlSLC26A10, the mRNA level of NlSLC26A10 significantly decreased and, consequently, the ovarian development of adult females was hindered; the amount and the hatchability of eggs and yeast-like symbionts in mature oocytes decreased. Further study showed that NlSLC26A10 might result in decreased juvenile hormone level and vitellogenin expression. These results indicate that NlSLC26A10 plays an essential role in the reproduction of N. lugens.
Collapse
|
11
|
Wang J, Wang N, Qi M, Li J, Tan B. Glutamine, glutamate, and aspartate differently modulate energy homeostasis of small intestine under normal or low energy status in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:216-226. [PMID: 34977390 PMCID: PMC8685906 DOI: 10.1016/j.aninu.2021.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 06/14/2023]
Abstract
Weaning stress may cause reduced energy intake for maintenance of mucosal structure. Gln, Glu, and Asp are major energy sources for the small intestine. This study investigated whether Gln, Glu, and Asp improve the intestinal morphology via regulating the energy metabolism in weaning piglets. A total of 198 weaned piglets were assigned to 3 treatments: Control (Basal diet + 1.59% L-Ala); T1 (Basal diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp); T2 (Low energy diet + 1% L-Gln + 0.5% L-Glu + 0.1% L-Asp). Jejunum and ileum were obtained on d 5 or 21 post-weaning. T1 enhanced growth performance. T1 and T2 treatments improved small intestinal morphology by increasing villus height, goblet cell number and decreasing crypt depth. Days post-weaning affected the efficacy of T2, but not T1, on energy metabolism. At normal energy supplementation, Gln, Glu, and Asp restored small intestinal energy homeostasis via replenishing the Krebs' cycle and down-regulating the AMPK (adenosine monophosphate activated protein kinase) pathway. As these are not sufficient to maintain the intestinal energy-balance of piglets fed with a low energy diet on d 5 post-weaning, the AMPK, glycolysis, beta-oxidation, and mitochondrial biogenesis are activated to meet the high energy demand of enterocytes. These data indicated that Gln, Glu, and Asp could restore the energy homeostasis of intestinal mucosa of weaning piglets under normal energy fed. Low energy feeding may increase the susceptibility of piglets to stress, which may decrease the efficacy of Gln, Glu, and Asp on the restoration of energy balance. These findings provide new information on nutritional intervention for insufficient energy intake in weaning piglets.
Collapse
Affiliation(s)
- Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Animal Nutrition and Human Health Laboratory, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing 10008, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China
| |
Collapse
|
12
|
Yi J, Li F, Xu C, Liu Y, Hou M. Expression Analyses of Vitellogenin and Target of Rapamycin of Sogatella furcifera (Hemiptera: Delphacidae), and Their Effects on Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2562-2570. [PMID: 34718630 DOI: 10.1093/jee/toab195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) and the target of rapamycin (TOR) are important genes involved in insect reproduction regulation. In this work, the full lengths of the Vg (SfVg) and TOR (SfTOR) genes of the white-backed planthopper Sogatella furcifera were cloned. The expression pattern in females showed that SfVg was highly expressed in fat bodies, and SfTOR was highly expressed in Malpighian tubules. After silencing SfVg or SfTOR, female adults did not deposit eggs. Their ovarian development was delayed, and yolk protein deposition in the oocytes was reduced. However, wild-type females mated with SfTOR-silenced males could lay eggs and produce offsprings normally. The dissections of testes and accessory glands of males with SfTOR knockdown showed that their development was not affected. Therefore, the silencing of the SfVg or SfTOR genes can effectively inhibit female reproduction, but SfTOR knockdown has no significant effect on male reproductive capacity. Furthermore, silencing SfTOR can cause SfVg expression to decrease significantly. All of the above results revealed that SfVg and SfTOR are essential for white-backed planthopper reproduction and may provide a potential target for pest control.
Collapse
Affiliation(s)
- Jinyu Yi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yudi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Yue L, Guan Z, Zhong M, Zhao L, Pang R, Liu K. Genome-Wide Identification and Characterization of Amino Acid Polyamine Organocation Transporter Family Genes Reveal Their Role in Fecundity Regulation in a Brown Planthopper Species ( Nilaparvata lugens). Front Physiol 2021; 12:708639. [PMID: 34335311 PMCID: PMC8316623 DOI: 10.3389/fphys.2021.708639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera:Delphacidae), is one of the most destructive pests of rice worldwide. As a sap-feeding insect, the BPH is incapable of synthesizing several amino acids which are essential for normal growth and development. Therefore, the insects have to acquire these amino acids from dietary sources or their endosymbionts, in which amino acid transporters (AATs) play a crucial role by enabling the movement of amino acids into and out of insect cells. In this study, a common amino acid transporter gene family of amino acid/polyamine/organocation (APC) was identified in BPHs and analyzed. Based on a homology search and conserved functional domain recognition, 20 putative APC transporters were identified in the BPH genome. Molecular trait analysis showed that the verified BPH APC family members were highly variable in protein features, conserved motif distribution patterns, and exon/intron organization. Phylogenetic analysis of five hemipteran species revealed an evolutionary pattern of interfamily conservation and lineage-specific expansion of this gene family. Moreover, stage- and tissue-specific expression analysis revealed diverse expression patterns in the 20 BPH APC transporter genes. Lastly, a potential BPH fecundity regulatory gene of NlAPC09 was identified and shown to participate in the fecundity regulation through the use of quantitative polymerase chain reaction (qPCR) and RNA inference experiments. Our results provide a basis for further functional investigations of APC transporters in BPH.
Collapse
Affiliation(s)
- Lei Yue
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ziying Guan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingzhao Zhong
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Luyao Zhao
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Kai Liu
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
14
|
Li H, Zhao C, Yang Y, Zhou Z, Qi J, Li C. The Influence of Gut Microbiota on the Fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:15. [PMID: 34415303 PMCID: PMC8378403 DOI: 10.1093/jisesa/ieab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota of insects usually plays an important role in the development and reproduction of their hosts. The fecundity of Henosepilachna vigintioctopunctata (Fabricius) varies greatly when they develop on different host plants. Whether and how the gut microbiota regulates the fecundity of H. vigintioctopunctata was unknown. To address this question, we used 16S rRNA sequencing to analyze the gut microbiomes of H. vigintioctopunctata adults fed on two host plant species (Solanum nigrum and Solanum melongena) and one artificial diet. The development of the ovaries and testes was also examined. Our results revealed that the diversity and abundance of gut microorganisms varied significantly in insects reared on different diets. The gut microbiota of H. vigintioctopunctata raised on the two host plants was similar, with Proteobacteria being the dominant phylum in both groups, whereas Firmicutes was the dominant phylum in the group reared on the artificial diet. The predominant microbiota in the S. nigrum group were Acinetobacter soli and Acinetobacter ursingii (Acinetobacter, Moraxellaceae); Moraxella osloensis (Enhydrobacter, Moraxellaceae); and Empedobacter brevis (Empedobacter, Weeksellaceae). The microbiota in this group are associated with high lipid metabolism. In addition, the beetles' ovaries and testes were more highly developed in the S. nigrum group than in the other two groups. These findings provide valuable information for elucidating the complex roles the gut microbiota play in the fecundity of H. vigintioctopunctata, and may also contribute to developing future novel control strategies involving this economically important pest.
Collapse
Affiliation(s)
- Hanwen Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Changwei Zhao
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yang Yang
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhixiong Zhou
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jingwei Qi
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| | - Chuanren Li
- Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, Hubei, China
| |
Collapse
|
15
|
|
16
|
DeGrandi-Hoffman G, Corby-Harris V, Carroll M, Toth AL, Gage S, Watkins deJong E, Graham H, Chambers M, Meador C, Obernesser B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees ( Apis mellifera L.). INSECTS 2021; 12:insects12030235. [PMID: 33801848 PMCID: PMC8000538 DOI: 10.3390/insects12030235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/29/2023]
Abstract
Simple Summary Honey bees rely on pollen and nectar to provide nutrients to support their yearly colony cycle. Specifics of the cycle differ among geographic regions as do the species of flowering plants and the nutrients they provide. We examined responses of honey bees from two different queen lines fed pollens from locations that differed in floral species composition and yearly colony cycles. We detected differences between the queen lines in the amount of pollen they consumed and the size of their hypopharyngeal glands (HPG). There were also seasonal differences between the nutrient composition of pollens. Spring pollens collected from colonies in both locations had higher amino and fatty acid concentrations than fall pollens. There also were seasonal differences in responses to the pollens consumed by bees from both queen lines. Bees consumed more spring than fall pollen, but digested less of it so that bees consumed more protein from fall pollens. Though protein consumption was higher with fall pollen, HPG were larger in spring bees. Abstract Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
- Correspondence:
| | - Vanessa Corby-Harris
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Amy L. Toth
- Department of Entomology, Iowa State University, 2310 Pammel Drive, 339 Science Hall II, Ames, IA 50011, USA;
| | - Stephanie Gage
- Georgia Institute of Technology, School of Physics, Howey Physics Building, 837 State Street NW, Atlanta, GA 30313, USA;
| | - Emily Watkins deJong
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Bethany Obernesser
- Department of Entomology, University of Arizona, Forbes 410, P.O. Box 210036, Tucson, AZ 85721, USA;
| |
Collapse
|
17
|
Jia YL, Zhang YJ, Guo D, Li CY, Ma JY, Gao CF, Wu SF. A Mechanosensory Receptor TMC Regulates Ovary Development in the Brown Planthopper Nilaparvata lugens. Front Genet 2020; 11:573603. [PMID: 33193678 PMCID: PMC7649262 DOI: 10.3389/fgene.2020.573603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
Transmembrane channel-like (TMC) genes encode a family of evolutionarily conserved membrane proteins. Mutations in the TMC1 and TMC2 cause deafness in humans and mice. However, their functions in insects are is still not well known. Here we cloned three tmc genes, Nltmc3, Nltmc5, and Nltmc7 from brown planthoppers. The predicted amino acid sequences showed high identity with other species homologs and have the characteristic eight or nine transmembrane domains and TMC domain architecture. We detected these three genes in all developmental stages and examined tissues. Interestingly, we found Nltmc3 was highly expressed in the female reproductive organ especially in the oviduct. RNAi-mediated silencing of Nltmc3 substantially decreased the egg-laying number and impaired ovary development. Our results indicate that Nltmc3 has an essential role in the ovary development of brown planthoppers.
Collapse
Affiliation(s)
- Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Di Guo
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
18
|
Lecarpentier Y, Schussler O, Hébert JL, Vallée A. Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects. Curr Hypertens Rep 2020; 22:50. [PMID: 32661611 PMCID: PMC7359176 DOI: 10.1007/s11906-020-01063-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Blood pressure (BP) follows a circadian rhythm (CR) in normotensive subjects. BP increases in the morning and decreases at night. This review aims at providing an up-to-date overview regarding the molecular mechanisms underlying the circadian regulation of BP. RECENT FINDINGS The suprachiasmatic nucleus (SCN) is the regulatory center for CRs. In SCN astrocytes, the phosphorylated glycogen synthase kinase-3β (pGSK-3β) also follows a CR and its expression reaches a maximum in the morning and decreases at night. pGSK-3β induces the β-catenin migration to the nucleus. During the daytime, the nuclear β-catenin increases the expression of the glutamate excitatory amino acid transporter 2 (EAAT2) and glutamine synthetase (GS). In SCN, EAAT2 removes glutamate from the synaptic cleft of glutamatergic neurons and transfers it to the astrocyte cytoplasm where GS converts glutamate into glutamine. Thus, glutamate decreases in the synaptic cleft. This decreases the stimulation of the glutamate receptors AMPA-R and NMDA-R located on glutamatergic post-synaptic neurons. Consequently, activation of NTS is decreased and BP increases. The opposite occurs at night. Despite several studies resulting from animal studies, the circadian regulation of BP appears largely controlled in normotensive subjects by the canonical WNT/β-catenin pathway involving the SCN, astrocytes, and glutamatergic neurons.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, 77104, Meaux, France.
| | - Olivier Schussler
- Department of Thoracic surgery, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Cardiovascular Surgery, Research Laboratory, Geneva University Hospital, Geneva, Switzerland
| | - Jean-Louis Hébert
- Cardiology Institute, Pitié-Salpétrière Hospital, AP-HP, Paris, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| |
Collapse
|
19
|
Development of fly tolerance to consuming a high-protein diet requires physiological, metabolic and transcriptional changes. Biogerontology 2020; 21:619-636. [PMID: 32468146 DOI: 10.1007/s10522-020-09880-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/25/2022]
Abstract
Mortality in insects consuming high-protein-and-low-carbohydrate diets resembles a type III lifespan curve with increased mortality at an early age and few survivors that live a relatively long lifespan. We selected for a Drosophila line able to live for a long time on an imbalanced high-protein-low-carbohydrate diet by carrying out five rounds of breeding to select for the most long-lived survivors. Adaptation to this diet in the selected line was studied at the biochemical, physiological and transcriptomic levels. The selected line of flies consumed less of the imbalanced food but also accumulated more storage metabolites: glycogen, triacylglycerides, and trehalose. Selected flies also had a higher activity of alanine transaminase and a higher urea content. Adaptation of the selected line on the transcriptomic level was characterized by down-regulation of genes encoding serine endopeptidases (Jon25i, Jon25ii, betaTry, and others) but up-regulation of genes encoding proteins related to the immune system, such as antimicrobial peptides, Turandot-family humoral factors, hexamerin isoforms, and vitellogenin. These sets of down- and up-regulated genes were similar to those observed in fruit flies with suppressed juvenile hormone signaling. Our data show that the physiological adaptation of fruit flies to a high-protein-low-carbohydrate diet occurs via intuitive pathways, namely a decrease in food consumption, conversion of amino acids into ketoacids to compensate for the lack of carbohydrate, and accumulation of storage metabolites to eliminate the negative effects of excess amino acids. Nevertheless, transcriptomic adaptation occurs in a counter-intuitive way likely via an influence of gut microbiota on food digestion.
Collapse
|
20
|
Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. Sci Rep 2020; 10:8187. [PMID: 32424344 PMCID: PMC7235038 DOI: 10.1038/s41598-020-64890-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Insulin is a protein hormone that controls the metabolism of sugar, fat and protein via signal transduction in cells, influencing growth and developmental processes such as reproduction and ageing. From nematodes to fruit flies, rodents and other animals, glucose signalling mechanisms are highly conserved. Reproductive termites (queens and kings) exhibit an extraordinarily long lifespan relative to non-reproductive individuals such as workers, despite being generated from the same genome, thus providing a unique model for the investigation of longevity. The key reason for this molecular mechanism, however, remains unclear. To clarify the molecular mechanism underlying this phenomenon, we sequenced the transcriptomes of the primary kings (PKs), primary queens (PQs), male (WMs) and female (WFs) workers of the lower subterranean termite Reticulitermes chinensis. We performed RNA sequencing and identified 33 insulin signalling pathway-related genes in R. chinensis. RT-qPCR analyses revealed that EIF4E and RPS6 genes were highly expressed in WMs and WFs workers, while mTOR expression was lower in PKs and PQs than in WMs and WFs. PQs and PKs exhibited lower expression of akt2-a than female workers. As the highly conserved insulin signalling pathway can significantly prolong the healthspan and lifespan, so we infer that the insulin signalling pathway regulates ageing in the subterranean termite R. chinensis. Further studies are recommended to reveal the biological function of insulin signalling pathway-related genes in the survival of termites to provide new insights into biomolecular homeostasis maintenance and its relationship to remarkable longevity.
Collapse
|
21
|
Ovarian Transcriptomic Analyses in the Urban Human Health Pest, the Western Black Widow Spider. Genes (Basel) 2020; 11:genes11010087. [PMID: 31940922 PMCID: PMC7017306 DOI: 10.3390/genes11010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 11/23/2022] Open
Abstract
Due to their abundance and ability to invade diverse environments, many arthropods have become pests of economic and health concern, especially in urban areas. Transcriptomic analyses of arthropod ovaries have provided insight into life history variation and fecundity, yet there are few studies in spiders despite their diversity within arthropods. Here, we generated a de novo ovarian transcriptome from 10 individuals of the western black widow spider (Latrodectus hesperus), a human health pest of high abundance in urban areas, to conduct comparative ovarian transcriptomic analyses. Biological processes enriched for metabolism—specifically purine, and thiamine metabolic pathways linked to oocyte development—were significantly abundant in L. hesperus. Functional and pathway annotations revealed overlap among diverse arachnid ovarian transcriptomes for highly-conserved genes and those linked to fecundity, such as oocyte maturation in vitellogenin and vitelline membrane outer layer proteins, hormones, and hormone receptors required for ovary development, and regulation of fertility-related genes. Comparative studies across arachnids are greatly needed to understand the evolutionary similarities of the spider ovary, and here, the identification of ovarian proteins in L. hesperus provides potential for understanding how increased fecundity is linked to the success of this urban pest.
Collapse
|
22
|
Zhang JL, Yuan XB, Chen SJ, Chen HH, Xu N, Xue WH, Fu SJ, Zhang CX, Xu HJ. The histone deacetylase NlHDAC1 regulates both female and male fertility in the brown planthopper, Nilaparvata lugens. Open Biol 2019; 8:180158. [PMID: 30977704 PMCID: PMC6303786 DOI: 10.1098/rsob.180158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone acetylation is a specific type of chromatin modification that serves as a key regulatory mechanism for many cellular processes in mammals. However, little is known about its biological function in invertebrates. Here, we identified 12 members of histone deacetylases (NlHDACs) in the brown planthopper (BPH), Nilaparvata lugens. RNAi-mediated silencing assay showed that NlHdac1, NlHdac3 and NlHdac4 played critical roles in female fertility via regulating ovary maturation or ovipositor development. Silencing of NlHdac1 substantially increased acetylation level of histones H3 and H4 in ovaries, indicating NlHDAC1 is the main histone deacetylase in ovaries of BPH. RNA sequencing (RNA-seq) analysis showed that knockdown of NlHdac1 impaired ovary development via multiple signalling pathways including the TOR pathway. Acoustic recording showed that males with NlHdac1 knockdown failed to make courtship songs, and thus were unacceptable to wild-type females, resulting in unfertilized eggs. Competition mating assay showed that wild-type females overwhelmingly preferred to mate with control males over NlHdac1-knockdown males. These findings improve our understanding of reproductive strategies controlled by HDACs in insects and provide a potential target for pest control.
Collapse
Affiliation(s)
- Jin-Li Zhang
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Xiao-Bo Yuan
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Sun-Jie Chen
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hao-Hao Chen
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Nan Xu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Wen-Hua Xue
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Sheng-Jie Fu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| | - Hai-Jun Xu
- State Key Laboratory of Rice and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institutes of Insect Sciences, Zhejiang University , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
23
|
Waltero C, de Abreu LA, Alonso T, Nunes-da-Fonseca R, da Silva Vaz I, Logullo C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front Physiol 2019; 10:965. [PMID: 31417424 PMCID: PMC6684781 DOI: 10.3389/fphys.2019.00965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Embryogenesis is a metabolically intensive process carried out under tightly controlled conditions. The insulin signaling pathway regulates glucose homeostasis and is essential for reproduction in metazoan model species. Three key targets are part of this signaling pathway: protein kinase B (PKB, or AKT), glycogen synthase kinase 3 (GSK-3), and target of rapamycin (TOR). While the role of AKT and GSK-3 has been investigated during tick embryonic development, the role of TOR remains unknown. In this study, TOR and two other downstream effectors, namely S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), were investigated in in vitro studies using the tick embryonic cell line BME26. First, we show that exogenous insulin can stimulate TOR transcription. Second, TOR chemical inhibition led to a decrease in BME26 cell viability, loss of membrane integrity, and downregulation of S6K and 4E-BP1 transcription. Conversely, treating BME26 cells with chemical inhibitors of AKT or GSK-3 did not affect S6K and 4E-BP1 transcription, showing that TOR is specifically required to activate its downstream targets. To address the role of TOR in tick reproduction, in vivo studies were performed. Analysis of relative transcription during different stages of tick embryonic development showed different levels of transcription for TOR, and a maternal deposition of S6K and 4E-BP1 transcripts. Injection of TOR double-stranded RNA (dsRNA) into partially fed females led to a slight delay in oviposition, an atypical egg external morphology, decreased vitellin content in eggs, and decreased larval hatching. Taken together, our data show that the TOR signaling pathway is important for tick reproduction, that TOR acts as a regulatory target in Rhipicephalus microplus embryogenesis and represents a promising target for the development of compounds for tick control.
Collapse
Affiliation(s)
- Camila Waltero
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Leonardo Araujo de Abreu
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Thayná Alonso
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Centro de Biotecnologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal do Rio de Janeiro, Macaé, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Pletcher RC, Hardman SL, Intagliata SF, Lawson RL, Page A, Tennessen JM. A Genetic Screen Using the Drosophila melanogaster TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3 (BETHESDA, MD.) 2019; 9:2061-2070. [PMID: 31036678 PMCID: PMC6643872 DOI: 10.1534/g3.119.400193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
The metabolic enzymes that compose glycolysis, the citric acid cycle, and other pathways within central carbon metabolism have emerged as key regulators of animal development. These enzymes not only generate the energy and biosynthetic precursors required to support cell proliferation and differentiation, but also moonlight as regulators of transcription, translation, and signal transduction. Many of the genes associated with animal metabolism, however, have never been analyzed in a developmental context, thus highlighting how little is known about the intersection of metabolism and development. Here we address this deficiency by using the Drosophila TRiP RNAi collection to disrupt the expression of over 1,100 metabolism-associated genes within cells of the eye imaginal disc. Our screen not only confirmed previous observations that oxidative phosphorylation serves a critical role in the developing eye, but also implicated a host of other metabolic enzymes in the growth and differentiation of this organ. Notably, our analysis revealed a requirement for glutamine and glutamate metabolic processes in eye development, thereby revealing a role of these amino acids in promoting Drosophila tissue growth. Overall, our analysis highlights how the Drosophila eye can serve as a powerful tool for dissecting the relationship between development and metabolism.
Collapse
Affiliation(s)
- Rose C Pletcher
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sara L Hardman
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sydney F Intagliata
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Rachael L Lawson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Aumunique Page
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
25
|
Reduced Glutamine Synthetase Activity Alters the Fecundity of Female Bactrocera dorsalis (Hendel). INSECTS 2019; 10:insects10070186. [PMID: 31252564 PMCID: PMC6681273 DOI: 10.3390/insects10070186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022]
Abstract
Glutamine synthetase (GS) is a key enzyme in glutamine synthesis and is associated with multiple physiological processes in insects, such as embryonic development, heat shock response, and fecundity regulation. However, little is known about the influence of GS on female fecundity in the oriental fruit fly, Bactrocera dorsalis. Based on the cloning of BdGSs, mitochondrial BdGSm and cytoplasmic BdGSc, we determined their expressions in the tissues of adult B. dorsalis. BdGSm was highly expressed in the fat body, while BdGSc was highly expressed in the head and midgut. Gene silencing by RNA interference against two BdGSs isoforms suppressed target gene expression at the transcriptional level, leading to a reduced ovarian size and lower egg production. The specific inhibitor L-methionine S-sulfoximine suppressed enzyme activity, but only the gene expression of BdGSm was suppressed. A similar phenotype of delayed ovarian development occurred in the inhibitor bioassay. Significantly lower expression of vitellogenin and vitellogenin receptor was observed when GS enzyme activity was suppressed. These data illustrate the effects of two GS genes on adult fecundity by regulating vitellogenin synthesis in different ways.
Collapse
|
26
|
Kang K, Yue L, Xia X, Liu K, Zhang W. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics 2019; 15:62. [PMID: 30976994 PMCID: PMC6459800 DOI: 10.1007/s11306-019-1523-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The brown planthopper (BPH, Nilaparvata lugens Stål, Hemiptera: Delphacidae) is one of the most devastating insect pests of the crucially important cereal crop, rice (Oryza sativa L.). Currently, multiple BPH-resistant rice varieties have been cultivated and generalized to control BPH. However, the defence metabolic responses and their modes of action against BPH in different rice cultivars remain uncharacterized. OBJECTIVE We used a non-biased metabolomics approach to explore the differences in metabolite profiles in response to BPH infestation in the susceptible TN1 rice cultivar and two resistant cultivars (IR36 and IR56). METHODS The metabolomic detection based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) was performed to investigate the content changes of identified metabolites in TN1, IR36 and IR56 rice varieties at various time points (0 h, 24 h, 48 h and 96 h) post BPH feeding. The differentially expressed metabolites were screened and the corresponding metabolic pathways were further enriched. RESULTS The results showed that compared to that in TN1, the content changes of most primary metabolites were more stable, but the concentration alterations of some defence-related metabolites were more acute and persistent in IR36 and IR56. Furthermore, the differentially expressed pathways analysis revealed that cyanoamino acids and lipids metabolism was persistently induced in IR36, but changes in thiamine, taurine and hypotaurine metabolism were more significant in IR56 during BPH infestation. Besides, the contents of quercetin and spermidine which were harmful to BPH fitness, were significantly elevated by BPH in TN1 and IR36, and the quercetin level was significantly decreased during BPH feeding in IR56. CONCLUSION The results of the differences in metabolite profiles in response to BPH infestation in different rice cultivars were useful to clarify the metabolic mechanism of rice plants during BPH infestation and to provide new resources to control this insect pest.
Collapse
Affiliation(s)
- Kui Kang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Lei Yue
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Xin Xia
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Kai Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wenqing Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
27
|
Zhang DW, Xiao ZJ, Zeng BP, Li K, Tang YL. Insect Behavior and Physiological Adaptation Mechanisms Under Starvation Stress. Front Physiol 2019; 10:163. [PMID: 30890949 PMCID: PMC6411660 DOI: 10.3389/fphys.2019.00163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/11/2019] [Indexed: 01/09/2023] Open
Abstract
Intermittent food shortages are commonly encountered in the wild. During winter or starvation stress, mammals often choose to hibernate while insects-in the form of eggs, mature larvae, pupae, or adults opt to enter diapause. In response to food shortages, insects may try to find sufficient food to maintain normal growth and metabolism through distribution of populations or even migration. In the face of hunger or starvation, insect responses can include changes in behavior and/or maintenance of a low metabolic rate through physiological adaptations or regulation. For instance, in order to maintain homeostasis of the blood sugar, trehalose under starvation stress, other sugars can be transformed to sustain basic energy metabolism. Furthermore, as the severity of starvation increases, lipids (especially triglycerides) are broken down to improve hunger resistance. Starvation stress simultaneously initiates a series of neural signals and hormone regulation processes in insects. These processes involve neurons or neuropeptides, immunity-related genes, levels of autophagy, heat shock proteins and juvenile hormone levels which maintain lower levels of physiological metabolic activity. This work focuses on hunger stress in insects and reviews its effects on behavior, energy reserve utilization, and physiological regulation. In summary, we highlight the diversity in adaptive strategies of insects to hunger stress and provides potential ideas to improve hunger resistance and cold storage development of natural enemy insects. This gist of literature on insects also broadens our understanding of the factors that dictate phenotypic plasticity in adjusting development and life histories around nutritionally optimal environmental conditions.
Collapse
Affiliation(s)
- Dao-Wei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | | | | | | | | |
Collapse
|
28
|
Li X, Liu M, Ji JY. Understanding Obesity as a Risk Factor for Uterine Tumors Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:129-155. [PMID: 31520353 DOI: 10.1007/978-3-030-23629-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple large-scale epidemiological studies have identified obesity as an important risk factor for a variety of human cancers, particularly cancers of the uterus, gallbladder, kidney, liver, colon, and ovary, but there is much uncertainty regarding how obesity increases the cancer risks. Given that obesity has been consistently identified as a major risk factor for uterine tumors, the most common malignancies of the female reproductive system, we use uterine tumors as a pathological context to survey the relevant literature and propose a novel hypothesis: chronic downregulation of the cyclin-dependent kinase 8 (CDK8) module, composed of CDK8 (or its paralog CDK19), Cyclin C, MED12 (or MED12L), and MED13 (or MED13L), by elevated insulin or insulin-like growth factor signaling in obese women may increase the chances to dysregulate the activities of transcription factors regulated by the CDK8 module, thereby increasing the risk of uterine tumors. Although we focus on endometrial cancer and uterine leiomyomas (or fibroids), two major forms of uterine tumors, our model may offer additional insights into how obesity increases the risk of other types of cancers and diseases. To illustrate the power of model organisms for studying human diseases, here we place more emphasis on the findings obtained from Drosophila melanogaster.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
29
|
Kang K, Yang P, Chen LE, Pang R, Yu LJ, Zhou WW, Zhu ZR, Zhang WQ. Identification of putative fecundity-related gustatory receptor genes in the brown planthopper Nilaparvata lugens. BMC Genomics 2018; 19:970. [PMID: 30587129 PMCID: PMC6307266 DOI: 10.1186/s12864-018-5391-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/18/2018] [Indexed: 11/25/2022] Open
Abstract
Background The insect gustatory system plays a central role in the regulation of multiple physiological behaviors and the co-evolution between insects and their hosts. The gustatory receptors (Gr) are important to allow insects to sense their environment. It is critical to the selection of foods, mates and oviposition sites of insects. In this study, the Gr family genes of the brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) were identified and analyzed, and their potential relationship to the fecundity of BPH was explored by RNA interference (RNAi). Results We identified 32 putative Gr genes by analyzing transcriptome and genome data from BPH. Most of these Gr proteins have the typical structure of seven transmembrane domains. The BPH Gr genes (NlGrs) were expressed in virtually all tissues and stages, whilst higher transcript accumulations were found in adult stages and in the midguts of females. Based on the phylogenic analysis, we classified NlGrs into five potential categories, including 2 sugar receptors, 2 Gr43a-like receptors, 7 CO2 receptors, 5 bitter receptors and 13 NlGrs with unknown functions. Moreover, we found that 10 NlGrs have at least two alternative splicing variants, and obtained alternative splicing isoforms of 5 NlGrs. Finally, RNAi of 29 NlGrs showed that 27 of them are related to the transcript levels of two fecundity related genes vitellogenin and vitellogenin receptor. Conclusions We found 32 Gr genes in BPH, among which at least 27 are required for normal expression of fecundity markers of this insect pest. These findings provide the basis for the functional study of Grs and the exploration of potential genes involved in the monophagous character of BPH. Electronic supplementary material The online version of this article (10.1186/s12864-018-5391-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Pan Yang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Li-E Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Wen-Qing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
30
|
Gao X, Xie XJ, Hsu FN, Li X, Liu M, Hemba-Waduge RUS, Xu W, Ji JY. CDK8 mediates the dietary effects on developmental transition in Drosophila. Dev Biol 2018; 444:62-70. [PMID: 30352217 PMCID: PMC6263851 DOI: 10.1016/j.ydbio.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/08/2018] [Accepted: 10/07/2018] [Indexed: 01/29/2023]
Abstract
The complex interplay between genetic and environmental factors, such as diet and lifestyle, defines the initiation and progression of multifactorial diseases, including cancer, cardiovascular and metabolic diseases, and neurological disorders. Given that most of the studies have been performed in controlled experimental settings to ensure the consistency and reproducibility, the impacts of environmental factors, such as dietary perturbation, on the development of animals with different genotypes and the pathogenesis of these diseases remain poorly understood. By analyzing the cdk8 and cyclin C (cycC) mutant larvae in Drosophila, we have previously reported that the CDK8-CycC complex coordinately regulates lipogenesis by repressing dSREBP (sterol regulatory element-binding protein)-activated transcription and developmental timing by activating EcR (ecdysone receptor)-dependent gene expression. Here we report that dietary nutrients, particularly proteins and carbohydrates, modulate the developmental timing through the CDK8/CycC/EcR pathway. We observed that cdk8 and cycC mutants are sensitive to the levels of dietary proteins and seven amino acids (arginine, glutamine, isoleucine, leucine, methionine, threonine, and valine). Those mutants are also sensitive to dietary carbohydrates, and they are more sensitive to monosaccharides than disaccharides. These results suggest that CDK8-CycC mediates the dietary effects on lipid metabolism and developmental timing in Drosophila larvae.
Collapse
Affiliation(s)
- Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | | | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
31
|
Bisch G, Neuvonen MM, Pierce NE, Russell JA, Koga R, Sanders JG, Lukasik P, Andersson SGE. Genome Evolution of Bartonellaceae Symbionts of Ants at the Opposite Ends of the Trophic Scale. Genome Biol Evol 2018; 10:1687-1704. [PMID: 29982531 PMCID: PMC6044324 DOI: 10.1093/gbe/evy126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Many insects rely on bacterial symbionts to supply essential amino acids and vitamins that are deficient in their diets, but metabolic comparisons of closely related gut bacteria in insects with different dietary preferences have not been performed. Here, we demonstrate that herbivorous ants of the genus Dolichoderus from the Peruvian Amazon host bacteria of the family Bartonellaceae, known for establishing chronic or pathogenic infections in mammals. We detected these bacteria in all studied Dolichoderus species, and found that they reside in the midgut wall, that is, the same location as many previously described nutritional endosymbionts of insects. The genomic analysis of four divergent strains infecting different Dolichoderus species revealed genes encoding pathways for nitrogen recycling and biosynthesis of several vitamins and all essential amino acids. In contrast, several biosynthetic pathways have been lost, whereas genes for the import and conversion of histidine and arginine to glutamine have been retained in the genome of a closely related gut bacterium of the carnivorous ant Harpegnathos saltator. The broad biosynthetic repertoire in Bartonellaceae of herbivorous ants resembled that of gut bacteria of honeybees that likewise feed on carbohydrate-rich diets. Taken together, the broad distribution of Bartonellaceae across Dolichoderus ants, their small genome sizes, the specific location within hosts, and the broad biosynthetic capability suggest that these bacteria are nutritional symbionts in herbivorous ants. The results highlight the important role of the host nutritional biology for the genomic evolution of the gut microbiota-and conversely, the importance of the microbiota for the nutrition of hosts.
Collapse
Affiliation(s)
- Gaelle Bisch
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| | - Minna-Maria Neuvonen
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University
| | | | - Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jon G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University.,Department of Pediatrics, University of California San Diego, La Jolla
| | - Piotr Lukasik
- Department of Biology, Drexel University.,Division of Biological Sciences, University of Montana
| | - Siv G E Andersson
- Cell and Molecular Biology, Science for Life Laboratory, Department of Molecular Evolution, Uppsala University, Sweden
| |
Collapse
|
32
|
Zeng Y, Hu XP, Cao G, Suh SJ. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Sci Rep 2018; 8:13251. [PMID: 30185933 PMCID: PMC6125296 DOI: 10.1038/s41598-018-31681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
When the subterranean termite Reticulitermes flavipes is fed heat-killed methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa, the termite produces proteins with antibacterial activity against the inducer pathogen in its hemolymph. We used a proteomic approach to characterize the alterations in protein profiles caused by the inducer bacterium in the hemolymph of the termite. Nano-liquid chromatography-tandem mass spectrometry analysis identified a total of 221 proteins and approximately 70% of these proteins could be associated with biological processes and molecular functions. Challenges with these human pathogens induced a total of 57 proteins (35 in MRSA-challenged, 16 in P. aeruginosa-challenged, and 6 shared by both treatments) and suppressed 13 proteins by both pathogens. Quasi-Poisson likelihood modeling with false discovery rate adjustment identified a total of 18 and 40 proteins that were differentially expressed at least 2.5-fold in response to MRSA and P. aeruginosa-challenge, respectively. We selected 7 differentially expressed proteins and verified their gene expression levels via quantitative real-time RT-PCR. Our findings provide an initial insight into a putative termite immune response against MRSA and P. aeruginosa-challenge.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Guanqun Cao
- Department of Mathematics and Statistics, Auburn University, Auburn University, Auburn, AL, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn University, Auburn, AL, USA.
| |
Collapse
|
33
|
Buchanan JL, Meiklejohn CD, Montooth KL. Mitochondrial Dysfunction and Infection Generate Immunity-Fecundity Tradeoffs in Drosophila. Integr Comp Biol 2018; 58:591-603. [PMID: 29945242 PMCID: PMC6145415 DOI: 10.1093/icb/icy078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Physiological responses to short-term environmental stressors, such as infection, can have long-term consequences for fitness, particularly if the responses are inappropriate or nutrient resources are limited. Genetic variation affecting energy acquisition, storage, and usage can limit cellular energy availability and may influence resource-allocation tradeoffs even when environmental nutrients are plentiful. Here, we utilized Drosophila mitochondrial-nuclear genotypes to test whether disrupted mitochondrial function interferes with nutrient-sensing pathways, and whether this disruption has consequences for tradeoffs between immunity and fecundity. We found that an energetically-compromised genotype was relatively resistant to rapamycin-a drug that targets nutrient-sensing pathways and mimics resource limitation. Dietary resource limitation decreased survival of energetically-compromised flies. Furthermore, survival of infection with a natural pathogen was decreased in this genotype, and females of this genotype experienced immunity-fecundity tradeoffs that were not evident in genotypic controls with normal energy metabolism. Together, these results suggest that this genotype may have little excess energetic capacity and fewer cellular nutrients, even when environmental nutrients are not limiting. Genetic variation in energy metabolism may therefore act to limit the resources available for allocation to life-history traits in ways that generate tradeoffs even when environmental resources are not limiting.
Collapse
Affiliation(s)
- Justin L Buchanan
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Colin D Meiklejohn
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| | - Kristi L Montooth
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588-0118, USA
| |
Collapse
|
34
|
DeGrandi-Hoffman G, Gage SL, Corby-Harris V, Carroll M, Chambers M, Graham H, Watkins deJong E, Hidalgo G, Calle S, Azzouz-Olden F, Meador C, Snyder L, Ziolkowski N. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:114-124. [PMID: 29990468 DOI: 10.1016/j.jinsphys.2018.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/16/2018] [Accepted: 07/03/2018] [Indexed: 05/24/2023]
Abstract
Free-ranging herbivores have yearly life cycles that generate dynamic resource needs. Honey bee colonies also have a yearly life cycle that might generate nutritional requirements that differ between times of brood rearing and colony expansion in the spring and population contraction and preparation for overwintering in the fall. To test this, we analyzed polyfloral mixes of spring and fall pollens to determine if the nutrient composition differed with season. Next, we fed both types of seasonal pollens to bees reared in spring and fall. We compared the development of brood food glands (i.e., hypopharyngeal glands - HPG), and the expression of genes in the fat body between bees fed pollen from the same (in-season) or different season (out-of-season) when they were reared. Because pathogen challenges often heighten the effects of nutritional stress, we infected a subset of bees with Nosema to determine if bees responded differently to the infection depending on the seasonal pollen they consumed. We found that spring and fall pollens were similar in total protein and lipid concentrations, but spring pollens had higher concentrations of amino and fatty acids that support HPG growth and brood production. Bees responded differently when fed in vs. out of season pollen. The HPG of both uninfected and Nosema-infected spring bees were larger when they were fed spring (in-season) compared to fall pollen. Spring bees differentially regulated more than 200 genes when fed in- vs. out-of-season pollen. When infected with Nosema, approximately 400 genes showed different infection-induced expression patterns in spring bees depending on pollen type. In contrast, HPG size in fall bees was not affected by pollen type, though HPG were smaller in those infected with Nosema. Very few genes were differentially expressed with pollen type in uninfected (4 genes) and infected fall bees (5 genes). Pollen type did not affect patterns of infection-induced expression in fall bees. Our data suggest that physiological responses to seasonal pollens differ between bees reared in the spring and fall with spring bees being significantly more sensitive to pollen type especially when infected with Nosema. This study provides evidence that seasonal pollens may provide levels of nutrients that align with the activities of honey bees during their yearly colony cycle. The findings are important for the planning and establishment of forage plantings to sustain honey bees, and in the development of seasonal nutritional supplements fed to colonies when pollen is unavailable.
Collapse
Affiliation(s)
| | | | | | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | | | | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Farida Azzouz-Olden
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY, USA
| | | | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | |
Collapse
|
35
|
Sun Z, Shi Q, Xu C, Wang R, Wang H, Song Y, Zeng R. Regulation of NlE74A on vitellogenin may be mediated by angiotensin converting enzyme through a fecundity-related SNP in the brown planthopper, Nilaparvata lugens. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:26-32. [PMID: 29932974 DOI: 10.1016/j.cbpa.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Sun ZX, Kang K, Cai YJ, Zhang JQ, Zhai YF, Zeng RS, Zhang WQ. Transcriptional regulation of the vitellogenin gene through a fecundity-related single nucleotide polymorphism within a GATA-1 binding motif in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2018; 27:365-372. [PMID: 29484744 DOI: 10.1111/imb.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identifying the Single Nucleotide Polymorphisms (SNPs) with functions in insect fecundity promises to provide novel insight into genetic mechanisms of adaptation and to aid in effective control of insect populations. We previously identified several SNPs within the vitellogenin (Vg) promoter region between a high-fecundity population (HFP) and a low-fecundity population (LFP) of the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Here, we found that an A-to-T (HFP allele to LFP allele) transversion at nucleotide -953 upstream of Vg in a Nilaparvata lugens GATA-1 (NlGATA-1) binding motif is associated with the level of Vg transcription. We also characterized NlGATA-1, containing a double CX2 CX17 CX2 C zinc finger, which has been implicated in the activation of Vg gene expression. Knockdown of the NlGATA-1 gene results in a reduced basal level of expression of the Vg gene and fewer offspring of N. lugens in vivo, whereas overexpression of NlGATA-1 in cells increased Vg promoter activity. Moreover, upon cotransfection with NlGATA-1 expression vector, the luciferase activities of Vg reporter vectors with the A allele were significantly higher than those with the T allele. These findings support a mechanism in which a SNP within the promoter of Vg is associated with the level of Vg transcription by altering the binding activity of NlGATA-1 and subsequently affecting fecundity in N. lugens.
Collapse
Affiliation(s)
- Z-X Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - K Kang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-J Cai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - J-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - Y-F Zhai
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| | - R-S Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - W-Q Zhang
- Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Zhang MY, Wei D, Li R, Jia HT, Liu YW, Taning CNT, Wang JJ, Smagghe G. Cytoplasmic glutamine synthetase gene expression regulates larval development in Bactrocera dorsalis (Hendel). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21447. [PMID: 29359358 DOI: 10.1002/arch.21447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In insects, glutamine synthetase (GS), a key enzyme in the synthesis of glutamine, has been reported to be associated with embryonic development, heat shock response, and fecundity regulation. However, little is known about the influence of GS on postembryonic development. In this study, we demonstrate that blocking the activity of GS in the oriental fruit fly (Bactrocera dorsalis) with use of a GS-specific inhibitor (L-methionine S-sulfoximine), led to a significant delay in larval development, pupal weight loss, and inhibition of pupation. We further identify cloned and characterized two GS genes (BdGS-c and BdGS-m) from B. dorsalis. The two GS genes identified in B. dorsalis were predicted to be located in the cytosol (BdGS-c) and mitochondria (BdGS-m), and homology analysis indicated that both genes were similar to homologs from other Dipterans, such as Drosophila melanogaster and Aedes aegypti. BdGS-c was highly expressed in the larval stages, suggesting that cytosolic GS plays a predominant role in larval development. Furthermore, RNA interference experiments against BdGS-c, to specifically decrease the expression of cytosolic GS, resulted in delay in larval development as well as pupal weight loss. This study presents the prominent role played by BdGS-c in regulating larval development and suggests that the observed effect could have been modulated through ecdysteroid synthesis, agreeing with the reduced expression of the halloween gene spook. Also, the direct effects of BdGS-c silencing on B. dorsalis, such as larval lethality, delayed pupation, and late emergence, can be further exploited as novel insecticide target in the context of pest management.
Collapse
Affiliation(s)
- Meng-Yi Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dong Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Crop Protection, Ghent University, Ghent, Belgium
| | - Ran Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Ting Jia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yu-Wei Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | | | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Crop Protection, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Ding L, Chen F, Luo R, Pan Q, Wang C, Yu S, Cong L, Liu H, Li H, Ran C. Gene cloning and difference analysis of vitellogenin in Neoseiulus barkeri (Hughes). BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:141-149. [PMID: 28693644 DOI: 10.1017/s0007485317000591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neoseiulus barkeri (HUGHES) is the natural enemy of spider mites, whiteflies and thrips. Screening for chemically-resistant predatory mites is a practical way to balance the contradiction between the pesticide using and biological control. In this study, the number of eggs laid by fenpropathrin-susceptible and resistant strains of N. barkeri was compared. Additionally, we cloned three N. barkeri vitellogenin (Vg) genes and used quantitative real-time polymerase chain reaction to quantify Vg expression in susceptible and resistant strains. The total number of eggs significantly increased in the fenpropathrin-resistant strain. The full-length cDNA cloning of three N. barkeri Vg genes (NbVg1, NbVg2 and NbVg3) revealed that the open reading frames of NbVg1, NbVg2 and NbVg3 were 5571, 5532 and 4728 bp, encoding 1856, 1843 and 1575 amino acids, respectively. The three N. barkeri Vg possessed the Vitellogenin-N domain (or lipoprotein N-terminal domain (LPD_N)), von Willebrand factor type D domain (VWD) and the domain with unknown function 1943 (DUF1943). The NbVg1 and NbVg2 expression levels were significantly higher in the resistant strain than in the susceptible strain, while the NbVg3 expression level was lower in the resistant strain. Thus, we speculate that the increased number of eggs laid by the fenpropathrin-resistant strain of N. barkeri may be a consequence of changes in Vg gene expression.
Collapse
Affiliation(s)
- L Ding
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - F Chen
- Sinofert Holdings Limited,Henan Branch,Zhengzhou 450000,China
| | - R Luo
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - Q Pan
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - C Wang
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - S Yu
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - L Cong
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - H Liu
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - H Li
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| | - C Ran
- Citrus Research Institute,Southwest University/Chinese Academy of Agricultural Sciences,Chongqing 400712,China
| |
Collapse
|
39
|
Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2017; 104:97. [PMID: 29086031 DOI: 10.1007/s00114-017-1518-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Estrogen-related receptor gene (ERR) and ecdysone receptor gene (EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated (P < 0.05) when treated with 2000 ng TeERR or TeEcR-dsRNA for 48 h. The expression level of TeERR could be down-regulated (P < 0.05) using TeEcR-RNAi and vice versa. TeERR and TeEcR-RNAi caused morphological changes in testes, but they had no obvious effect on weight (P > 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.
Collapse
|
40
|
Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, Mythimna separata. Proteomics 2017; 17. [PMID: 28941069 DOI: 10.1002/pmic.201700165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Indexed: 11/09/2022]
Abstract
Chitin synthases are very important enzymes for chitin synthesis in various species, which makes them a specific target of insecticides. In the present study, the function of the chitin synthase A (CHSA) gene isolated from Mythimna separate is investigated. The majority of dsMysCHSA treated larvae (89.50%) exhibit lethal phenotypes, including three phenotypes with severe cuticle deformations. The dsMysCHSA treatment in adult females affects oogenesis, and significantly reduce the ovary size and the oviposition number compared with controls. To determine how MysCHSA affects female fecundity, combined analyses of RNA-sequencing (RNA-Seq) transcriptome and TMT proteome (tandem mass tags) data in M. separata after treatment with MysCHSA-RNAi is performed. The differentially expressed proteins and genes affect fecundity-related proteins, energy metabolism, fatty acid metabolism, amino sugars, and nucleotide sugar metabolism pathways. Taken together, these results suggest that MysCHSA acts on M. separata ecdysis and fecundity, and has the potential as a target gene for pest control.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
41
|
Liu C, Du B, Hao F, Lei H, Wan Q, He G, Wang Y, Tang H. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1346-1357. [PMID: 28278368 PMCID: PMC5595709 DOI: 10.1111/pbi.12721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 05/05/2023]
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice-growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH-resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC-FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real-time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast-like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up-regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH-rice interactions and perhaps for developing new BPH-combating strategies.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Ba Du
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Qianfen Wan
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| | - Guangcun He
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang UniversityHangzhouChina
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| |
Collapse
|
42
|
Pang R, Qiu J, Li T, Yang P, Yue L, Pan Y, Zhang W. The regulation of lipid metabolism by a hypothetical P-loop NTPase and its impact on fecundity of the brown planthopper. Biochim Biophys Acta Gen Subj 2017; 1861:1750-1758. [PMID: 28315769 DOI: 10.1016/j.bbagen.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/25/2017] [Accepted: 03/14/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Insect fecundity can be regulated by multiple genes in several important signaling pathways which form an extremely complicated regulatory network. However, there are still many genes that have significant impact on insect fecundity but their action mode are still unknown. METHODS Quantitative real-time PCR (qRT-PCR), immunofluorescence and western blot were used to study the expression profile of Nl23867 in the brown planthopper, Nilaparvata lugens. RNA interference (RNAi), RNA-seq and isobaric tags for relative and absolute quantification (iTRAQ) were performed to investigate the action mode of Nl23867 in the regulation of fecundity. High performance liquid chromatography (HPLC) analysis was performed to detect the fatty acid contents. RESULTS We show that knockdown of Nl23867, a gene encoding a hypothetical P-loop NTPase, significantly decreased fecundity of N. lugens. Underdeveloped ovaries, fewer eggs laid and reduction in vitellogenin (Vg) protein expression were observed after RNAi knockdown of Nl23867, and most of the affected genes and pathways are fatty acid metabolism-related. We further determined that Nl23867 directly impacts the palmitic acid biosynthesis by regulating the expression of palmitoyl-protein thioesterase (PPT), subsequently affecting the content of total lipids in N. lugens. CONCLUSIONS Nl23867 regulates the fecundity of N. lugens by modulating the biosynthetic pathway of palmitic acid and affecting lipid metabolism during vitellogenesis and oocyte development. GENERAL SIGNIFICANCE The presented study pioneers the exploration into how a function-unknown gene takes part in the regulation of fecundity in an insect, and will contribute to the construction of gene regulatory network for insect fecundity.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jieqi Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tengchao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pan Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yixin Pan
- ZhiXin High School, Guangzhou, 510080, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
43
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|
44
|
Qiu J, He Y, Zhang J, Kang K, Li T, Zhang W. Discovery and functional identification of fecundity-related genes in the brown planthopper by large-scale RNA interference. INSECT MOLECULAR BIOLOGY 2016; 25:724-733. [PMID: 27472833 DOI: 10.1111/imb.12257] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, transcriptome and proteome data have increasingly been used to identify potential novel genes related to insect phenotypes. However, there are few studies reporting the large-scale functional identification of such genes in insects. To identify novel genes related to fecundity in the brown planthopper (BPH), Nilaparvata lugens, 115 genes were selected from the transcriptomic and proteomic data previously obtained from high- and low-fecundity populations in our laboratory. The results of RNA interference (RNAi) feeding experiments showed that 91.21% of the genes were involved in the regulation of vitellogenin (Vg) expression and may influence BPH fecundity. After RNAi injection experiments, 12 annotated genes were confirmed as fecundity-related genes and three novel genes were identified in the BPH. Finally, C-terminal binding protein (CtBP) was shown to play an important role in BPH fecundity. Knockdown of CtBP not only led to lower survival, underdeveloped ovaries and fewer eggs laid but also resulted in a reduction in Vg protein expression. The novel gene resources gained from this study will be useful for constructing a Vg regulation network and may provide potential target genes for RNAi-based pest control.
Collapse
Affiliation(s)
- J Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Y He
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - J Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - K Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - T Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
46
|
Sattar S, Thompson GA. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles. FRONTIERS IN PLANT SCIENCE 2016; 7:1241. [PMID: 27625654 PMCID: PMC5003895 DOI: 10.3389/fpls.2016.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex. Different forms of sRNAs, with specific modes of action, regulate changes in the host transcriptome primarily through post-transcriptional gene silencing and occasionally through translational repression. Plant genetic resistance against hemipterans provides a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced sRNA expression in resistance genotypes delivers a new paradigm in understanding the regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including changes in sRNA biogenesis and expression can also provide insights into susceptibility to insect herbivores. Activation of phytohormone-mediated defense responses against insect herbivory is another hallmark of this interaction, and recent studies have shown that regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding on resistant plants also show changes in insect sRNA profiles, possibly influencing insect development and reproduction. Changes in insect traits such as fecundity, host range, and resistance to insecticides are impacted by sRNAs and can directly contribute to the success of certain insect biotypes. In addition to causing direct damage to the host plant, hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA pathway is induced in response to viral infection. Evidence for robust insect RNAi machinery in several hemipteran species is of immense interest and is being actively pursued as a possible tool for insect control. RNAi-induced gene silencing following uptake of exogenous dsRNA was successfully demonstrated in several hemipterans and the presence of sid-1 like genes support the concept of a systemic response in some species.
Collapse
|
47
|
Fu X, Li T, Chen J, Dong Y, Qiu J, Kang K, Zhang W. Functional screen for microRNAs of Nilaparvata lugens reveals that targeting of glutamine synthase by miR-4868b regulates fecundity. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:22-9. [PMID: 26546713 DOI: 10.1016/j.jinsphys.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 05/14/2023]
Abstract
Insect fecundity is regulated by the interaction of genotypes and the environment. MicroRNAs (miRNAs) also act in insect development and reproduction by regulating genes involved in these physiological processes. Although hundreds of insect miRNAs have been identified, the biological roles of most remain poorly understood. Here, we used a multi-algorithm approach for miRNA target prediction in 3'UTRs of fecundity-related genes in the brown planthopper (BPH) Nilaparvata lugens and identified 38 putative miRNAs targeting 9 fecundity-related genes. High-ranked miRNAs were selected for target validation. Using a dual luciferase reporter assay in S2 cells, we experimentally verified N. lugens glutamine synthetase (NlGS) as an authentic target of microRNA-4868b (miR-4868b). In the females, NlGS protein expression was down-regulated after injection of a miR-4868b mimic but up-regulated after injection of a miR-4868b inhibitor. In addition, overexpression of miR-4868b reduced fecundity, and disrupted ovary development and Vg expression in N. lugens. These findings showed that miR-4868b is involved in regulating N. lugens fecundity by targeting NlGS. Moreover, this study may lead to better understanding of the fecundity of this important agricultural insect pest.
Collapse
Affiliation(s)
- Xian Fu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tengchao Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Dong
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieqi Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|