1
|
Tothero GK, Hoover RL, Farag IF, Kaplan DI, Weisenhorn P, Emerson D, Chan CS. Leptothrix ochracea genomes reveal potential for mixotrophic growth on Fe(II) and organic carbon. Appl Environ Microbiol 2024; 90:e0059924. [PMID: 39133000 PMCID: PMC11412304 DOI: 10.1128/aem.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Leptothrix ochracea creates distinctive iron-mineralized mats that carpet streams and wetlands. Easily recognized by its iron-mineralized sheaths, L. ochracea was one of the first microorganisms described in the 1800s. Yet it has never been isolated and does not have a complete genome sequence available, so key questions about its physiology remain unresolved. It is debated whether iron oxidation can be used for energy or growth and if L. ochracea is an autotroph, heterotroph, or mixotroph. To address these issues, we sampled L. ochracea-rich mats from three of its typical environments (a stream, wetlands, and a drainage channel) and reconstructed nine high-quality genomes of L. ochracea from metagenomes. These genomes contain iron oxidase genes cyc2 and mtoA, showing that L. ochracea has the potential to conserve energy from iron oxidation. Sox genes confer potential to oxidize sulfur for energy. There are genes for both carbon fixation (RuBisCO) and utilization of sugars and organic acids (acetate, lactate, and formate). In silico stoichiometric metabolic models further demonstrated the potential for growth using sugars and organic acids. Metatranscriptomes showed a high expression of genes for iron oxidation; aerobic respiration; and utilization of lactate, acetate, and sugars, as well as RuBisCO, supporting mixotrophic growth in the environment. In summary, our results suggest that L. ochracea has substantial metabolic flexibility. It is adapted to iron-rich, organic carbon-containing wetland niches, where it can thrive as a mixotrophic iron oxidizer by utilizing both iron oxidation and organics for energy generation and both inorganic and organic carbon for cell and sheath production. IMPORTANCE Winogradsky's observations of L. ochracea led him to propose autotrophic iron oxidation as a new microbial metabolism, following his work on autotrophic sulfur-oxidizers. While much culture-based research has ensued, isolation proved elusive, so most work on L. ochracea has been based in the environment and in microcosms. Meanwhile, the autotrophic Gallionella became the model for freshwater microbial iron oxidation, while heterotrophic and mixotrophic iron oxidation is not well-studied. Ecological studies have shown that Leptothrix overtakes Gallionella when dissolved organic carbon content increases, demonstrating distinct niches. This study presents the first near-complete genomes of L. ochracea, which share some features with autotrophic iron oxidizers, while also incorporating heterotrophic metabolisms. These genome, metabolic modeling, and transcriptome results give us a detailed metabolic picture of how the organism may combine lithoautotrophy with organoheterotrophy to promote Fe oxidation and C cycling and drive many biogeochemical processes resulting from microbial growth and iron oxyhydroxide formation in wetlands.
Collapse
Affiliation(s)
- Gracee K. Tothero
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Rene L. Hoover
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
| | - Ibrahim F. Farag
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| | - Daniel I. Kaplan
- Savannah River Ecology
Laboratory, University of Georgia,
Aiken, South Carolina,
USA
| | | | - David Emerson
- Bigelow Laboratory for
Ocean Sciences, East
Boothbay, Maine, USA
| | - Clara S. Chan
- Microbiology Graduate
Program, University of Delaware,
Newark, Delaware, USA
- Delaware Biotechnology
Institute, Newark,
Delaware, USA
- Department of Earth
Sciences, University of Delaware,
Newark, Delaware, USA
- School of Marine
Science and Policy, University of
Delaware, Newark,
Delaware, USA
| |
Collapse
|
2
|
Liu Y, Li J, Zeng J, Yu X, Sun X, Zhou Z, Xu J, Xu L, Li L. Complete oxidative degradation of diclofenac via coupling free radicals and oxygenases of a micro/nanostructured biogenic Mn oxide composite from engineered Pseudomonas sp. MB04R-2. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131657. [PMID: 37245362 DOI: 10.1016/j.jhazmat.2023.131657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Oxidative degradation can effectively degrade aromatic emerging contaminants (ECs). However, the degradability of lone inorganic/biogenic oxides or oxidases is typically limited when treating polycyclic ECs. Herein, we report a dual-dynamic oxidative system comprising engineered Pseudomonas and biogenic Mn oxides (BMO), which completely degrades diclofenac (DCF), a representative halogen-containing polycyclic EC. Correspondingly, recombinant Pseudomonas sp. MB04R-2 was constructed via gene deletion and chromosomal insertion of a heterologous multicopper oxidase cotA, allowing for enhanced Mn(II)-oxidizing activity and rapid formation of the BMO aggregate complex. Additionally, we characterized it as a micro/nanostructured ramsdellite (MnO2) composite using multiple-phase composition and fine structure analyses. Furthermore, using real-time quantitative polymerase chain reaction, gene knockout, and expression complementation of oxygenase genes, we demonstrated the central and associative roles of intracellular oxygenases and cytogenic/BMO-derived free radicals (FRs) in degrading DCF and determined the effects of FR excitation and quenching on the DCF degradation efficiency. Finally, after identifying the degraded intermediates of 2H-labeled DCF, we constructed the DCF metabolic pathway. In addition, we evaluated the degradation and detoxification effects of the BMO composite on DCF-containing urban lake water and on biotoxicity in zebrafish embryos. Based on our findings, we proposed a mechanism for oxidative degradation of DCF by associative oxygenases and FRs.
Collapse
Affiliation(s)
- Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaoqing Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhicheng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Xu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangzheng Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Ao M, Deng T, Sun S, Li M, Li J, Liu T, Yan B, Liu WS, Wang G, Jing D, Chao Y, Tang Y, Qiu R, Wang S. Increasing soil Mn abundance promotes the dissolution and oxidation of Cr(III) and increases the accumulation of Cr in rice grains. ENVIRONMENT INTERNATIONAL 2023; 175:107939. [PMID: 37137179 DOI: 10.1016/j.envint.2023.107939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O2 and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake. Here, we investigated the effects on Cr(VI) generation and the subsequent Cr uptake and accumulation with the involvement of two rice cultivars with distinct ROL capacities by increasing soil Mn abundance. Results showed that Mn(II) addition to the soil led to more Cr(III) being released into the pore water, and the dissolved Cr(III) was oxidized to Cr(VI) by ROL and biogenic Mn(III/IV) oxides. The concentration of Cr(VI) in soil and pore water increased linearly with the addition of Mn(II) doses. Mn(II) addition promoted the root-to-shoot translocation and grain accumulation of Cr derived mainly from newly generated Cr(VI) in the soil. These results emphasize that rice ROL and MOM promote the oxidative dissolution of Cr(III) at a high level of soil Mn, resulting in more Cr accumulation in rice grains and increasing dietary Cr exposure risks.
Collapse
Affiliation(s)
- Ming Ao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shengsheng Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bofang Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences in Hilly Region of Jiangsu, Jurong 212400, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Gu T, Tong Z, Zhang X, Wang Z, Zhang Z, Hwang TS, Li L. Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation. Int J Mol Sci 2022; 23:ijms23115951. [PMID: 35682628 PMCID: PMC9180420 DOI: 10.3390/ijms23115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.
Collapse
Affiliation(s)
- Tong Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhenghu Tong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Xue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China
| | - Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (T.-S.H.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Correspondence: (T.-S.H.); (L.L.)
| |
Collapse
|
5
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
6
|
Tang W, Liu H, Zeng X. Structural and functional study on cysteine 495, coordinating ligand to T1Cu site in multicopper oxidase CopA. CHEMOSPHERE 2021; 281:130807. [PMID: 34022605 DOI: 10.1016/j.chemosphere.2021.130807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Excessive intake of manganese seriously affects human health. Manganese oxidizing bacteria can efficiently remove manganese, among which manganese oxidase plays a decisive role. Multicopper oxidase, one of the manganese oxidases, has 4 copper binding sites, among them, T1Cu coordinates with two histidine, one cysteine and one axial residue, mainly transferring electrons from the substrate to T2Cu and T3Cu. Here, we conducted site-directed mutagenesis on T1Cu coordinating 495 amino acid site from cysteine to aspartic acid, histidine and methionine in multicopper oxidase CopA from Brevibacillus panacihumi MK-8, through the enzyme kinetics and structure models, finding that the enzyme catalytic efficiency (kcat/Km) of the mutated C495H with Mn2+ and ABTS reached 9.03 min-1 mM-1 and 8863 s-1 mM-1, 1.47 times and 1.67 times that of CopA. And it was found strain Rosetta-pET-copAC495H could remove 91.67% manganese after 7-day culture, which was 11.65% higher than the original strain. To sum up, these results provide a vision for the future application of protein engineering in biological manganese removal.
Collapse
Affiliation(s)
- Wenwei Tang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| | - Haoxiang Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xinping Zeng
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Liang DH, Hu Y, Cheng J, Chen Y. Enhanced performance of sulfamethoxazole degradation using Achromobacter sp. JL9 with in-situ generated biogenic manganese oxides. BIORESOURCE TECHNOLOGY 2021; 333:125089. [PMID: 33894443 DOI: 10.1016/j.biortech.2021.125089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Little information is known about the relationships of in-situ generated BioMnOx and sulfamethoxazole (SMX) degradation. In this study, a novel efficient bioremediation technology was presented for simultaneous remove the nitrogen-N, SMX, and Mn(II) from water. Mn(II) can be completely oxidized with a oxidized rate of 0.071 mg/(L·h), the SMX and nitrogen-N removal ratios were 97.43% and 85.61%, respectively. The Ratkowsky kinetic models were established for described the SMX degradation influence by temperature. Furthermore, the microbial degradation, Mn(III) trapping, and intermediates identified experiments were used to explore the mechanisms of SMX and nitrogen-N removal. These results indicated that microbial activity play a decisive role in SMX and nitrogen-N removal, and the catalytic character of sediment could enhanced the SMX degradation. Furthermore, proposed the possible SMX degradation pathway based on the intermediates and microbial metabolism theory, the environmental toxicity of SMX and each intermediates were calculated via ECOSAR program.
Collapse
Affiliation(s)
- Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Liu J, Feng L, Wu Y. Enzymatically synthesised MnO 2 nanoparticles for efficient near-infrared photothermal therapy and dual-responsive magnetic resonance imaging. NANOSCALE 2021; 13:11093-11103. [PMID: 34113941 DOI: 10.1039/d1nr02400k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Manganese dioxide (MnO2) nanoparticles (NPs) are highly attractive for biomedical applications due to their biocompatibility, stimuli-responsive magnetic resonance imaging (MRI) properties and capability to modulate the hypoxic tumour microenvironment (TME). However, conventional MnO2 NPs do not possess photothermal therapy (PTT) functions except for hybrids with other photothermal materials. Herein, we first reveal the extraordinary photothermal conversion efficiency (44%) of enzymatically synthesised MnO2 NPs (Bio-MnO2 NPs), which are distinct from chemically synthesised MnO2 NPs. In addition, the Bio-MnO2 NPs revealed high thermal recycling stability and solubility as well as dual pH- and reduction-responsive MRI enhancement for tumour theragnosis. These NPs were prepared through a facile MnxEFG enzyme-mediated biomineralization process. The MnxEFG complex from Bacillus sp. PL-12 is the only manganese mineralization enzyme that could be heterologously overexpressed in its active form to achieve Bio-MnO2 NPs without a bacterial host. The hexagonal layer symmetry of the Bio-MnO2 NPs is the key feature facilitating the high photothermal conversion efficiency and TME-responsive T1-weighted MRI. Evaluations both in vitro at the cellular level and in vivo in a systematic tumour-bearing mouse xenograft model demonstrated the high photothermal ablation efficacy of the Bio-MnO2 NPs, which achieved complete tumour eradication with high therapeutic biosafety without obvious reoccurrence. Moreover, stimuli-responsive MR enhancement potentially allows imaging-guided precision PTT. With their excellent biocompatibility, mild synthesis conditions and relatively simple composition, Bio-MnO2 NPs hold great translational promise.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Liandong Feng
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yuzhou Wu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Liu J, Gu T, Sun X, Li L, Xiao F, Wang Z, Li L. Synthesis of MnO/C/Co 3O 4 nanocomposites by a Mn 2+-oxidizing bacterium as a biotemplate for lithium-ion batteries. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:429-440. [PMID: 34121929 PMCID: PMC8183561 DOI: 10.1080/14686996.2021.1927175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biotemplate and bioconversion strategy represents a sustainable and environmentally friendly approach to material manufacturing. In the current study, biogenic manganese oxide aggregates of the Mn2+-oxidizing bacterium Pseudomonas sp. T34 were used as a precursor to synthesize a biocomposite that incorporated Co (CMC-Co) under mild shake-flask conditions based on the biomineralization process of biogenic Mn oxides and the characteristics of metal ion subsidies. X-ray photoelectron spectroscopy, phase composition and fine structure analyses demonstrated that hollow MnO/C/Co3O4 multiphase composites were fabricated after high-temperature annealing of the biocomposites at 800°C. The cycling and rate performance of the prepared anode materials for lithium-ion batteries were compared. Due to the unique hollow structure and multiphasic state, the reversible discharge capacity of CMC-Co remained at 650 mAh g-1 after 50 cycles at a current density of 0.1 Ag-1, and the coulombic efficiency remained above 99% after the second cycle, indicating a good application potential as an anode material for lithium-ion batteries.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Gu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Fan Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- CONTACT Lin Li State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
10
|
An Q, Jin L, Deng S, Li Z, Zhang C. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31218-31229. [PMID: 33599926 DOI: 10.1007/s11356-021-12764-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A nitrifying bacterium Acinetobacter sp. AL-6 showed a high efficiency of 99.05% for Mn(II) removal within 144 h when the Mn(II) concentration was 200 mg L-1; meanwhile, 64.23% of NH4+-N was removed. With the Mn(II) concentration increased from 25 to 300 mg L-1, bacterial growth and Mn(II) removal were stimulated. However, due to the electron acceptor competition between Mn(II) oxidation and nitrification reactions, the increase in NH4+-N concentration would inhibit Mn(II) removal. By measuring Mn metabolic form and locating oxidative active factors, it was proved that extracellular oxidation effect played a dominant role in the removal process of Mn(II). The self-regulation of pH during strain metabolism further promoted the occurrence of biological Mn oxidation. Characterization results showed that the Mn oxidation products were tightly attached to the surface of the bacteria in the form of flakes. The product crystal composition (mainly MnO2 and Mn2O3), Mn-O functional group, and element level fluctuations confirmed the biological oxidation information. The changes of -OH, N-H, and -CH2 groups and the appearance of new functional groups (such as C-H and C-O) provided more possibilities for Mn ion adsorption and bonding.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
11
|
Liu J, Gu T, Li L, Li L. Synthesis of MnO/C/NiO-Doped Porous Multiphasic Composites for Lithium-Ion Batteries by Biomineralized Mn Oxides from Engineered Pseudomonas putida Cells. NANOMATERIALS 2021; 11:nano11020361. [PMID: 33535572 PMCID: PMC7912735 DOI: 10.3390/nano11020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
A biotemplated cation-incoporating method based on bacterial cell-surface display technology and biogenic Mn oxide mineralization process was developed to fabricate Mn-based multiphasic composites as anodes for Li-ion batteries. The engineered Pseudomonas putida MB285 cells with surface-immobilized multicopper oxidase serve as nucleation centers in the Mn oxide biomineralization process, and the Mn oxides act as a settler for incorporating Ni ions to form aggregates in this process. The assays using X-ray photoelectron spectroscopy, phase compositions, and fine structures verified that the resulting material MnO/C/NiO (CMB-Ni) was porous multiphasic composites with spherical and porous nanostructures. The electrochemical properties of materials were improved in the presence of NiO. The reversible discharge capacity of CMB-Ni remained at 352.92 mAh g-1 after 200 cycles at 0.1 A g-1 current density. In particular, the coulombic efficiency was approximately 100% after the second cycle for CMB-Ni.
Collapse
Affiliation(s)
| | | | | | - Lin Li
- Correspondence: ; Tel.: +86-27-87286952; Fax: +86-27-87280670
| |
Collapse
|
12
|
Das R, Liang Z, Li G, An T. A non-blue laccase of Bacillus sp. GZB displays manganese-oxidase activity: A study of laccase characterization, Mn(II) oxidation and prediction of Mn(II) oxidation mechanism. CHEMOSPHERE 2020; 252:126619. [PMID: 32443277 DOI: 10.1016/j.chemosphere.2020.126619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Laccase, a unique class of multicopper oxidase, presents promising potential as a biocatalyst in many industrial and biotechnological applications. Recently, it has been significantly applied in many metal-polluted sites due to its Manganese (Mn)-oxidation ability. Here, we demonstrate the Mn(II)-oxidase activity of laccase obtained from Bacillus sp. GZB. The CotA gene of GZB was transformed in E. coli BL21 and overexpressed. The purified laccase (LACREC3-laccase) displayed the absence of a peak at 610 nm that is usually found in blue-laccase. Further, the LACREC3-laccase exhibited high activity and stability at different pH and temperatures with substrates 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonate) and syringaldazine, respectively. It also functioned in the presence of various metals and enzyme inhibitors. Most notably, LACREC3-laccase formed insoluble brown Mn(III)/Mn(IV)-oxide particles from Mn(II) mineral, exhibiting its Mn(II)-oxidase activity. In addition to native polyacrylamide gel electrophoresis and buffer test, we developed an 'agarose gel plate' assay to evaluate Mn(II) oxidation activity of laccase. Furthermore, using the leucoberbelin blue assay, a total of 44.45 ± 0.45% Mn(IV)-oxides were quantified, in which 5.87 ± 0.61% autoxidized after 24 h. The Mn(II) oxidation mechanisms were further predicted by trapping Mn(III) using pyrophosphate during Mn(II) to Mn(IV) conversion by LACREC3-laccase. Overall, the laccase of GZB has excellent activity and stability plus an ability to oxidize Mn(II). This study is the first report on a non-blue laccase, exhibiting Mn(II)-oxidase activity. Thus, it offers a novel finding of the Mn(II) oxidation processes that can be a valuable way of Mn(II)-mineralization in various metal-polluted environments.
Collapse
Affiliation(s)
- Ranjit Das
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
13
|
Molecular Cloning and Heterologous Expression of Manganese(II)-Oxidizing Enzyme from Acremonium strictum Strain KR21-2. Catalysts 2020. [DOI: 10.3390/catal10060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Diverse ascomycete fungi oxidize manganese(II) [Mn(II)] and produce Mn(III, IV) oxides in terrestrial and freshwater environments. Although multicopper oxidase (MCO) is considered to be a key catalyst in mediating Mn(II) oxidation in ascomycetes, the responsible gene and its product have not been identified. In this study, a gene, named mco1, encoding Mn(II)-oxidizing MCO from Acremonium strictum strain KR21-2 was cloned and heterologously expressed in the methylotrophic yeast Pichia pastoris. Based on the phylogenetic relationship, similarity of putative copper-binding motifs, and homology modeling, the gene product Mco1 was assigned to a bilirubin oxidase. Mature Mco1 was predicted to be composed of 565 amino acids with a molecular mass of 64.0 kDa. The recombinant enzyme oxidized Mn(II) to yield spherical Mn oxides, several micrometers in diameter. Zinc(II) ions added to the reaction mixture were incorporated by the Mn oxides at a Zn/Mn molar ratio of 0.36. The results suggested that Mco1 facilitates the growth of the micrometer-sized Mn oxides and affects metal sequestration through Mn(II) oxidation. This is the first report on heterologous expression and identification of the Mn(II) oxidase enzyme in Mn(II)-oxidizing ascomycetes. The cell-free, homogenous catalytic system with recombinant Mco1 could be useful for understanding Mn biomineralization by ascomycetes and the sequestration of metal ions in the environment
Collapse
|
14
|
Wang X, Yu M, Wang L, Lin H, Li B, Xue CX, Sun H, Zhang XH. Comparative genomic and metabolic analysis of manganese-oxidizing mechanisms in Celeribacter manganoxidans DY25 T: Its adaptation to the environment of polymetallic nodules. Genomics 2019; 112:2080-2091. [PMID: 31809796 DOI: 10.1016/j.ygeno.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) nodule is one of the ubiquitous polymetallic concretions and mainly consists of Mn - Fe oxi-hydroxide precipitations. A primary oxidation of Mn(II) to MnO2, in which microorganisms may play important roles, is followed by agglomeration of MnO2 into nodules. Celeribater manganoxidans DY25T, belonging to family Rhodobacteraceae, has ability to catalyze the formation of MnO2 [1]. The concentration of MnO2 formed by harvested cells reached 7.08 μM after suspended in 10 mM HEPES (pH 7.5). Genomic and physiological characteristics of strain DY25T provided a better understanding of its Mn-oxidizing mechanism. Fifteen genes (including four multicopper oxidases) may be involved in Mn(II)-oxidation, whereas only three of them can promote this process. Sulfur-oxidizing activity was detected, which may be associated with manganese oxidation. Genes involved in import and export of primary elemental ingredients (C, N, P and S) and metallic elements (e.g. Mn) were discovered, demonstrating its potential roles in the biogeochemical cycle.
Collapse
Affiliation(s)
- Xiaolei Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heyu Lin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chun-Xu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hao Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Mn oxide formation by phototrophs: Spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Sci Rep 2019; 9:18244. [PMID: 31796791 PMCID: PMC6890756 DOI: 10.1038/s41598-019-54403-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/13/2019] [Indexed: 12/05/2022] Open
Abstract
Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.
Collapse
|
16
|
|
17
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
18
|
Kirtzel J, Scherwietes EL, Merten D, Krause K, Kothe E. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5-13. [PMID: 29943246 DOI: 10.1007/s11356-018-2568-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.
Collapse
Affiliation(s)
- Julia Kirtzel
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Eric Leon Scherwietes
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Dirk Merten
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
19
|
Lang-Yona N, Maier S, Macholdt DS, Müller-Germann I, Yordanova P, Rodriguez-Caballero E, Jochum KP, Al-Amri A, Andreae MO, Fröhlich-Nowoisky J, Weber B. Insights into microbial involvement in desert varnish formation retrieved from metagenomic analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:264-271. [PMID: 29488349 DOI: 10.1111/1758-2229.12634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Desert varnishes are dark rock coatings observed in arid environments and might resemble Mn-rich coatings found on Martian rocks. Their formation mechanism is not fully understood and the possible microbial involvement is under debate. In this study, we applied DNA metagenomic Shotgun sequencing of varnish and surrounding soil to evaluate the composition of the microbial community and its potential metabolic function. We found that the α diversity was lower in varnish compared to soil samples (p value < 0.05), suggesting distinct populations with significantly higher abundance of Actinobacteria, Proteobacteria and Cyanobacteria within the varnish. Additionally, we observed increased levels of transition metal metabolic processes in varnish compared to soil samples. Nevertheless, potentially relevant enzymes for varnish formation were detected at low to insignificant levels in both niches, indicating no current direct microbial involvement in Mn oxidation. This finding is supported by quantitative genomic analysis, elemental analysis, fluorescence imaging and scanning transmission X-ray microscopy. We thus conclude that the distinct microbial communities detected in desert varnish originate from settled Aeolian microbes, which colonized this nutrient-enriched niche, and discuss possible indirect contributions of microorganisms to the formation of desert varnish.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Stefanie Maier
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Dorothea S Macholdt
- Biogeochemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate Geochemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Isabell Müller-Germann
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Petya Yordanova
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Emilio Rodriguez-Caballero
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Klaus P Jochum
- Climate Geochemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Abdullah Al-Amri
- Geology and Geophysics Department, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Meinrat O Andreae
- Biogeochemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Geology and Geophysics Department, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Janine Fröhlich-Nowoisky
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Bettina Weber
- Multiphase Chemistry Department, Hahn-Meitner-Weg 1, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| |
Collapse
|
20
|
Fernandes SO, Surya Prakash L, Balan Binish M, Padinchati Krishnan K, John Kurian P. Changes in morphology and metabolism enable Mn-oxidizing bacteria from mid-oceanic ridge environment to counter metal-induced stress. J Basic Microbiol 2018. [DOI: 10.1002/jobm.201700580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Palayil John Kurian
- National Centre for Antarctic and Ocean Research; Headland Sada; Vasco-da-Gama Goa India
| |
Collapse
|
21
|
Tran TN, Kim DG, Ko SO. Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:350-359. [PMID: 29080488 DOI: 10.1016/j.jhazmat.2017.10.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
While biogenic manganese oxide (BMO) generated via the oxidation of Mn(II) by the Mn-oxidizing bacteria (MOB) have received attention, the relative roles of biological activity by MOB themselves were not clearly investigated. In this study, the synergistic effects of BMO and MOB Pseudomonas putida strain MnB1 on the degradation of 17α-ethinylestradiol (EE2) was investigated. Experiments with BMO in the presence of P. putida MnB1 showed 15-fold higher removal than that with BMO alone, suggesting that EE2 degradation was mediated by the biological activity of MOB as well as abiotic reaction by BMO. Trapping experiments with pyrophosphate (PP) proved that Mn(III) intermediate formed during the biological process from Mn (II) to Mn (IV) contribute much to the EE2 removal. Also, sharp decreases in EE2 removal were observed when microbial activity was inactivated by heat treatment or sodium azide. From this study, the EE2 removal mechanisms by BMO in the presence P. putida MnB1 are described as follows: (1) abiotic oxidation of EE2 by BMO occurs. (2) P. putida MnB1 indirectly oxidizes EE2 by transferring electrons from the Mn (III) intermediate. (3) P. putida MnB1 continuously re-oxidizes the Mn(II) released from the oxidative degradation of EE2 by BMO, generating new Mn(III)-intermediates or BMO.
Collapse
Affiliation(s)
- Thi Nhung Tran
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Do-Gun Kim
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| | - Seok-Oh Ko
- Department of Civil Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
22
|
Simonov AN, Hocking RK, Tao L, Gengenbach T, Williams T, Fang XY, King HJ, Bonke SA, Hoogeveen DA, Romano CA, Tebo BM, Martin LL, Casey WH, Spiccia L. Tunable Biogenic Manganese Oxides. Chemistry 2017; 23:13482-13492. [PMID: 28722330 DOI: 10.1002/chem.201702579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 11/08/2022]
Abstract
Influence of the conditions for aerobic oxidation of Mn2+(aq) catalysed by the MnxEFG protein complex on the morphology, structure and reactivity of the resulting biogenic manganese oxides (MnOx ) is explored. Physical characterisation of MnOx includes scanning and transmission electron microscopy, and X-ray photoelectron and K-edge Mn, Fe X-ray absorption spectroscopy. This characterisation reveals that the MnOx materials share the structural features of birnessite, yet differ in the degree of structural disorder. Importantly, these biogenic products exhibit strikingly different morphologies that can be easily controlled. Changing the substrate-to-protein ratio produces MnOx either as nm-thin sheets, or rods with diameters below 20 nm, or a combination of the two. Mineralisation in solutions that contain Fe2+(aq) makes solids with significant disorder in the structure, while the presence of Ca2+(aq) facilitates formation of more ordered materials. The (photo)oxidation and (photo)electrocatalytic capacity of the MnOx minerals is examined and correlated with their structural properties.
Collapse
Affiliation(s)
- Alexandr N Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - Rosalie K Hocking
- Discipline of Chemistry, College of Science and Engineering, James Cook University, Queensland, 4811, Australia
| | - Lizhi Tao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Thomas Gengenbach
- Commonwealth Scientific and Industrial Research Organisation Manufacturing Flagship, Clayton, Victoria, 3168, Australia
| | - Timothy Williams
- Monash Centre for Electron Microscopy, Monash University, Victoria, 3800, Australia
| | - Xi-Ya Fang
- Monash Centre for Electron Microscopy, Monash University, Victoria, 3800, Australia
| | - Hannah J King
- Discipline of Chemistry, College of Science and Engineering, James Cook University, Queensland, 4811, Australia
| | - Shannon A Bonke
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - Dijon A Hoogeveen
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Lisandra L Martin
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| | - William H Casey
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA.,Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Leone Spiccia
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia
| |
Collapse
|
23
|
Freidman BL, Northcott KA, Thiel P, Gras SL, Snape I, Stevens GW, Mumford KA. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment. JOURNAL OF WATER AND HEALTH 2017; 15:385-401. [PMID: 28598343 DOI: 10.2166/wh.2017.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.
Collapse
Affiliation(s)
- Benjamin L Freidman
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathy A Northcott
- Veolia Australia and New Zealand, Kangaroo Flat, VIC 3555, Australia
| | - Peta Thiel
- Research Laboratory Services, Eltham, VIC 3095, Australia
| | - Sally L Gras
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail: ; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia; The ARC Dairy Innovation Hub, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ian Snape
- Australian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, Australia
| | - Geoff W Stevens
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| | - Kathryn A Mumford
- Particulate Fluids Processing Centre, Department of Chemical and Biomolecular Engineering, University of Melbourne, Building 165, Parkville 3010, VIC, Australia E-mail:
| |
Collapse
|
24
|
Mechanistic insights into manganese oxidation of a soil-borne Mn(II)-oxidizing Escherichia coli strain by global proteomic and genetic analyses. Sci Rep 2017; 7:1352. [PMID: 28465578 PMCID: PMC5430989 DOI: 10.1038/s41598-017-01552-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
An iTRAQ-based comparative and quantitative proteomics analysis of a soil-borne Mn(II)-oxidizing bacterium, Escherichia coli MB266, was conducted during the exponential and stationary growth phases. A total of 1850 proteins were identified in 4 samples, of which 373 and 456 proteins were significantly up- or down-regulated in at least one pairwise comparison, respectively. The iTRAQ data indicated that several enzymes involved in fatty acid metabolism (i.e., FabA, FabD and FabZ) and pyruvate metabolism (particularly pyruvate oxidase PoxB) were significantly up-regulated, while those related to the tricarboxylic acid cycle (such as FrdB, FumB and AcnA) and methylcitrate cycle (i.e., PrpC) were inactivated in the presence of 1 mM Mn(II); the amounts of some stress response and signal transduction system-related proteins (i.e., Spy) were remarkably increased, and the cold shock protein CspD was significantly up-regulated during the exponential growth phase. However, all verified heat shock proteins remained unchanged. The reactive oxygen species response and some redox enzymes might also be involved in Mn oxidation processes. The involvement of several cellular proteins in Mn(II) oxidation, including PoxB, Spy and MCO266, was further confirmed by gene disruption and expression complementation experiments. Based on these results, a signal transduction mechanism coupled to Mn oxidation was proposed.
Collapse
|
25
|
Kirtzel J, Siegel D, Krause K, Kothe E. Stone-Eating Fungi: Mechanisms in Bioweathering and the Potential Role of Laccases in Black Slate Degradation With the Basidiomycete Schizophyllum commune. ADVANCES IN APPLIED MICROBIOLOGY 2017; 99:83-101. [PMID: 28438269 DOI: 10.1016/bs.aambs.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many enzymes, such as laccases, are involved in the saprotrophic lifestyle of fungi and the effects of those may be linked to enhanced bioweathering on stone surfaces. To test this hypothesis, we studied the decomposition of kerogen-enriched lithologies, especially with black slate containing up to 20% of Corg. Indeed, a formation of ditches with attached hyphal material could be observed. To address enzymes involved, proteomics was performed and one group of enzymes, the multicopper oxidase family members of laccases, was specifically investigated. A role in bioweathering of rocks containing high contents of organic carbon in the form of kerogen could be shown using the basidiomycete Schizophyllum commune, a white rot fungus that has been used as a model organism to study the role of filamentous basidiomycete fungi in bioweathering of black slate.
Collapse
Affiliation(s)
| | | | | | - Erika Kothe
- Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|