1
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Labrecque MP, Brown LG, Coleman IM, Lakely B, Brady NJ, Lee JK, Nguyen HM, Li D, Hanratty B, Haffner MC, Rickman DS, True LD, Lin DW, Lam HM, Alumkal JJ, Corey E, Nelson PS, Morrissey C. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer. Cancer Res 2021; 81:4736-4750. [PMID: 34312180 DOI: 10.1158/0008-5472.can-21-0307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer (PC) cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC.
Collapse
Affiliation(s)
| | | | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center
| | | | | | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Research Center
| | | | | | | | | | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine
| | | | | | - Hung-Ming Lam
- Urology, University of Washington School of Medicine
| | - Joshi J Alumkal
- Rogel Cancer Center, Department of Internal Medicine, University of Michigan Medical School
| | - Eva Corey
- Department of Urology, University of Washington
| | - Peter S Nelson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center
| | | |
Collapse
|
3
|
Near normalization of peripheral blood markers in HIV-infected patients on long-term suppressive antiretroviral therapy: a case-control study. AIDS 2020; 34:1891-1897. [PMID: 32796212 DOI: 10.1097/qad.0000000000002645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the differences in peripheral blood markers between HIV well controlled patients on long-term suppressive antiretroviral therapy (HIV-group) and age-matched healthy controls, to evaluate the benefits of virological suppression in those patients. METHODS We performed a case-control study in 22 individuals in the HIV-group and 14 in the healthy control-group. RNA-seq analysis was performed from peripheral blood mononuclear cells. Peripheral blood T-cell subsets were evaluated by flow cytometry and plasma biomarkers by immunoassays. All P values were corrected by the false discovery rate (q values). RESULTS Only the serine/arginine repetitive matrix 4 gene, which is involved in alternative RNA splicing events, was differentially expressed between HIV and healthy control groups (q value ≤0.05 and fold-change ≥2). However, 147 differentially expressed genes were found with a more relaxed threshold (P value ≤0.05 and fold-change ≥1.5), of which 67 genes with values of variable importance in projection at least one were selected for pathway analysis. We found that six ribosomal genes represented significant ribosome-related pathways, all of them downregulated in the HIV-group, which may be a strategy to facilitate viral production. T cells subset and plasma biomarkers did not show significant differences after false discovery rate correction (q value >0.05), but a noncorrected analysis showed higher values of regulatory CD4 T cells (CD4CD25CD127), MCP-1, and sVEGF-R1 in the HIV-group (P value ≤0.05). CONCLUSION T-cell subsets, plasma biomarkers, and gene expression were close to normalization in HIV-infected patients on long-term suppressive combination antiretroviral therapy compared with healthy controls. However, residual alterations remain, mainly at the gene expression, which still reveals the impact of HIV infection in these patients.
Collapse
|
4
|
Nakano Y, Wiechert S, Fritzsch B, Bánfi B. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. Life Sci Alliance 2020; 3:3/12/e202000841. [PMID: 33087486 PMCID: PMC7652395 DOI: 10.26508/lsa.202000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The vital role of the splicing factor SRRM4 in vestibular and inner hair cells of the ear is inactivation of the gene repressor REST; however, in outer hair cells, SRRM4 is dispensable for REST inactivation, which SRRM3 accomplishes independently. In mechanosensory hair cells (HCs) of the ear, the transcriptional repressor REST is continuously inactivated by alternative splicing of its pre-mRNA. This mechanism of REST inactivation is crucial for hearing in humans and mice. Rest is one of many pre-mRNAs whose alternative splicing is regulated by the splicing factor SRRM4; Srrm4 loss-of-function mutation in mice (Srrm4bv/bv) causes deafness, balance defects, and degeneration of all HC types other than the outer HCs (OHCs). The specific splicing alterations that drive HC degeneration in Srrm4bv/bv mice are unknown, and the mechanism underlying SRRM4-independent survival of OHCs is undefined. Here, we show that transgenic expression of a dominant-negative REST fragment in Srrm4bv/bv mice is sufficient for long-term rescue of hearing, balancing, HCs, alternative splicing of Rest, and expression of REST target genes including the Srrm4 paralog Srrm3. We also show that in HCs, SRRM3 regulates many of the same exons as SRRM4; OHCs are unique among HCs in that they transiently down-regulate Rest transcription as they mature to express Srrm3 independently of SRRM4; and simultaneous SRRM4–SRRM3 deficiency causes complete HC loss by preventing inactivation of REST in all HCs. Thus, our data reveal that REST inactivation is the primary and essential role of SRRM4 in the ear, and that OHCs differ from other HCs in the SRRM4-independent expression of the functionally SRRM4-like splicing factor SRRM3.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan Wiechert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA .,Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Lee NS, Yoon CW, Wang Q, Moon S, Koo KM, Jung H, Chen R, Jiang L, Lu G, Fernandez A, Chow RH, Weitz AC, Salvaterra PM, Pinaud F, Shung KK. Focused Ultrasound Stimulates ER Localized Mechanosensitive PANNEXIN-1 to Mediate Intracellular Calcium Release in Invasive Cancer Cells. Front Cell Dev Biol 2020; 8:504. [PMID: 32656213 PMCID: PMC7325310 DOI: 10.3389/fcell.2020.00504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Focused ultrasound (FUS) is a rapidly developing stimulus technology with the potential to uncover novel mechanosensory dependent cellular processes. Since it is non-invasive, it holds great promise for future therapeutic applications in patients used either alone or as a complement to boost existing treatments. For example, FUS stimulation causes invasive but not non-invasive cancer cell lines to exhibit marked activation of calcium signaling pathways. Here, we identify the membrane channel PANNEXIN1 (PANX1) as a mediator for activation of calcium signaling in invasive cancer cells. Knockdown of PANX1 decreases calcium signaling in invasive cells, while PANX1 overexpression enhances calcium elevations in non-invasive cancer cells. We demonstrate that FUS may directly stimulate mechanosensory PANX1 localized in endoplasmic reticulum to evoke calcium release from internal stores. This process does not depend on mechanosensory stimulus transduction through an intact cytoskeleton and does not depend on plasma membrane localized PANX1. Plasma membrane localized PANX1, however, plays a different role in mediating the spread of intercellular calcium waves via ATP release. Additionally, we show that FUS stimulation evokes cytokine/chemokine release from invasive cancer cells, suggesting that FUS could be an important new adjuvant treatment to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Nan Sook Lee
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Chi Woo Yoon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Sunho Moon
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Kweon Mo Koo
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Hayong Jung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Ruimin Chen
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Laiming Jiang
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Gengxi Lu
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Antony Fernandez
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Robert H Chow
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Andrew C Weitz
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Paul M Salvaterra
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Fabien Pinaud
- Department of Biological Sciences, Chemistry and Physics & Astronomy, University of Southern California, Los Angeles, CA, United States
| | - K Kirk Shung
- Ultrasonic Transducer Resource Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Nakano Y, Wiechert S, Bánfi B. Overlapping Activities of Two Neuronal Splicing Factors Switch the GABA Effect from Excitatory to Inhibitory by Regulating REST. Cell Rep 2019; 27:860-871.e8. [PMID: 30995482 PMCID: PMC6556397 DOI: 10.1016/j.celrep.2019.03.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
A truncating mutation in the mouse Srrm4 gene, which encodes a neuronal splicing factor, causes alternative splicing defects selectively in the ear. The mechanism by which splicing is preserved in the brain of these mice is not known. Here, we show that SRRM3 limits the Srrm4 mutation-associated defects to the ear and that, in cortical neurons, overlapping SRRM3-SRRM4 activity regulates the development of interneuronal inhibition. In vitro, SRRM3 and SRRM4 regulate the same splicing events, but a mutation in mouse Srrm3 causes tremors and mild defects in neuronal alternative splicing, demonstrating unique SRRM3 roles in vivo. Mice harboring mutations in both Srrm3 and Srrm4 die neonatally and exhibit severe splicing defects. In these mice, splicing alterations prevent inactivation of the gene repressor REST, which maintains immature excitatory GABAergic neurotransmission by repressing K-Cl cotransporter 2. Thus, our data reveal that SRRM3 and SRRM4 act redundantly to regulate GABAergic neurotransmission by inactivating REST.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Susan Wiechert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Botond Bánfi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Inflammation Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Meng X, Yang S, Zhang J, Yu H. Contribution of alternative splicing to breast cancer metastasis. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:21. [PMID: 31737791 PMCID: PMC6857724 DOI: 10.20517/2394-4722.2018.96] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is a major contributor to transcriptome and proteome diversity in eukaryotes. Comparing to normal samples, about 30% more alternative splicing events were recently identified in 32 cancer types included in The Cancer Genome Atlas database. Some alternative splicing isoforms and their encoded proteins contribute to specific cancer hallmarks. In this review, we will discuss recent progress regarding the contributions of alternative splicing to breast cancer metastasis. We plan to dissect the role of MTDH, CD44 and their interaction with other mRNA splicing factors. We believe an in-depth understanding of the mechanism underlying the contribution of splicing to breast cancer metastasis will provide novel strategies to the management of breast cancer.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jun Zhang
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Huimin Yu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Pathogenic Biology, Shenzhen University School of medicine, Shenzhen 518060, China
| |
Collapse
|
8
|
Zhou H, Li J, Zhang Z, Ye R, Shao N, Cheang T, Wang S. RING1 and YY1 binding protein suppresses breast cancer growth and metastasis. Int J Oncol 2016; 49:2442-2452. [PMID: 27748911 DOI: 10.3892/ijo.2016.3718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/16/2016] [Indexed: 11/05/2022] Open
Abstract
Evidence suggests that RING1 and YY1 binding protein (RYBP) functions as a tumor suppressor. However, its role in breast cancer remains unclear. In the present study, the expression of RYBP was assessed in breast cancer patients and cell lines. Disease-free survival durations of breast cancer patients with high RYBP expression were determined based on the ATCG dataset. The effects of RYBP overexpression on cell growth, migration and invasive potency were also assessed. Nude mouse xenograft and lung metastasis models were also used to confirm the role of RYBP. The involvement of SRRM3 in RYBP-mediated breast cancer suppression was explored using SRRM3 siRNA. The potential relationship between RYBP, SRRM3, and REST-003 was examined by qPCR. The results showed that RYBP was downregulated in breast cancer patients and in several breast cancer cell lines. Breast cancer patients with high expression levels of RYBP displayed better disease-free survival. Overexpression of RYBP in MDA-MB-231 and SK-BR-3 cells significantly decreased cell proliferation, migration, and invasion ability, and increased the proportion of cells arrested in S-phase compared with the negative control cells. Additionally, upregulation of proliferation-related cell cycle proteins (cyclin A and cyclin B1) and E-cadherin, and downregulation of snail were observed in RYBP-overexpressing cells. Overexpression of RYBP reduced tumor volume and weight as well as metastatic foci in the lungs of nude mice. SRRM3 knockdown by siRNA, which is downregulated after RYBP overexpression, suppressed cell growth and metastasis in MDA-MB-231 and SK-BR-3 cells. Furthermore, qPCR analysis revealed that REST-003 ncRNA was downregulated in cells overexpressing RYBP and in SRRM3-inhibited cells. Moreover, cell invasion ability and growth were increased after SRRM3 upregulation in RYBP-overexpressing cells, but they were decreased following si-REST-003 transfection. In conclusion, overexpression of RYBP suppresses breast cancer growth and metastasis both in vitro and in vivo. SRRM3 and REST-003, which are downregulated in cells overexpressing RYBP, may be involved in RYBP-mediated breast cancer progression.
Collapse
Affiliation(s)
- Hongyan Zhou
- Department of Neurological Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jie Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhanqiang Zhang
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Runyi Ye
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Nan Shao
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tuckyun Cheang
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shenming Wang
- Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|