1
|
Shi L, Lin K, Su T, Shi F. Abscisic Acid Inhibits Cortical Microtubules Reorganization and Enhances Ultraviolet-B Tolerance in Arabidopsis thaliana. Genes (Basel) 2023; 14:genes14040892. [PMID: 37107650 PMCID: PMC10137628 DOI: 10.3390/genes14040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Ultraviolet-B (UV-B) radiation is one of the important environmental factors limiting plant growth. Both abscisic acid (ABA) and microtubules have been previously reported to be involved in plant response to UV-B. However, whether there is a potential link between ABA and microtubules and the consequent signal transduction mechanism underlying plant response to UV-B radiation remains largely unclear. Here, by using sad2-2 mutant plants (sensitive to ABA and drought) and exogenous application of ABA, we saw that ABA strengthens the adaptive response to UV-B stress in Arabidopsis thaliana (A. thaliana). The abnormal swelling root tips of ABA-deficient aba3 mutants demonstrated that ABA deficiency aggravated the growth retardation imposed by UV-B radiation. In addition, the cortical microtubule arrays of the transition zones of the roots were examined in the aba3 and sad2-2 mutants with or without UV-B radiation. The observation revealed that UV-B remodels cortical microtubules, and high endogenous ABA can stabilize the microtubules and reduce their UV-B-induced reorganization. To further confirm the role of ABA on microtubule arrays, root growth and cortical microtubules were evaluated after exogenous ABA, taxol, and oryzalin feeding. The results suggested that ABA can promote root elongation by stabilizing the transverse cortical microtubules under UV-B stress conditions. We thus uncovered an important role of ABA, which bridges UV-B and plants' adaptive response by remodeling the rearrangement of the cortical microtubules.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Kun Lin
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Tongbing Su
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Fumei Shi
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Ho-Plágaro T, Tamayo-Navarrete MI, García Garrido JM. Microtubule cytoskeleton and mycorrhizal roots. PLANT SIGNALING & BEHAVIOR 2022; 17:2031504. [PMID: 35105280 PMCID: PMC9746496 DOI: 10.1080/15592324.2022.2031504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 05/30/2023]
Abstract
For the establishment of the Arbuscular Mycorrhiza (AM) symbiosis it is essential that epidermis and cortical cells from plant roots suffer a strong reorganization to allow the penetration of intracellular fungal hyphae. In the same manner, the new formation of a periarbuscular membrane and a symbiotic interface with specific compositions are required for a functional symbiosis. It is believed that the cytoskeleton of the plant host plays an essential role in these processes, particularly the microtubule (MT) cytoskeleton, as huge modifications have been observed in the MT array of root cells accompanying the establishment of the AM symbiosis. Recent research has established a link between microtubule rearrangements and arbuscule functioning. However, further research is required to elucidate the specific functions of MT cytoskeleton along the different stages of the arbuscule life cycle and to unravel the signals triggering these changes.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | | | - José M. García Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| |
Collapse
|
3
|
Xing X, Liu M, Jiang F, Zhou R, Bai Y, Wei H, Zhang D, Wei J, Wu Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. PLANT CELL REPORTS 2022; 41:1955-1973. [PMID: 36066602 DOI: 10.1007/s00299-022-02894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.
Collapse
Affiliation(s)
- Xiaodong Xing
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Deng Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Jingjing Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
4
|
Microtubule Dynamics Plays a Vital Role in Plant Adaptation and Tolerance to Salt Stress. Int J Mol Sci 2021; 22:ijms22115957. [PMID: 34073070 PMCID: PMC8199277 DOI: 10.3390/ijms22115957] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
Collapse
|
5
|
Guan L, Yang S, Li S, Liu Y, Liu Y, Yang Y, Qin G, Wang H, Wu T, Wang Z, Feng X, Wu Y, Zhu JK, Li X, Li L. AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. FRONTIERS IN PLANT SCIENCE 2021; 12:635732. [PMID: 34149743 PMCID: PMC8211912 DOI: 10.3389/fpls.2021.635732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
The plant cytoskeleton forms a stereoscopic network that regulates cell morphogenesis. The cytoskeleton also provides tracks for trafficking of vesicles to the target membrane. Fusion of vesicles with the target membrane is promoted by SNARE proteins, etc. The vesicle-SNARE, Sec22, regulates membrane trafficking between the ER and Golgi in yeast and mammals. Arabidopsis AtSEC22 might also regulate early secretion and is essential for gametophyte development. However, the role of AtSEC22 in plant development is unclear. To clarify the role of AtSEC22 in the regulation of plant development, we isolated an AtSEC22 knock-down mutant, atsec22-4, and found that cell morphogenesis and development were seriously disturbed. atsec22-4 exhibited shorter primary roots (PRs), dwarf plants, and partial abortion. More interestingly, the atsec22-4 mutant had less trichomes with altered morphology, irregular stomata, and pavement cells, suggesting that cell morphogenesis was perturbed. Further analyses revealed that in atsec22-4, vesicle trafficking was blocked, resulting in the trapping of proteins in the ER and collapse of structures of the ER and Golgi apparatus. Furthermore, AtSEC22 defects resulted in impaired organization and stability of the cytoskeleton in atsec22-4. Our findings revealed essential roles of AtSEC22 in membrane trafficking and cytoskeleton dynamics during plant development.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Wang
- School of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Lixin Li,
| |
Collapse
|
6
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
7
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
8
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 PMCID: PMC6322583 DOI: 10.1093/jxb/ery395] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/14/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
9
|
Mitra D, Klemm S, Kumari P, Quegwer J, Möller B, Poeschl Y, Pflug P, Stamm G, Abel S, Bürstenbinder K. Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:529-543. [PMID: 30407556 DOI: 10.1101/268466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/22/2018] [Indexed: 05/23/2023]
Abstract
Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation, and cell morphology. Their organization and dynamics are co-ordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization, and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles for calcium in regulation of PC morphogenesis. Our work identifies IQD5 as a novel player in PC shape regulation and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Collapse
Affiliation(s)
- Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Sandra Klemm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Pratibha Kumari
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Jakob Quegwer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yvonne Poeschl
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- iDiv, German Integrative Research Center for Biodiversity, Leipzig, Germany
| | - Paul Pflug
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB),Halle (Saale), Germany
| |
Collapse
|
10
|
Lombardo MC, Lamattina L. Abscisic acid and nitric oxide modulate cytoskeleton organization, root hair growth and ectopic hair formation in Arabidopsis. Nitric Oxide 2018; 80:89-97. [PMID: 30236618 DOI: 10.1016/j.niox.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022]
Abstract
Abscisic acid (ABA) and nitric oxide (NO) are two plant growth regulators that participate in many signaling cascades in different organs all along the plant life. Here, we were interested in deciphering the effects of ABA and NO on the cytoskeleton organization in a model of polarized cell growth like root hairs. Arabidopsis roots were exposed to different concentrations of ABA, and the length of primary root, epidermal cells and root hairs were measured. The NO concentration was detected with the NO-specific fluorescent probe DAF-FM DA. To quantify the effects of ABA and NO on cytoskeleton, Arabidopsis seedlings expressing GFP-MAP4 were used to analyze microtubules (MTs) orientation. Changes in cytoplasmic streaming were quantified through fluorescence recovery after photobleaching (FRAP) experiments using confocal laser scanning microscopy (CLSM) and the probe fluorescein diacetate (FDA). Results indicate that ABA decreases root hair length and induces the differentiation of atrichoblasts into trichoblasts, increasing root hair density. ABA also triggers an increase of NO level in root hairs. Both, ABA and NO affect MT organization in root hairs. While root hairs show MT orientation close to the longitudinal axis in control roots, ABA and NO treatments induce the oblique orientation of MTs. In parallel, cytoplasmic flow, executed by actin cytoskeleton, is enhanced by NO, in an ABA-independent manner. For all experimental conditions assayed, basal levels of NO are required to keep MT organization and cytoplasmic streaming. Our findings support ABA and NO as key modulators of growth and ectopic formation of root hairs through actions on cytoskeleton functions.
Collapse
Affiliation(s)
- María Cristina Lombardo
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
11
|
Otani K, Ishizaki K, Nishihama R, Takatani S, Kohchi T, Takahashi T, Motose H. An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development 2018; 145:dev.154617. [PMID: 29440300 DOI: 10.1242/dev.154617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Tip growth is driven by turgor pressure and mediated by the polarized accumulation of cellular materials. How a single polarized growth site is established and maintained is unclear. Here, we analyzed the function of NIMA-related protein kinase 1 (MpNEK1) in the liverwort Marchantia polymorpha In the wild type, rhizoid cells differentiate from the ventral epidermis and elongate through tip growth to form hair-like protrusions. In Mpnek1 knockout mutants, rhizoids underwent frequent changes in growth direction, resulting in a twisted and/or spiral morphology. The functional MpNEK1-Citrine protein fusion localized to microtubule foci in the apical growing region of rhizoids. Mpnek1 knockouts exhibited increases in both microtubule density and bundling in the apical dome of rhizoids. Treatment with the microtubule-stabilizing drug taxol phenocopied the Mpnek1 knockout. These results suggest that MpNEK1 directs tip growth in rhizoids through microtubule organization. Furthermore, MpNEK1 expression rescued ectopic outgrowth of epidermal cells in the Arabidopsis thaliana nek6 mutant, strongly supporting an evolutionarily conserved NEK-dependent mechanism of directional growth. It is possible that such a mechanism contributed to the evolution of the early rooting system in land plants.
Collapse
Affiliation(s)
- Kento Otani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
12
|
Takatani S, Ozawa S, Yagi N, Hotta T, Hashimoto T, Takahashi Y, Takahashi T, Motose H. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci Rep 2017; 7:7826. [PMID: 28798328 PMCID: PMC5552743 DOI: 10.1038/s41598-017-08453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
Collapse
Affiliation(s)
- Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Shinichiro Ozawa
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyoshi Yagi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takashi Hotta
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Takashi Hashimoto
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuichiro Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
| |
Collapse
|
13
|
Bhaskara GB, Wen TN, Nguyen TT, Verslues PE. Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response. THE PLANT CELL 2017; 29:169-191. [PMID: 28011693 PMCID: PMC5304354 DOI: 10.1105/tpc.16.00847] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/03/2023]
Abstract
Plant growth is coordinated with environmental factors, including water availability during times of drought. Microtubules influence cell expansion; however, the mechanisms by which environmental signals impinge upon microtubule organization and whether microtubule-related factors limit growth during drought remains unclear. We found that three Clade E Growth-Regulating (EGR) Type 2C protein phosphatases act as negative growth regulators to restrain growth during drought. Quantitative phosphoproteomics indicated that EGRs target cytoskeleton and plasma membrane-associated proteins. Of these, Microtubule-Associated Stress Protein 1 (MASP1), an uncharacterized protein, increased in abundance during stress treatment and could bind, bundle, and stabilize microtubules in vitro. MASP1 overexpression enhanced growth, in vivo microtubule stability, and recovery of microtubule organization during drought acclimation. These MASP1 functions in vivo were dependent on phosphorylation of a single serine. For all EGR and MASP1 mutants and transgenic lines examined, enhanced microtubule recovery and stability were associated with increased growth during drought stress. The EGR-MASP1 system selectively regulates microtubule recovery and stability to adjust plant growth and cell expansion in response to changing environmental conditions. Modification of EGR-MASP1 signaling may be useful to circumvent negative growth regulation limiting plant productivity. EGRs are likely to regulate additional proteins involved in microtubule stability and stress signaling.
Collapse
Affiliation(s)
| | - Tuan-Nan Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Thao Thi Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
14
|
Benhamman R, Bai F, Drory SB, Loubert-Hudon A, Ellis B, Matton DP. The Arabidopsis Mitogen-Activated Protein Kinase Kinase Kinase 20 (MKKK20) Acts Upstream of MKK3 and MPK18 in Two Separate Signaling Pathways Involved in Root Microtubule Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1352. [PMID: 28848569 PMCID: PMC5550695 DOI: 10.3389/fpls.2017.01352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/19/2017] [Indexed: 05/04/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling networks represent important means of signal transduction in plants and other eukaryotes, controlling intracellular signaling by linking perception of environmental or developmental cues to downstream targets. In the Arabidopsis MEKK subfamily, the MKKK19, 20, and 21 form a highly supported clade with the Solanaceous Fertilization-Related Kinases. In Arabidopsis, little is known about this group, except for MKKK20, which is involved in osmotic stress. Using a directed MKKK-MKK yeast two-hybrid (Y2H) screen, MKKK20 was found to interact only with MKK3, while a MKKK20 large-scale Y2H screen retrieved MPK18 as a direct interactant. In vitro phosphorylation assays showed that MKKK20 phosphorylates both MKK3 and MPK18. However, when all three kinases are combined, no synergistic effect is observed on MPK18 phosphorylation, suggesting a direct access to MPK18, consistent with the absence of interaction between MKK3 and MPK18 in protein-protein interaction assays. Since mpk18 mutant plants were previously shown to be defective in microtubule-related functions, phenotypes of mkkk20 single and mkkk20/mpk18 double mutants were investigated to determine if MKKK20 acts upstream of MPK18. This was the case, as mkkk20 root length was shorter than WT in media containing microtubule-disrupting drugs as previously observed for mpk18 plants. Surprisingly, mkk3 plants were also similarly affected, suggesting the presence of two non-complementary pathways involved in Arabidopsis cortical microtubule function, the first including MKKK20, MKK3 and an unknown MPK; the second, a non-canonical MAPK cascade made of MKKK20 and MPK18 that bypasses the need for an MKK intermediate.
Collapse
Affiliation(s)
- Rachid Benhamman
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Fangwen Bai
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Samuel B. Drory
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Audrey Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
| | - Brian Ellis
- Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Daniel P. Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, MontréalQC, Canada
- *Correspondence: Daniel P. Matton,
| |
Collapse
|
15
|
Chemical control of xylem differentiation by thermospermine, xylemin, and auxin. Sci Rep 2016; 6:21487. [PMID: 26879262 PMCID: PMC4754900 DOI: 10.1038/srep21487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.
Collapse
|
16
|
Takatani S, Otani K, Kanazawa M, Takahashi T, Motose H. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. JOURNAL OF PLANT RESEARCH 2015; 128:875-91. [PMID: 26354760 DOI: 10.1007/s10265-015-0751-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/20/2015] [Indexed: 05/25/2023]
Abstract
Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.
Collapse
Affiliation(s)
- Shogo Takatani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Kento Otani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Mai Kanazawa
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Taku Takahashi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|