1
|
Liu X, Hu X, Tu Z, Sun Z, Qin P, Liu Y, Chen X, Li Z, Jiang N, Yang Y. The roles of Magnaporthe oryzae avirulence effectors involved in blast resistance/susceptibility. FRONTIERS IN PLANT SCIENCE 2024; 15:1478159. [PMID: 39445147 PMCID: PMC11496149 DOI: 10.3389/fpls.2024.1478159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Phytopathogens represent an ongoing threat to crop production and a significant impediment to global food security. During the infection process, these pathogens spatiotemporally deploy a large array of effectors to sabotage host defense machinery and/or manipulate cellular pathways, thereby facilitating colonization and infection. However, besides their pivotal roles in pathogenesis, certain effectors, known as avirulence (AVR) effectors, can be directly or indirectly perceived by plant resistance (R) proteins, leading to race-specific resistance. An in-depth understanding of the intricate AVR-R interactions is instrumental for genetic improvement of crops and safeguarding them from diseases. Magnaporthe oryzae (M. oryzae), the causative agent of rice blast disease, is an exceptionally virulent and devastating fungal pathogen that induces blast disease on over 50 monocot plant species, including economically important crops. Rice-M. oryzae pathosystem serves as a prime model for functional dissection of AVR effectors and their interactions with R proteins and other target proteins in rice due to its scientific advantages and economic importance. Significant progress has been made in elucidating the potential roles of AVR effectors in the interaction between rice and M. oryzae over the past two decades. This review comprehensively discusses recent advancements in the field of M. oryzae AVR effectors, with a specific focus on their multifaceted roles through interactions with corresponding R/target proteins in rice during infection. Furthermore, we deliberated on the emerging strategies for engineering R proteins by leveraging the structural insights gained from M. oryzae AVR effectors.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Xiaochun Hu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Zhouyi Tu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Zhenbiao Sun
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Peng Qin
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yikang Liu
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
| | - Xinwei Chen
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Jiang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
| | - Yuanzhu Yang
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Yuan Longping High-Tech Agriculture Co., Ltd., Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Younas MU, Qasim M, Ahmad I, Feng Z, Iqbal R, Abdelbacki AMM, Rajput N, Jiang X, Rao B, Zuo S. Allelic variation in rice blast resistance: a pathway to sustainable disease management. Mol Biol Rep 2024; 51:935. [PMID: 39180629 DOI: 10.1007/s11033-024-09854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Rice blast is a major problem in agriculture, affecting rice production and threatening food security worldwide. This disease, caused by the fungus Magnaporthe oryzae, has led to a lot of research since the discovery of the first resistance gene, pib, in 1999. Researchers have now identified more than 50 resistance genes on eight of the twelve chromosomes in rice, each targeting different strains of the pathogen.These genes are spread out across seventeen different loci. These genes, which primarily code for nucleotide-binding and leucine-rich repeat proteins, play an important part in the defense of rice against the pathogen, either alone or in combination with other genes. An important characteristic of these genes is the allelic or paralogous interactions that exist within these loci. These relationships contribute to the gene's increased capacity for evolutionary adaptation. The ability of resistance proteins to recognize and react to novel effectors is improved by the frequent occurrence of variations within the domains that are responsible for recognizing pathogen effectors. The purpose of this review is to summarize the progress that has been made in identifying these essential genes and to investigate the possibility of utilizing the allelic variants obtained from these genes in future rice breeding efforts to increase resistance to rice blast.
Collapse
Affiliation(s)
- Muhammad Usama Younas
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Ashraf M M Abdelbacki
- Deanship of Skills Development, King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Nimra Rajput
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaohong Jiang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Bisma Rao
- Department of Public Health, Medical College, Yangzhou University, Yangzhou, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
4
|
Lin L, Sun T, Guo J, Lin L, Chen M, Wang Z, Bao J, Norvienyeku J, Zhang D, Han Y, Lu G, Rensing C, Zheng H, Zhong Z, Wang Z. Transposable elements impact the population divergence of rice blast fungus Magnaporthe oryzae. mBio 2024; 15:e0008624. [PMID: 38534157 PMCID: PMC11077969 DOI: 10.1128/mbio.00086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.
Collapse
Affiliation(s)
- Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meilian Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Zhe Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Dongmei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
5
|
Lahfa M, Barthe P, de Guillen K, Cesari S, Raji M, Kroj T, Le Naour—Vernet M, Hoh F, Gladieux P, Roumestand C, Gracy J, Declerck N, Padilla A. The structural landscape and diversity of Pyricularia oryzae MAX effectors revisited. PLoS Pathog 2024; 20:e1012176. [PMID: 38709846 PMCID: PMC11132498 DOI: 10.1371/journal.ppat.1012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.
Collapse
Affiliation(s)
- Mounia Lahfa
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Philippe Barthe
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Karine de Guillen
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Mouna Raji
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Marie Le Naour—Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - François Hoh
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Christian Roumestand
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Jérôme Gracy
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - Nathalie Declerck
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale, Univ Montpellier, CNRS UMR 5048, INSERM U 1054, Montpellier, France
| |
Collapse
|
6
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
7
|
Wei YY, Liang S, Zhu XM, Liu XH, Lin FC. Recent Advances in Effector Research of Magnaporthe oryzae. Biomolecules 2023; 13:1650. [PMID: 38002332 PMCID: PMC10669146 DOI: 10.3390/biom13111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.
Collapse
Affiliation(s)
- Yun-Yun Wei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China;
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
| | - Xiao-Hong Liu
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (S.L.); (X.-M.Z.)
- Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Chen YN, Wu DH, Chen MC, Hsieh MT, Jwo WS, Lin GC, Chen RK, Chou HP, Chen PC. Dynamics of spatial and temporal population structure of Pyricularia oryzae in Taiwan. PEST MANAGEMENT SCIENCE 2023; 79:4254-4263. [PMID: 37341444 DOI: 10.1002/ps.7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND To gain a better understanding of how Pyricularia oryzae population shifts is important for selecting suitable resistance genes for rice breeding programs. However, the relationships between P. oryzae pathogenic dynamics, geographic distribution, rice varieties, and timeline are not well studied. RESULTS Resistance genes Piz-5, Pi9(t), Pi12(t), Pi20(t), Pita-2, and Pi11 showed stable resistance to the Taiwan rice blast fungus over 8 years of observations. Furthermore, 1749 rice blast isolates were collected from 2014 to 2021 and categorized into five pathotype clusters based on their correlation analysis between the geographic sources and virulence of Lijiangxintuanheigu monogenic lines. A detailed map of their distributions in Taiwan is presented. Isolates collected from the western region of Taiwan had greater pathotype diversity than those from the east region. Isolates collected from the subtropical region had greater diversity than those from the tropical region. Rice cultivars carrying Pik alleles were highly susceptible to pathotype L4. Cultivars with Piz-t were highly susceptible to pathotype L5, and those with Pish were highly susceptible to pathotype L1. The geographical distribution of each pathotype was distinct, and the population size of each pathotype fluctuated significantly each year. CONCLUSION The regional mega cultivars significantly impact the evolution of Pyricularia oryzae in Taiwan within the span of 8 years. However, the annual fluctuation of pathotype populations likely correlate to the rising annual temperatures that selected pathotype clusters by their optimal growth temperature. The results will provide useful information for effective disease management, and enable the R-genes to prolong their function in the fields. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Nian Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| | - Dong-Hong Wu
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Mei-Chun Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Meng-Ting Hsieh
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Woei-Shyuan Jwo
- Technical Service Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan
| | - Guo-Cih Lin
- Tainan District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Rong-Kuen Chen
- Tainan District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Hau-Ping Chou
- Kaohsiung District Agricultural Research and Extension Station, Council of Agriculture, Taiwan
| | - Pei-Chen Chen
- Department of Plant Pathology, National Chung Hsing University, Taiwan
| |
Collapse
|
9
|
Li J, Lu L, Li C, Wang Q, Shi Z. Insertion of Transposable Elements in AVR-Pib of Magnaporthe oryzae Leading to LOSS of the Avirulent Function. Int J Mol Sci 2023; 24:15542. [PMID: 37958524 PMCID: PMC10650890 DOI: 10.3390/ijms242115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
Rice blast is a very serious disease caused by Magnaporthe oryzae, which threatens rice production and food supply throughout the world. The avirulence (AVR) genes of rice blast are perceived by the corresponding rice blast resistance (R) genes and prompt specific resistance. A mutation in AVR is a major force for new virulence. Exploring mutations in AVR among M. oryzae isolates from rice production fields could aid assessment of the efficacy and durability of R genes. We studied the probable molecular-evolutionary patterns of AVR-Pib alleles by assaying their DNA-sequence diversification and examining their avirulence to the corresponding Pib resistance gene under natural conditions in the extremely genetically diverse of rice resources of Yunnan, China. PCRs detected results from M. oryzae genomic DNA and revealed that 162 out of 366 isolates collected from Yunnan Province contained AVR-Pib alleles. Among them, 36.1-73.3% isolates from six different rice production areas of Yunnan contained AVR-Pib alleles. Furthermore, 36 (28.6%) out of 126 isolates had a transposable element (TE) insertion in AVR-Pib, which resulted in altered virulence. The TE insertion was identified in isolates from rice rather than from Musa nana Lour. Twelve AVR-Pib haplotypes encoding three novel AVR-Pib variants were identified among the remaining 90 isolates. AVR-Pib alleles evolved to virulent forms from avirulent forms by base substitution and TE insertion of Pot2 and Pot3 in the 5' untranslated region of AVR-Pib. These findings support the hypothesis that functional AVR-Pib possesses varied sequence structures and can escape surveillance by hosts via multiple variation manners.
Collapse
Affiliation(s)
- Jinbin Li
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming 650200, China;
| | - Qun Wang
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| | - Zhufeng Shi
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| |
Collapse
|
10
|
Rozano L, Hane JK, Mancera RL. The Molecular Docking of MAX Fungal Effectors with Plant HMA Domain-Binding Proteins. Int J Mol Sci 2023; 24:15239. [PMID: 37894919 PMCID: PMC10607590 DOI: 10.3390/ijms242015239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Fungal effector proteins are important in mediating disease infections in agriculturally important crops. These secreted small proteins are known to interact with their respective host receptor binding partners in the host, either inside the cells or in the apoplastic space, depending on the localisation of the effector proteins. Consequently, it is important to understand the interactions between fungal effector proteins and their target host receptor binding partners, particularly since this can be used for the selection of potential plant resistance or susceptibility-related proteins that can be applied to the breeding of new cultivars with disease resistance. In this study, molecular docking simulations were used to characterise protein-protein interactions between effector and plant receptors. Benchmarking was undertaken using available experimental structures of effector-host receptor complexes to optimise simulation parameters, which were then used to predict the structures and mediating interactions of effector proteins with host receptor binding partners that have not yet been characterised experimentally. Rigid docking was applied for both the so-called bound and unbound docking of MAX effectors with plant HMA domain protein partners. All bound complexes used for benchmarking were correctly predicted, with 84% being ranked as the top docking pose using the ZDOCK scoring function. In the case of unbound complexes, a minimum of 95% of known residues were predicted to be part of the interacting interface on the host receptor binding partner, and at least 87% of known residues were predicted to be part of the interacting interface on the effector protein. Hydrophobic interactions were found to dominate the formation of effector-plant protein complexes. An optimised set of docking parameters based on the use of ZDOCK and ZRANK scoring functions were established to enable the prediction of near-native docking poses involving different binding interfaces on plant HMA domain proteins. Whilst this study was limited by the availability of the experimentally determined complexed structures of effectors and host receptor binding partners, we demonstrated the potential of molecular docking simulations to predict the likely interactions between effectors and their respective host receptor binding partners. This computational approach may accelerate the process of the discovery of putative interacting plant partners of effector proteins and contribute to effector-assisted marker discovery, thereby supporting the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Lina Rozano
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA 6845, Australia
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - James K. Hane
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ricardo L. Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA 6845, Australia
- Curtin Institute for Data Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
11
|
Liu D, Lun Z, Liu N, Yuan G, Wang X, Li S, Peng YL, Lu X. Identification and Characterization of Novel Candidate Effector Proteins from Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9050574. [PMID: 37233285 DOI: 10.3390/jof9050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The fungal pathogen Magnaporthe oryzae secretes a large number of effector proteins to facilitate infection, most of which are not functionally characterized. We selected potential candidate effector genes from the genome of M. oryzae, field isolate P131, and cloned 69 putative effector genes for functional screening. Utilizing a rice protoplast transient expression system, we identified that four candidate effector genes, GAS1, BAS2, MoCEP1 and MoCEP2 induced cell death in rice. In particular, MoCEP2 also induced cell death in Nicotiana benthamiana leaves through Agrobacteria-mediated transient gene expression. We further identified that six candidate effector genes, MoCEP3 to MoCEP8, suppress flg22-induced ROS burst in N. benthamiana leaves upon transient expression. These effector genes were highly expressed at a different stage after M. oryzae infection. We successfully knocked out five genes in M. oryzae, MoCEP1, MoCEP2, MoCEP3, MoCEP5 and MoCEP7. The virulence tests suggested that the deletion mutants of MoCEP2, MoCEP3 and MoCEP5 showed reduced virulence on rice and barley plants. Therefore, those genes play an important role in pathogenicity.
Collapse
Affiliation(s)
- Di Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zhiqin Lun
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Shanshan Li
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Wang X, Wu W, Zhang Y, Li C, Wang J, Wen J, Zhang S, Yao Y, Lu W, Zhao Z, Zhan J, Pan Q. The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae. Genes (Basel) 2023; 14:genes14051065. [PMID: 37239425 DOI: 10.3390/genes14051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene.
Collapse
Affiliation(s)
- Xing Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihuai Wu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaling Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng Li
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinyan Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jianqiang Wen
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxiang Yao
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Corn Research Institute, Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Weisheng Lu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Qinghua Pan
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Jiang Z, Liu X, Li L, Zou X, Sun H. Whole Genome Resource and Genetic Analysis of Magnaporthe oryzae from Two Field Isolates in Northeast China. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:309-311. [PMID: 36597013 DOI: 10.1094/mpmi-10-22-0218-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To screen candidate fungal genes that may relate to avirulence genes corresponding to the host resistance genes, we characterized two field isolates of Magnaporthe oryzae that cause rice blast disease, especially in northeast China, and performed whole-genome resequencing of these two isolates. The genome assembly and annotation data was submitted to the National Center for Biotechnology Information database. Our study unveils the predicted fungal effectors of two dominant M. oryzae isolates in northeast China, providing a resource for Avr genes to clone. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhaoyuan Jiang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Xiaomei Liu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Li Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Xiaowei Zou
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Hui Sun
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| |
Collapse
|
14
|
Zhao L, Zhang T, Luo Y, Li L, Cheng R, Shi Z, Wang G, Ren T. Effects of temperature and microwave on the stability of the blast effector complex APikL2A/sHMA25 as determined by molecular dynamics analyses. J Mol Model 2023; 29:134. [PMID: 37041399 DOI: 10.1007/s00894-023-05550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, and understanding how abiotic stress affects the resistance of plants to this disease is useful for designing disease control strategies. In this paper, the effects of temperature and microwave irradiation on the effector complex comprising APikL2A from M. oryzae and sHMA25 from foxtail millet were investigated by molecular dynamics simulations using the GROMACS software package. While the structure of APikL2A/sHMA25 remained relatively stable in a temperature range of 290 K (16.85 °C) to 320 K (46.85 °C), the concave shape of the temperature-dependent binding free energy curve indicated that there was maximum binding affinity between APikL2A and sHMA25 at 300 K-310 K. This coincided with the optimum infectivity temperature, thus suggesting that coupling of the two polypeptides may play a role in the infection process. A strong oscillating electric field destroyed the structure of APikL2A/sHMA25, although it was stable and not susceptible to weak electric fields.
Collapse
Affiliation(s)
- Ling Zhao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Ting Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Yanjie Luo
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Lin Li
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Ruhong Cheng
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Zhigang Shi
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China
| | - Genping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs/National Foxtail Millet Improvement Center/Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, 050035, Shijiazhuang, China.
| | - Tiancong Ren
- School of Resources and Environmental Sciences, Shijiazhuang University, Shijiazhuang, 050035, China.
| |
Collapse
|
15
|
Approaches to Reduce Rice Blast Disease Using Knowledge from Host Resistance and Pathogen Pathogenicity. Int J Mol Sci 2023; 24:ijms24054985. [PMID: 36902415 PMCID: PMC10003181 DOI: 10.3390/ijms24054985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Rice is one of the staple foods for the majority of the global population that depends directly or indirectly on it. The yield of this important crop is constantly challenged by various biotic stresses. Rice blast, caused by Magnaporthe oryzae (M. oryzae), is a devastating rice disease causing severe yield losses annually and threatening rice production globally. The development of a resistant variety is one of the most effective and economical approaches to control rice blast. Researchers in the past few decades have witnessed the characterization of several qualitative resistance (R) and quantitative resistance (qR) genes to blast disease as well as several avirulence (Avr) genes from the pathogen. These provide great help for either breeders to develop a resistant variety or pathologists to monitor the dynamics of pathogenic isolates, and ultimately to control the disease. Here, we summarize the current status of the isolation of R, qR and Avr genes in the rice-M. oryzae interaction system, and review the progresses and problems of these genes utilized in practice for reducing rice blast disease. Research perspectives towards better managing blast disease by developing a broad-spectrum and durable blast resistance variety and new fungicides are also discussed.
Collapse
|
16
|
Xiao G, Wang W, Liu M, Li Y, Liu J, Franceschetti M, Yi Z, Zhu X, Zhang Z, Lu G, Banfield MJ, Wu J, Zhou B. The Piks allele of the NLR immune receptor Pik breaks the recognition of AvrPik effectors of rice blast fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:810-824. [PMID: 36178632 DOI: 10.1111/jipb.13375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
- International Rice Research Institute, Metro Manila, 1301, Philippines
| | - Wenjuan Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianbin Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Marina Franceschetti
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Zhaofeng Yi
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410128, China
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, 1301, Philippines
| |
Collapse
|
17
|
Sugihara Y, Abe Y, Takagi H, Abe A, Shimizu M, Ito K, Kanzaki E, Oikawa K, Kourelis J, Langner T, Win J, Białas A, Lüdke D, Contreras MP, Chuma I, Saitoh H, Kobayashi M, Zheng S, Tosa Y, Banfield MJ, Kamoun S, Terauchi R, Fujisaki K. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol 2023; 21:e3001945. [PMID: 36656825 PMCID: PMC9851567 DOI: 10.1371/journal.pbio.3001945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.
Collapse
Affiliation(s)
- Yu Sugihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | - Shuan Zheng
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
18
|
Xie Y, Wang Y, Yu X, Lin Y, Zhu Y, Chen J, Xie H, Zhang Q, Wang L, Wei Y, Xiao Y, Cai Q, Zheng Y, Wang M, Xie H, Zhang J. SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice. MOLECULAR PLANT 2022; 15:1931-1946. [PMID: 36321201 DOI: 10.1016/j.molp.2022.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.
Collapse
Affiliation(s)
- Yunjie Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yupeng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Xiangzhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yuelong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Jinwen Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qingqing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanning Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Mo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaan Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China.
| |
Collapse
|
19
|
Syauqi J, Chen RK, Cheng AH, Wu YF, Chung CL, Lin CC, Chou HP, Wu HY, Jian JY, Liao CT, Kuo CC, Chu SC, Tsai YC, Liao DJ, Wu YP, Abadi AL, Sulistyowati L, Shen WC. Surveillance of Rice Blast Resistance Effectiveness and Emerging Virulent Isolates in Taiwan. PLANT DISEASE 2022; 106:3187-3197. [PMID: 35581907 DOI: 10.1094/pdis-12-21-2806-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and food security worldwide. Breeding and proper deployment of resistant varieties are effective and environmentally friendly strategies to manage this notorious disease. However, a highly dynamic and quickly evolved rice blast pathogen population in the field has made disease control with resistance germplasms more challenging. Therefore, continued monitoring of pathogen dynamics and application of effective resistance varieties are critical tasks to prolong or sustain field resistance. Here, we report a team project that involved evaluation of rice blast resistance genes and surveillance of M. oryzae field populations in Taiwan. A set of International Rice Research Institute-bred blast-resistant lines (IRBLs) carrying single blast resistance genes was utilized to monitor the field effectiveness of rice blast resistance. Resistance genes such as Ptr (formerly Pita2) and Pi9 exhibited the best and most durable resistance against the rice blast fungus population in Taiwan. Interestingly, line IRBLb-B harboring the Pib gene with good field protection has recently shown susceptible lesions in some locations. To dissect the genotypic features of virulent isolates against the Pib resistance gene, M. oryzae isolates were collected and analyzed. Screening of the AvrPib locus revealed that the majority of field isolates still maintained the wild-type AvrPib status but eight virulent genotypes were found. Pot3 insertion appeared to be a major way to disrupt the AvrPib avirulence function. Interestingly, a novel AvrPib double-allele genotype among virulent isolates was first identified. Pot2 repetitive element-based polymerase chain reaction (rep-PCR) fingerprinting analysis indicated that mutation events may occur independently among different lineages in different geographic locations of Taiwan. This study provides our surveillance experience of rice blast disease and serves as the foundation to sustain rice production.
Collapse
Affiliation(s)
- Jauhar Syauqi
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Rong-Kuen Chen
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - An-Hsiu Cheng
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - Yea-Fang Wu
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
| | - Chun-Chi Lin
- Taidung District Agricultural Research and Extension Station, Taidung City 950244, Taiwan
| | - Hau-Ping Chou
- Kaohsiung District Agricultural Research and Extension Station, Pingtung County 908126, Taiwan
| | - Hsin-Yuh Wu
- Taoyuan District Agricultural Research and Extension Station, Xinwu District, Taoyuan City 327005, Taiwan
| | - Jen-You Jian
- Taoyuan District Agricultural Research and Extension Station, Xinwu District, Taoyuan City 327005, Taiwan
| | - Chung-Ta Liao
- Taichung District Agricultural Research and Extension Station, Changhua County 515008, Taiwan
| | - Chien-Chih Kuo
- Taichung District Agricultural Research and Extension Station, Changhua County 515008, Taiwan
| | - Sheng-Chi Chu
- Miaoli District Agricultural Research and Extension Station, Gongguan Township, Miaoli County 363201, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien County 973044, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi City 600015, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi City 600015, Taiwan
| | - Abdul Latief Abadi
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Liliek Sulistyowati
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
20
|
Dong L, Liu S, Li J, Tharreau D, Liu P, Tao D, Yang Q. A Rapid and Simple Method for DNA Preparation of Magnaporthe oryzae from Single Rice Blast Lesions for PCR-Based Molecular Analysis. THE PLANT PATHOLOGY JOURNAL 2022; 38:679-684. [PMID: 36503197 PMCID: PMC9742792 DOI: 10.5423/ppj.nt.02.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae.
Collapse
Affiliation(s)
- Liying Dong
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Shufang Liu
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Jing Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Didier Tharreau
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR BGPI, TA A 54K, 34398 Montpellier,
France
| | - Pei Liu
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Qinzhong Yang
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| |
Collapse
|
21
|
Pan-Genomics Reveals a New Variation Pattern of Secreted Proteins in Pyricularia oryzae. J Fungi (Basel) 2022; 8:jof8121238. [PMID: 36547571 PMCID: PMC9785059 DOI: 10.3390/jof8121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Pyricularia oryzae, the causal agent of rice blast disease, is one of the major rice pathogens. The complex population structure of P. oryzae facilitates the rapid virulence variations, which make the blast disease a serious challenge for global food security. There is a large body of existing genomics research on P. oryzae, however the population structure at the pan-genome level is not clear, and the mechanism of genetic divergence and virulence variations of different sub-populations is also unknown. (2) Methods: Based on the genome data published in the NCBI, we constructed a pan-genome database of P. oryzae, which consisted of 156 strains (117 isolated from rice and 39 isolated from other hosts). (3) Results: The pan-genome contained a total of 24,100 genes (12,005 novel genes absent in the reference genome 70-15), including 16,911 (~70%) core genes (population frequency ≥95%) and 1378 (~5%) strain-specific genes (population frequency ≤5%). Gene presence-absence variation (PAV) based clustering analysis of the population structure of P. oryzae revealed four subgroups (three from rice and one from other hosts). Interestingly, the cloned avirulence genes and conventional secreted proteins (SPs, with signal peptides) were enriched in the high-frequency regions and significantly associated with transposable elements (TEs), while the unconventional SPs (without signal peptides) were enriched in the low-frequency regions and not associated significantly with TEs. This pan-genome will expand the breadth and depth of the rice blast fungus reference genome, and also serve as a new blueprint for scientists to further study the pathogenic mechanism and virulence variation of the rice blast fungus.
Collapse
|
22
|
Tian D, Deng Y, Yang X, Li G, Li Q, Zhou H, Chen Z, Guo X, Su Y, Luo Y, Yang L. Association analysis of rice resistance genes and blast fungal avirulence genes for effective breeding resistance cultivars. Front Microbiol 2022; 13:1007492. [DOI: 10.3389/fmicb.2022.1007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Utilization of rice blast-resistance (R) genes is the most economical and environmentally friendly method to control blast disease. However, rice varieties with R genes influence the outcome of genetic architectures of Magnaporthe oryzae (M. oryzae), and mutations in avirulence (AVR) genes of M. oryzae may cause dysfunction of the corresponding R genes in rice varieties. Although monitoring and characterizing rice R genes and pathogen AVR genes in field populations may facilitate the implementation of effective R genes, little is known about the changes of R genes over time and their ultimate impact on pathogen AVR genes. In this study, 117 main cultivated rice varieties over the past five decades and 35 M. oryzae isolates collected from those diseased plants were analyzed by PCR using gene-specific markers of the nine R genes and six primer pairs targeting the coding sequence or promoter of AVR genes, respectively. The R genes Pigm, Pi9, Pi2, Piz-t, Pi-ta, Pik, Pi1, Pikp, and Pikm were identified in 5, 0, 1, 4, 18, 0, 2, 1, and 0 cultivars, respectively. Significantly, none of these R genes had significant changes that correlated to their application periods of time. Among the four identified AVR genes, AVR-Pik had the highest amplification frequency (97.14%) followed by AVR-Pita (51.43%) and AVR-Pi9 (48.57%); AVR-Piz-t had the lowest frequency (28.57%). All these AVR genes except AVR-Pi9 had 1–2 variants. Inoculation mono-genic lines contained functional genes of Pi2/9 and Pik loci with 14 representative isolates from those 35 ones revealed that the presence of certain AVR-Piz-t, AVR-Pita variants, and AVR-Pik-E + AVR-Pik-D in M. oryzae populations, and these variants negated the ability of the corresponding R genes to confer resistance. Importantly, Pi2, Pi9, and Pigm conferred broad-spectrum resistance to these local isolates. These findings reveal that the complex genetic basis of M. oryzae and some effective blast R genes should be considered in future rice blast-resistance breeding programs.
Collapse
|
23
|
Rocafort M, Bowen JK, Hassing B, Cox MP, McGreal B, de la Rosa S, Plummer KM, Bradshaw RE, Mesarich CH. The Venturia inaequalis effector repertoire is dominated by expanded families with predicted structural similarity, but unrelated sequence, to avirulence proteins from other plant-pathogenic fungi. BMC Biol 2022; 20:246. [PMID: 36329441 PMCID: PMC9632046 DOI: 10.1186/s12915-022-01442-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Scab, caused by the biotrophic fungus Venturia inaequalis, is the most economically important disease of apples worldwide. During infection, V. inaequalis occupies the subcuticular environment, where it secretes virulence factors, termed effectors, to promote host colonization. Consistent with other plant-pathogenic fungi, many of these effectors are expected to be non-enzymatic proteins, some of which can be recognized by corresponding host resistance proteins to activate plant defences, thus acting as avirulence determinants. To develop durable control strategies against scab, a better understanding of the roles that these effector proteins play in promoting subcuticular growth by V. inaequalis, as well as in activating, suppressing, or circumventing resistance protein-mediated defences in apple, is required. RESULTS We generated the first comprehensive RNA-seq transcriptome of V. inaequalis during colonization of apple. Analysis of this transcriptome revealed five temporal waves of gene expression that peaked during early, mid, or mid-late infection. While the number of genes encoding secreted, non-enzymatic proteinaceous effector candidates (ECs) varied in each wave, most belonged to waves that peaked in expression during mid-late infection. Spectral clustering based on sequence similarity determined that the majority of ECs belonged to expanded protein families. To gain insights into function, the tertiary structures of ECs were predicted using AlphaFold2. Strikingly, despite an absence of sequence similarity, many ECs were predicted to have structural similarity to avirulence proteins from other plant-pathogenic fungi, including members of the MAX, LARS, ToxA and FOLD effector families. In addition, several other ECs, including an EC family with sequence similarity to the AvrLm6 avirulence effector from Leptosphaeria maculans, were predicted to adopt a KP6-like fold. Thus, proteins with a KP6-like fold represent another structural family of effectors shared among plant-pathogenic fungi. CONCLUSIONS Our study reveals the transcriptomic profile underpinning subcuticular growth by V. inaequalis and provides an enriched list of ECs that can be investigated for roles in virulence and avirulence. Furthermore, our study supports the idea that numerous sequence-unrelated effectors across plant-pathogenic fungi share common structural folds. In doing so, our study gives weight to the hypothesis that many fungal effectors evolved from ancestral genes through duplication, followed by sequence diversification, to produce sequence-unrelated but structurally similar proteins.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Berit Hassing
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Murray P Cox
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Brogan McGreal
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland, 1025, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, La Trobe University, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
24
|
Guo J, Cheng Y. Advances in Fungal Elicitor-Triggered Plant Immunity. Int J Mol Sci 2022; 23:12003. [PMID: 36233304 PMCID: PMC9569958 DOI: 10.3390/ijms231912003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an array of pathogenic fungi in the natural environment of plants, which produce some molecules including pathogen-associated molecular patterns (PAMPs) and effectors during infection. These molecules, which can be recognized by plant specific receptors to activate plant immunity, including PTI (PAMP-triggered immunity) and ETI (effector-triggered immunity), are called elicitors. Undoubtedly, identification of novel fungal elicitors and their plant receptors and comprehensive understanding about fungal elicitor-triggered plant immunity will be of great significance to effectively control plant diseases. Great progress has occurred in fungal elicitor-triggered plant immunity, especially in the signaling pathways of PTI and ETI, in recent years. Here, recent advances in fungal elicitor-triggered plant immunity are summarized and their important contribution to the enlightenment of plant disease control is also discussed.
Collapse
Affiliation(s)
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
25
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
26
|
Hu J, Liu M, Zhang A, Dai Y, Chen W, Chen F, Wang W, Shen D, Telebanco-Yanoria MJ, Ren B, Zhang H, Zhou H, Zhou B, Wang P, Zhang Z. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. MOLECULAR PLANT 2022; 15:1347-1366. [PMID: 35799449 PMCID: PMC11163382 DOI: 10.1016/j.molp.2022.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Apoplastic ascorbate oxidases (AOs) play a critical role in reactive oxygen species (ROS)-mediated innate host immunity by regulating the apoplast redox state. To date, little is known about how apoplastic effectors of the rice blast fungus Magnaporthe oryzae modulate the apoplast redox state of rice to subvert plant immunity. In this study, we demonstrated that M. oryzae MoAo1 is an AO that plays a role in virulence by modulating the apoplast redox status of rice cells. We showed that MoAo1 inhibits the activity of rice OsAO3 and OsAO4, which also regulate the apoplast redox status and plant immunity. In addition, we found that MoAo1, OsAO3, and OsAO4 all exhibit polymorphic variations whose varied interactions orchestrate pathogen virulence and rice immunity. Taken together, our results reveal a critical role for extracellular redox enzymes during rice blast infection and shed light on the importance of the apoplast redox state and its regulation in plant-pathogen interactions.
Collapse
Affiliation(s)
- Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ao Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Dai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Weizhong Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Fang Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenya Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | | | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhou
- Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
27
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
28
|
The Pid Family Has Been Diverged into Xian and Geng Type Resistance Genes against Rice Blast Disease. Genes (Basel) 2022; 13:genes13050891. [PMID: 35627276 PMCID: PMC9141787 DOI: 10.3390/genes13050891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Rice blast (the causative agent the fungus Magnaporthe oryzae) represents a major constraint on the productivity of one of the world’s most important staple food crops. Genes encoding resistance have been identified in both the Xian and Geng subspecies genepools, and combining these within new cultivars represents a rational means of combating the pathogen. In this research, deeper allele mining was carried out on Pid2, Pid3, and Pid4 via each comprehensive FNP marker set in three panels consisting of 70 Xian and 58 Geng cultivars. Within Pid2, three functional and one non-functional alleles were identified; the former were only identified in Xian type entries. At Pid3, four functional and one non-functional alleles were identified; once again, all of the former were present in Xian type entries. However, the pattern of variation at Pid4 was rather different: here, the five functional alleles uncovered were dispersed across the Geng type germplasm. Among all the twelve candidate functional alleles, both Pid2-ZS and Pid3-ZS were predominant. Furthermore, the resistance functions of both Pid2-ZS and Pid3-ZS were assured by transformation test. Profiting from the merits of three comprehensive FNP marker sets, the study has validated all three members of the Pid family as having been strictly diverged into Xian and Geng subspecies: Pid2 and Pid3 were defined as Xian type resistance genes, and Pid4 as Geng type. Rather limited genotypes of the Pid family have been effective in both Xian and Geng rice groups, of which Pid2-ZS_Pid3-ZS has been central to the Chinese rice population.
Collapse
|
29
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
30
|
Xu X, Wang H, Liu J, Han S, Lin M, Guo Z, Chen X. OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus. RICE (NEW YORK, N.Y.) 2022; 15:12. [PMID: 35184252 PMCID: PMC8859016 DOI: 10.1186/s12284-022-00558-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Background OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation? Results In this study, we characterized the interaction of OsWRKY62 and OsWRKY76 with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαΔIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαΔIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal (NLS). Similarly, we found that OsIMαΔIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal (NES) in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1-NES fused gene compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae. Conclusion These results revealed the existence of NLS and NES in OsWRKY62. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.
Collapse
Affiliation(s)
- Xiaohui Xu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
- College of Modern Science and Technology, China Jiliang University, Hangzhou, 310018 China
| | - Han Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Jiqin Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Miaomiao Lin
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding; Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
31
|
Hu ZJ, Huang YY, Lin XY, Feng H, Zhou SX, Xie Y, Liu XX, Liu C, Zhao RM, Zhao WS, Feng CH, Pu M, Ji YP, Hu XH, Li GB, Zhao JH, Zhao ZX, Wang H, Zhang JW, Fan J, Li Y, Peng YL, He M, Li DQ, Huang F, Peng YL, Wang WM. Loss and Natural Variations of Blast Fungal Avirulence Genes Breakdown Rice Resistance Genes in the Sichuan Basin of China. FRONTIERS IN PLANT SCIENCE 2022; 13:788876. [PMID: 35498644 PMCID: PMC9040519 DOI: 10.3389/fpls.2022.788876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.
Collapse
Affiliation(s)
- Zi-Jin Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Yan-Yan Huang
| | - Xiao-Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ying Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ru-Meng Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan-Hong Feng
- Plant Protection Station, Department of Agriculture Sichuan Province, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Liang Peng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Wen-Ming Wang
| |
Collapse
|
32
|
Discovery of a Novel Leaf Rust ( Puccinia recondita) Resistance Gene in Rye ( Secale cereale L.) Using Association Genomics. Cells 2021; 11:cells11010064. [PMID: 35011626 PMCID: PMC8750363 DOI: 10.3390/cells11010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Leaf rust constitutes one of the most important foliar diseases in rye (Secale cereale L.). To discover new sources of resistance, we phenotyped 180 lines belonging to a less well-characterized Gülzow germplasm at three field trial locations in Denmark and Northern Germany in 2018 and 2019. We observed lines with high leaf rust resistance efficacy at all locations in both years. A genome-wide association study using 261,406 informative single-nucleotide polymorphisms revealed two genomic regions associated with resistance on chromosome arms 1RS and 7RS, respectively. The most resistance-associated marker on chromosome arm 1RS physically co-localized with molecular markers delimiting Pr3. In the reference genomes Lo7 and Weining, the genomic region associated with resistance on chromosome arm 7RS contained a large number of nucleotide-binding leucine-rich repeat (NLR) genes. Residing in close proximity to the most resistance-associated marker, we identified a cluster of NLRs exhibiting close protein sequence similarity with the wheat leaf rust Lr1 gene situated on chromosome arm 5DL in wheat, which is syntenic to chromosome arm 7RS in rye. Due to the close proximity to the most resistance-associated marker, our findings suggest that the considered leaf rust R gene, provisionally denoted Pr6, could be a Lr1 ortholog in rye.
Collapse
|
33
|
Wu Q, Wang Y, Liu LN, Shi K, Li CY. Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice. J Fungi (Basel) 2021; 8:jof8010005. [PMID: 35049945 PMCID: PMC8778285 DOI: 10.3390/jof8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Magnaporthe oryzae caused huge losses in rice and wheat production worldwide. Comparing to long-term co-evolution history with rice, wheat-infecting isolates were new-emerging. To reveal the genetic differences between rice and wheat blast on global genomic scale, 109 whole-genome sequences of M. oryzae from rice, wheat, and other hosts were reanalyzed in this study. We found that the rice lineage had gone through stronger selective sweep and fewer conserved genes than those of Triticum and Lolium lineages, which indicated that rice blast fungi adapted to rice by gene loss and rapid evolution of specific loci. Furthermore, 228 genes associated with host adaptation of M. oryzae were found by presence/absence variation (PAV) analyses. The functional annotation of these genes found that the fine turning of genes gain/loss involved with transport and transcription factor, thiol metabolism, and nucleotide metabolism respectively are major mechanisms for rice adaption. This result implies that genetic base of specific host plant may lead to gene gain/loss variation of pathogens, so as to enhance their adaptability to host. Further characterization of these specific loci and their roles in adaption and evaluation of the fungi may eventually lead to understanding of interaction mechanism and develop new strategies of the disease management.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Organic Tea Industry Intelligent Engineering Research Center, Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
| | - Li-Na Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650201, China
| | - Kai Shi
- School of Foreign Language, Yunnan Agricultural University, Kunming 650201, China;
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (Y.W.); (L.-N.L.)
- Correspondence:
| |
Collapse
|
34
|
Peng Z, Li L, Wu S, Chen X, Shi Y, He Q, Shu F, Zhang W, Sun P, Deng H, Xing J. Frequencies and Variations of Magnaporthe oryzae Avirulence Genes in Hunan Province, China. PLANT DISEASE 2021; 105:3829-3834. [PMID: 34152208 DOI: 10.1094/pdis-01-21-0008-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice blast caused by Magnaporthe oryzae poses significant threaten to rice production. For breeding and deploying resistant rice varieties, it is essential to understand the frequencies and genetic variations of avirulence (AVR) genes in the pathogen populations. In this study, 444 isolates were collected from Hunan Province, China in 2012, 2015, and 2016, and their pathogenicity was evaluated by testing them on monogenic rice lines carrying resistance genes Pita, Pizt, Pikm, Pib, or Pi9. The frequencies of corresponding AVR genes AVRPizt, AVRPikm, AVRPib, AVRPi9, and AVRPita were characterized by amplification and sequencing these genes in the isolates. Both Pi9 and Pikm conferred resistance to >75% of the tested isolates, while Pizt, Pita, and Pib were effective against 55.63, 15.31, and 3.15% of the isolates, respectively. AVRPikm and AVRPi9 were detected in 90% of the isolates and AVRPita, AVRPizt, and AVRPib were present in 26.12, 66.22, and 79% of the isolates, respectively. Sequencing of AVR genes showed that most mutations were single nucleotide polymorphisms, transposon insertions, and insertion mutations. The variable sites of AVRPikm and AVRPita were mainly located in the coding sequence regions (CDS), and most were synonymous mutations. A 494-bp Pot2 transposon sequence insertion was found at the 87 bp position upstream of the start codon in AVRPib. Noteworthy, although no mutations were found in CDS of AVRPi9, a GC-rich inserted sequence of ∼200 bp was found at the 1,272 bp position upstream of the start codon in three virulent isolates. As AVRPikm and AVRPi9 were widely distributed with low genetic variation in the pathogen population, Pikm and Pi9 should be promising genes for breeding rice cultivars with blast resistance in Hunan.
Collapse
Affiliation(s)
- Zhirong Peng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Ling Li
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha, Hunan 410082, China
| | - Shenghai Wu
- Huitong County Agricultural and Rural Bureau, Huaihua, Hunan 418300, China
| | - Xiaolin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinfeng Shi
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Qiang He
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Fu Shu
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Wuhan Zhang
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Pingyong Sun
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Huafeng Deng
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| | - Junjie Xing
- Hunan Hybrid Rice Research Center, State Key Laboratory of Hybrid Rice, Changsha, Hunan 410125, China
| |
Collapse
|
35
|
Deb S, Madhavan VN, Gokulan CG, Patel HK, Sonti RV. Arms and ammunitions: effectors at the interface of rice and it's pathogens and pests. RICE (NEW YORK, N.Y.) 2021; 14:94. [PMID: 34792681 PMCID: PMC8602583 DOI: 10.1186/s12284-021-00534-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | | - C. G. Gokulan
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Hitendra K. Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007 India
- Present Address: Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507 India
| |
Collapse
|
36
|
A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc Natl Acad Sci U S A 2021; 118:2110751118. [PMID: 34702740 PMCID: PMC8612214 DOI: 10.1073/pnas.2110751118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, we generated a mutant of the rice nucleotide-binding and leucine-rich repeat (NLR) immunity receptor RGA5 by engineering its heavy metal–associated domain that recognizes the noncorresponding Magnaporthe oryzae Avrs- and ToxB-like effector AvrPib and confers resistance in transgenic rice to the blast fungus isolates with AvrPib, which is known to trigger blast resistance in rice cultivars carrying the R gene Pib, albeit by unknown mechanisms. Thus, this work demonstrates that integrated domain-containing plant NLR receptors can be engineered to confer resistance to pathogens carrying avirulence effectors that trigger plant immunity by unknown mechanisms, thereby providing a practical approach for developing multilines and cultivars with broad race spectrum resistance. Plant nucleotide-binding and leucine-rich repeat (NLR) receptors recognize avirulence effectors directly through their integrated domains (IDs) or indirectly via the effector-targeted proteins. Previous studies have succeeded in generating designer NLR receptors with new recognition profiles by engineering IDs or targeted proteins based on prior knowledge of their interactions with the effectors. However, it is yet a challenge to design a new plant receptor capable of recognizing effectors that function by unknown mechanisms. Several rice NLR immune receptors, including RGA5, possess an integrated heavy metal–associated (HMA) domain that recognizes corresponding Magnaporthe oryzae Avrs and ToxB-like (MAX) effectors in the rice blast fungus. Here, we report a designer rice NLR receptor RGA5HMA2 carrying an engineered, integrated HMA domain (RGA5-HMA2) that can recognize the noncorresponding MAX effector AvrPib and confers the RGA4-dependent resistance to the M. oryzae isolates expressing AvrPib, which originally triggers the Pib-mediated blast resistance via unknown mechanisms. The RGA5-HMA2 domain is contrived based on the high structural similarity of AvrPib with two MAX effectors, AVR-Pia and AVR1-CO39, recognized by cognate RGA5-HMA, the binding interface between AVR1-CO39 and RGA5-HMA, and the distinct surface charge of AvrPib and RAG5-HMA. This work demonstrates that rice NLR receptors with the HMA domain can be engineered to confer resistance to the M. oryzae isolates noncorresponding but structurally similar MAX effectors, which manifest cognate NLR receptor–mediated resistance with unknown mechanisms. Our study also provides a practical approach for developing rice multilines and broad race spectrum–resistant cultivars by introducing a series of engineered NLR receptors.
Collapse
|
37
|
Seong K, Krasileva KV. Computational Structural Genomics Unravels Common Folds and Novel Families in the Secretome of Fungal Phytopathogen Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1267-1280. [PMID: 34415195 PMCID: PMC9447291 DOI: 10.1094/mpmi-03-21-0071-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Structural biology has the potential to illuminate the evolution of pathogen effectors and their commonalities that cannot be readily detected at the primary sequence level. Recent breakthroughs in protein structure modeling have demonstrated the feasibility to predict the protein folds without depending on homologous templates. These advances enabled a genome-wide computational structural biology approach to help understand proteins based on their predicted folds. In this study, we employed structure prediction methods on the secretome of the destructive fungal pathogen Magnaporthe oryzae. Out of 1,854 secreted proteins, we predicted the folds of 1,295 proteins (70%). We showed that template-free modeling by TrRosetta captured 514 folds missed by homology modeling, including many known effectors and virulence factors, and that TrRosetta generally produced higher quality models for secreted proteins. Along with sensitive homology search, we employed structure-based clustering, defining not only homologous groups with divergent members but also sequence-unrelated structurally analogous groups. We demonstrate that this approach can reveal new putative members of structurally similar MAX effectors and novel analogous effector families present in M. oryzae and possibly in other phytopathogens. We also investigated the evolution of expanded putative ADP-ribose transferases with predicted structures. We suggest that the loss of catalytic activities of the enzymes might have led them to new evolutionary trajectories to be specialized as protein binders. Collectively, we propose that computational structural genomics approaches can be an integral part of studying effector biology and provide valuable resources that were inaccessible before the advent of machine learning-based structure prediction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
38
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
39
|
Stephens C, Ölmez F, Blyth H, McDonald M, Bansal A, Turgay EB, Hahn F, Saintenac C, Nekrasov V, Solomon P, Milgate A, Fraaije B, Rudd J, Kanyuka K. Remarkable recent changes in the genetic diversity of the avirulence gene AvrStb6 in global populations of the wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2021; 22:1121-1133. [PMID: 34258838 PMCID: PMC8358995 DOI: 10.1111/mpp.13101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is one of the most economically important diseases of wheat. Recently, both factors of a gene-for-gene interaction between Z. tritici and wheat, the wheat receptor-like kinase Stb6 and the Z. tritici secreted effector protein AvrStb6, have been identified. Previous analyses revealed a high diversity of AvrStb6 haplotypes present in earlier Z. tritici isolate collections, with up to c.18% of analysed isolates possessing the avirulence isoform of AvrStb6 identical to that originally identified in the reference isolate IPO323. With Stb6 present in many commercial wheat cultivars globally, we aimed to assess potential changes in AvrStb6 genetic diversity and the incidence of haplotypes allowing evasion of Stb6-mediated resistance in more recent Z. tritici populations. Here we show, using targeted resequencing of AvrStb6, that this gene is universally present in field isolates sampled from major wheat-growing regions of the world in 2013-2017. However, in contrast to the data from previous AvrStb6 population studies, we report a complete absence of the originally described avirulence isoform of AvrStb6 amongst modern Z. tritici isolates. Moreover, a remarkably small number of haplotypes, each encoding AvrStb6 protein isoforms conditioning virulence on Stb6-containing wheat, were found to predominate among modern Z. tritici isolates. A single virulence isoform of AvrStb6 was found to be particularly abundant throughout the global population. These findings indicate that, despite the ability of Z. tritici to sexually reproduce on resistant hosts, AvrStb6 avirulence haplotypes tend to be eliminated in subsequent populations.
Collapse
Affiliation(s)
| | - Fatih Ölmez
- Department of Plant ProtectionSivas Science and Technology UniversitySivasTurkey
| | - Hannah Blyth
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Megan McDonald
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraAustralia
- Present address:
Megan McDonald, School of BiosciencesUniversity of BirminghamBirminghamUK
| | - Anuradha Bansal
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- Present address:
British American TobaccoSouthamptonUK
| | - Emine Burcu Turgay
- Department of Plant PathologyPlant Protection Central Research InstituteField Crops Central Research InstituteAnkaraTurkey
| | - Florian Hahn
- Department of Plant SciencesRothamsted ResearchHarpendenUK
- Present address:
Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Peter Solomon
- Division of Plant SciencesResearch School of BiologyAustralian National UniversityCanberraAustralia
| | - Andrew Milgate
- NSW Department of Primary IndustriesWagga Wagga Agricultural InstituteWagga WaggaAustralia
| | - Bart Fraaije
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- Present address:
NIABCambridgeUK
| | - Jason Rudd
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| |
Collapse
|
40
|
Wang W, Su J, Chen K, Yang J, Chen S, Wang C, Feng A, Wang Z, Wei X, Zhu X, Lu GD, Zhou B. Dynamics of the Rice Blast Fungal Population in the Field After Deployment of an Improved Rice Variety Containing Known Resistance Genes. PLANT DISEASE 2021; 105:919-928. [PMID: 32967563 DOI: 10.1094/pdis-06-20-1348-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. Management through the deployment of host resistance genes would be facilitated by understanding the dynamics of the pathogen's population in the field. Here, to investigate the mechanism underlying the breakdown of disease resistance, we conducted a six-year field experiment to monitor the evolution of M. oryzae populations in Qujiang from Guangdong. The new variety of Xin-Yin-Zhan (XYZ) carrying R genes Pi50 and Pib was developed using the susceptible elite variety, Ma-Ba-Yin-Zhan (MBYZ), as the recurrent line. Field trials of disease resistance assessment revealed that the disease indices of XYZ in 2012, 2013, 2016, and 2017 were 0.19, 0.39, 0.70, and 0.90, respectively, indicating that XYZ displayed a very rapid increase of disease severity in the field. To investigate the mechanism underlying the quick erosion of resistance of XYZ, we collected isolates from both XYZ and MBYZ for pathogenicity testing against six different isogenic lines. The isolates collected from XYZ showed a similar virulence spectrum across four different years whereas those from MBYZ showed increasing virulence to the Pi50 and Pib isogenic lines from 2012 to 2017. Molecular analysis of AvrPib in the isolates from MBYZ identified four different AvrPib haplotypes, i.e., AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, and avrPib-AP3, verified by sequencing. AvrPib-AP1-1 and AvrPib-AP1-2 are avirulent to Pib whereas avrPib-AP2 and avrPib-AP3 are virulent. Insertions of a Pot3 and an Mg-SINE were identified in avrPib-AP2 and avrPib-AP3, respectively. Two major lineages based on rep-PCR analysis were further deduced in the field population, implying that the field population is composed of genetically related isolates. Our data suggest that clonal propagation and quick dominance of virulent isolates against the previously resistant variety could be the major genetic events contributing to the loss of varietal resistance against rice blast in the field.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Ocean Science, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Wei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
41
|
Abstract
This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.
Collapse
|
42
|
Khanna A, Ellur RK, Gopala Krishnan S, Vinod KK, Bhowmick PK, Nagarajan M, Haritha B, Singh AK. Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Pearl Millet Blast Resistance: Current Status and Recent Advancements in Genomic Selection and Genome Editing Approaches. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Pradhan A, Ghosh S, Sahoo D, Jha G. Fungal effectors, the double edge sword of phytopathogens. Curr Genet 2020; 67:27-40. [PMID: 33146780 DOI: 10.1007/s00294-020-01118-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Phyto-pathogenic fungi can cause huge damage to crop production. During millions of years of coexistence, fungi have evolved diverse life-style to obtain nutrients from the host and to colonize upon them. They deploy various proteinaceous as well as non-proteinaceous secreted molecules commonly referred as effectors to sabotage host machinery during the infection process. The effectors are important virulence determinants of pathogenic fungi and play important role in successful pathogenesis, predominantly by avoiding host-surveillance system. However, besides being important for pathogenesis, the fungal effectors end-up being recognized by the resistant cultivars of the host, which mount a strong immune response to ward-off pathogens. Various recent studies involving different pathosystem have revealed the virulence/avirulence functions of fungal effectors and their involvement in governing the outcome of host-pathogen interactions. However, the effectors and their cognate resistance gene in the host remain elusive for several economically important fungal pathogens. In this review, using examples from some of the biotrophic, hemi-biotrophic and necrotrophic pathogens, we elaborate the double-edged functions of fungal effectors. We emphasize that knowledge of effector functions can be helpful in effective management of fungal diseases in crop plants.
Collapse
Affiliation(s)
- Amrita Pradhan
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Srayan Ghosh
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debashis Sahoo
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
45
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|
46
|
Wang Q, Li J, Lu L, He C, Li C. Novel Variation and Evolution of AvrPiz-t of Magnaporthe oryzae in Field Isolates. Front Genet 2020; 11:746. [PMID: 33005166 PMCID: PMC7484972 DOI: 10.3389/fgene.2020.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
The product of the avirulence (Avr) gene of Magnaporthe oryzae can be detected by the product of the corresponding resistance (R) gene of rice and activates immunity to rice mediated by the R gene. The high degree of variability of M. oryzae isolates in pathogenicity makes the control of rice blast difficult. That resistance of the R gene in rice has been lost has been ascribed to the instability of the Avr gene in M. oryzae. Further study on the variation of the Avr genes in M. oryze field isolates may yield valuable information on the durable and effective deployment of R genes in rice production areas. AvrPiz-t and Piz-t are a pair of valuable genes in the Rice-Magnaporthe pathosystem. AvrPiz-t is detectable by Piz-t and determines the effectiveness of Piz-t. To effectively deploy the R gene Piz-t, the distribution, variation, and evolution of the corresponding Avr gene AvrPiz-t were found among 312 M. oryzae isolates collected from Yunnan rice production areas of China. PCR amplification and pathogenicity assays of AvrPiz-t showed that 202 isolates (64.7%) held AvrPiz-t alleles and were avirulent to IRBLzt-T (holding Piz-t). There were 42.3–83.3% avirulent isolates containing AvrPiz-t among seven regions in Yunnan Province. Meanwhile, 11 haplotypes of AvrPiz-t encoding three novel AvrPiz-t variants were identified among 100 isolates. A 198 bps insertion homologous to solo-LTR of the retrotransposon inago2 in the promoter region of AvrPiz-t in one isolate and a frameshift mutation of CDS in another isolate were identified among 100 isolates, and those two isolates had evolved to virulent from avirulent. Synonymous mutation and non-AUG-initiated N-terminal extensions keeps the AvrPiz-t gene avirulence function in M. oryzae field isolates in Yunnan. A haplotype network showed that H3 was an ancestral haplotype. Structure variance for absence (28.2%) or partial fragment loss (71.8%) of AvrPiz-t was found among 39 virulent isolates and may cause the AvrPiz-t avirulence function to be lost. Overall, AvrPiz-t evolved to virulent from avirulent forms via point mutation, retrotransposon, shift mutation, and structure variance under field conditions.
Collapse
Affiliation(s)
- Qun Wang
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinbin Li
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengxing He
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
47
|
Li J, Cornelissen B, Rep M. Host-specificity factors in plant pathogenic fungi. Fungal Genet Biol 2020; 144:103447. [PMID: 32827756 DOI: 10.1016/j.fgb.2020.103447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/18/2023]
Abstract
Fortunately, no fungus can cause disease on all plant species, and although some plant-pathogenic fungi have quite a broad host range, most are highly limited in the range of plant species or even cultivars that they cause disease in. The mechanisms of host specificity have been extensively studied in many plant-pathogenic fungi, especially in fungal pathogens causing disease on economically important crops. Specifically, genes involved in host specificity have been identified during the last few decades. In this overview, we describe and discuss these host-specificity genes. These genes encode avirulence (Avr) proteins, proteinaceous host-specific toxins or secondary metabolites. We discuss the genomic context of these genes, their expression, polymorphism, horizontal transfer and involvement in pathogenesis.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Ben Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands.
| |
Collapse
|
48
|
Petit-Houdenot Y, Langner T, Harant A, Win J, Kamoun S. A Clone Resource of Magnaporthe oryzae Effectors That Share Sequence and Structural Similarities Across Host-Specific Lineages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1032-1035. [PMID: 32460610 DOI: 10.1094/mpmi-03-20-0052-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is a destructive plant pathogen that can infect about 50 species of both wild and cultivated grasses, including important crops such as rice and wheat. M. oryzae is composed of genetically differentiated lineages that tend to infect specific host genera. To date, most studies of M. oryzae effectors have focused on the rice-infecting lineage. We describe a clone resource of 195 effectors of Magnaporthe species predicted from all the major host-specific lineages. These clones are freely available as Golden Gate-compatible entry plasmids. Our aim is to provide the community with an open source effector clone library to be used in a variety of functional studies. We hope that this resource will encourage studies of M. oryzae effectors on diverse host species.
Collapse
Affiliation(s)
- Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| |
Collapse
|
49
|
Genetic Variation Bias toward Noncoding Regions and Secreted Proteins in the Rice Blast Fungus Magnaporthe oryzae. mSystems 2020; 5:5/3/e00346-20. [PMID: 32606028 PMCID: PMC7329325 DOI: 10.1128/msystems.00346-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of plant pathogens are highly variable and plastic. Pathogen gene repertoires change quickly with the plant environment, which results in a rapid loss of plant resistance shortly after the pathogen emerges in the field. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the number of studies that have examined the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, we applied experimental evolution and high-throughput pool sequencing to Magnaporthe oryzae, a fungal pathogen that causes massive losses in rice production, to observe the evolution of genome variation. We found that mutations, including single-nucleotide variants (SNVs), insertions and deletions (indels), and transposable element (TE) insertions, accumulated very rapidly throughout the genome of M. oryzae during sequential plant inoculation and preferentially in noncoding regions, while such mutations were not frequently found in coding regions. However, we also observed that new TE insertions accumulated with time and preferentially accumulated at the proximal region of secreted protein (SP) coding genes in M. oryzae populations. Taken together, these results revealed a bias in genetic variation toward noncoding regions and SP genes in M. oryzae and may contribute to the rapid adaptive evolution of the blast fungal effectors under host selection.IMPORTANCE Plants "lose" resistance toward pathogens shortly after their widespread emergence in the field because plant pathogens mutate and adapt rapidly under resistance selection. Thus, the rapid evolution of pathogens is a serious threat to plant health. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the study of the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, by performing an experimental evolution study, we found a bias in genetic variation toward noncoding regions and SPs in the rice blast fungus Magnaporthe oryzae, which explains the ability of the rice blast fungus to maintain high virulence variation to overcome rice resistance in the field.
Collapse
|
50
|
High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population. J Genet 2020. [DOI: 10.1007/s12041-020-01197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|