1
|
Yan Z, Zhao P, Yan X, Zhang R. Using Abundant 1H Polarization to Enhance the Sensitivity of Solid-State NMR Spectroscopy. J Phys Chem Lett 2024; 15:1866-1878. [PMID: 38343090 DOI: 10.1021/acs.jpclett.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Solid-state NMR spectroscopy has been playing a significant role in elucidating the structures and dynamics of materials and proteins at the atomic level for decades. As an extremely abundant nucleus with a very high gyromagnetic ratio, protons are widely present in most organic/inorganic materials. Thus, this Perspective highlights the advantages of proton detection at fast magic-angle spinning (MAS) and presents strategies to utilize and exhaust 1H polarization to achieve signal sensitivity enhancement of solid-state NMR spectroscopy, enabling substantial time savings and extraction of more structural and dynamics information per unit time. Those strategies include developing sensitivity-enhanced single-channel 1H multidimensional NMR spectroscopy, implementing multiple polarization transfer steps in each scan to enhance low-γ nuclei signals, and making full use of 1H polarization to obtain homonuclear and heteronuclear chemical shift correlation spectra in a single experiment. Finally, outlooks and perspectives are provided regarding the challenges and future for the further development of sensitivity-enhanced proton-based solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Peizhi Zhao
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Wong A. A roadmap to high-resolution standard microcoil MAS NMR spectroscopy for metabolomics. NMR IN BIOMEDICINE 2023; 36:e4683. [PMID: 34970795 DOI: 10.1002/nbm.4683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Current microcoil probe technology has emerged as a significant advancement in NMR applications to biofluids research. It has continued to excel as a hyphenated tool with other prominent microdevices, opening many new possibilities in multiple omics fields. However, this does not hold for biological samples such as intact tissue or organisms, due to the considerable challenges of incorporating the microcoil in a magic-angle spinning (MAS) probe without relinquishing the high-resolution spectral data. Not until 2012 did a microcoil MAS probe show promise in profiling the metabolome in a submilligram tissue biopsy with spectral resolution on par with conventional high-resolution MAS (HR-MAS) NMR. This result subsequently triggered a great interest in the possibility of NMR analysis with microgram tissues and striving toward the probe development of "high-resolution" capable microcoil MAS NMR spectroscopy. This review gives an overview of the issues and challenges in the probe development and summarizes the advancements toward metabolomics.
Collapse
Affiliation(s)
- Alan Wong
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
4
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
5
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
6
|
Duong NT, Agarwal V, Nishiyama Y. Separating an overlapped 1H peak and identifying its 1H- 1H correlations with the use of single-channel 1H solid-state NMR at fast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101774. [PMID: 35051807 DOI: 10.1016/j.ssnmr.2022.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Fast magic-angle spinning (≥60 kHz) technique has enabled the acquisition of high-resolution 1H NMR spectra of solid materials. However, the spectral interpretation is still difficult because the 1H peaks are overlapped due to the narrow chemical shift range and broad linewidths. An additional 13C or 14N or 1H dimension possibly addresses the issues of overlapped proton resonances, but it leads to the elongated experimental time. Herein, we introduce a single-channel 1H experiment to separate the overlapped 1H peak and identify its spatially proximal 1H-1H correlations. This sequence combines selective excitation, selective 1H-1H polarization transfer by selective recoupling of protons (SERP), and broadband 1H recoupling by back-to-back (BABA) recoupling sequences. The concept for 1H separation is based on (i) the selective excitation of a well-resolved 1H peak and (ii) the selective dipolar polarization transfer from this isolated 1H peak to one of the 1H peaks in the overlapped/poor resolution region by SERP and (iii) the detection of 1H-1H correlations from these two 1H peaks to other neighboring 1Hs by BABA. We demonstrated the applicability of this approach to identify overlapped peaks on two molecules, β-L-aspartyl-l-alanine and Pioglitazone.HCl. The sequence allows the clear observation of 1H-1H correlations from an overlapped 1H peak without an additional heteronuclear dimension and ensures efficient polarization transfers that leads to twelve fold reduction in experimental time compared to 14N edited experiments. The limitation and the conditions of applicability for this approach are discussed in detail.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, Sy. No. 36/P, Gopanpally, Ranga Reddy District, Hyderabad, 500 107, India
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo, 196-8558, Japan.
| |
Collapse
|
7
|
Yan Z, Zhang R. Rapid Structural Analysis of Minute Quantities of Organic Solids by Exhausting 1H Polarization in Solid-State NMR Spectroscopy Under Fast Magic Angle Spinning. J Phys Chem Lett 2021; 12:12067-12074. [PMID: 34910488 DOI: 10.1021/acs.jpclett.1c03672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) often suffers from significant limitations due to the inherent low signal sensitivity when low-γ nuclei are involved. Herein, we report an elegant solid-state NMR approach for rapid structural analysis of minute amounts of organic solids. By encoding staggered chemical shift evolution in the indirect dimension and staggered acquisition in the 1H dimension, a proton-detected homonuclear 1H/1H and heteronuclear 13C/1H chemical shift correlation (HETCOR) spectrum can be obtained simultaneously in a single experiment at a fast magic-angle-spinning (MAS) condition with barely increasing the experimental time. We further show that during the conventional 1H-detected HETCOR experimental time, multiple homonuclear 1H/1H correlation spectra can be recorded in addition to the HETCOR spectrum, enabling the determination of 1H-1H distances. We establish that abundant 1H polarization can be efficiently manipulated and fully utilized in proton-detected solid-state NMR spectroscopy for extraction of more critical structural information and thus reduction of the total experimental time.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
8
|
Li M, Lu X, Xu W, Troup GM, McNevin MJ, Nie H, Su Y. Quantifying Pharmaceutical Formulations from Proton Detected Solid-State NMR under Ultrafast Magic Angle Spinning. J Pharm Sci 2020; 109:3045-3053. [PMID: 32679211 DOI: 10.1016/j.xphs.2020.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Probing form conversions of active pharmaceutical ingredients in solid dosages is critical for understanding the physicochemical stability of drug substances in formulations. The multicomponent and low drug loading nature of drug products often results in challenges to quantify the phase stability, at a low detection limit and with the chemical resolution that differentiate drug molecules and excipients, for routine laboratory techniques. Recent advancement of ultrafast magic angle spinning (UF-MAS) enables proton-detected solid-state nuclear magnetic resonance (ssNMR) techniques to characterize pharmaceutical materials with enhanced resolution and sensitivity. This study demonstrates one of the first documented cases implementing 60 kHz UF-MAS techniques to quantify the minor content of pioglitazone free base (PIO-FB) in a binary system with its hydrochloride salt (PIO-HCl) and a multicomponent formulation with typical excipients. One-dimensional 1H methods can unambiguously differentiate the two forms and exhibit a limit of detection at 1.77% (w/w). Moreover, we extended it to a two-dimensional 1H-1H correlation for minimizing peak overlap and successfully quantifying approximately 2.0% (w/w) PIO-FB in a multicomponent formulation. These results have demonstrated that 1H ssNMR as a novel method to quantify solid dosages at a higher resolution and faster acquisition than conventional 13C techniques.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Gregory M Troup
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Michael J McNevin
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Haichen Nie
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN 47907, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Li M, Meng F, Tsutsumi Y, Amoureux JP, Xu W, Lu X, Zhang F, Su Y. Understanding Molecular Interactions in Rafoxanide–Povidone Amorphous Solid Dispersions from Ultrafast Magic Angle Spinning NMR. Mol Pharm 2020; 17:2196-2207. [DOI: 10.1021/acs.molpharmaceut.0c00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fan Meng
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
- Bruker Biospin, 34 Rue de l’Industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa Japan
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Fujiwara T, Muranaka A, Nishinaga T, Aoyagi S, Kobayashi N, Uchiyama M, Otani H, Iyoda M. Preparation, Spectroscopic Characterization and Theoretical Study of a Three-Dimensional Conjugated 70 π-Electron Thiophene 6-mer Radical Cation π-Dimer. J Am Chem Soc 2020; 142:5933-5937. [PMID: 32105450 DOI: 10.1021/jacs.9b13573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A radical cation, generated from an extended π-conjugated thiophene 6-mer composed of four ethynylene-thienylene and two vinylene-thienylene units, was observed to form a stable three-dimensional π-dimer containing 70 π-electrons. The π-dimer prepared in solution was investigated by using magnetic circular dichroism (MCD), ESR spectroscopy, and UV-vis-NIR absorption spectroscopy. Probing the individual NIR absorption bands showed that the MCD signals can be assigned to the pseudo Faraday A term, indicating that the absorption bands are comprised of nearly degenerate electronic transitions. X-ray crystallographic analysis revealed that the π-dimer has a three-dimensional face-to-face and continuous π-conjugated donutlike structure. Analysis of the UV-vis-NIR and ESR spectra of the π-dimer in the solid state confirmed that it possesses the dimer structure. The prediction made by using TD-DFT calculations that the dimer would have a 70 π-electron diatropic nature was confirmed by using solid state 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Toshihiro Fujiwara
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Atsuya Muranaka
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Otani
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
11
|
Zhang R, Hong YL, Ravula T, Nishiyama Y, Ramamoorthy A. High-resolution proton-detected MAS experiments on self-assembled diphenylalanine nanotubes enabled by fast MAS and high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106717. [PMID: 32240957 DOI: 10.1016/j.jmr.2020.106717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The advent of ultrahigh magnetic field and fast magic-angle-spinning (MAS) probe technology has led to dramatically enhanced spectral resolution and sensitivity in solid-state NMR spectroscopy. In particular, proton-based multidimensional solid-state NMR techniques have become feasible to investigate the structure and dynamics at atomic resolution, due to the increased chemical shift span and spectral resolution. Herein, the benefits of faster MAS and higher magnetic field are demonstrated on a self-assembled diphenylalanine (Phe-Phe) nanomaterial. Proton-detected 2D 1H/1H single-quantum/single-quantum (SQ/SQ) correlation, double-quantum/single-quantum (DQ/SQ) correlation, and 1H chemical shift anisotropy/chemical shift (CSA/CS) correlation spectra obtained at two different spinning speeds (60 and 100 kHz) and two different magnetic fields (600 and 900 MHz) are reported. The dramatic enhancement of proton spectral resolution achieved with the use of a 900 MHz magnetic field and 100 kHz MAS is remarkable and enabled the measurement of proton CSA tensors, which will be useful to better understand the self-assembled structures of Phe-Phe nanotubes. We also show through numerical simulations that the unaveraged proton-proton dipolar couplings can result in broadening of CSA lines, leading to inaccurate determination of CSA tensors of protons. Thus, our results clearly show the insufficiency of a 600 MHz magnetic field to resolve 1H spectra lines and the inability of a moderate spinning speed of 60 kHz to completely suppress 1H-1H dipolar couplings, which further justify the pursuit of ultrahigh magnetic field beyond 1 GHz and ultrafast MAS beyond 100 kHz.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - You-Lee Hong
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Advanced Study, and AIST-Kyoto University Chemical Energy Material Open Innovation Laboratory (ChEM-OIL), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Thirupathi Ravula
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; NMR Science and Development Division, RIKEN SPring-8 Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
12
|
Struppe J, Quinn CM, Sarkar S, Gronenborn AM, Polenova T. Ultrafast 1H MAS NMR Crystallography for Natural Abundance Pharmaceutical Compounds. Mol Pharm 2020; 17:674-682. [PMID: 31891271 DOI: 10.1021/acs.molpharmaceut.9b01157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magic angle spinning (MAS) NMR is a powerful method for the study of pharmaceutical compounds, and probes with spinning frequencies above 100 kHz enable an atomic-resolution analysis of sub-micromole quantities of fully protonated solids. Here, we present an ultrafast NMR crystallography approach for structural characterization of organic solids at MAS frequencies of 100-111 kHz. We assess the efficiency of 1H-detected experiments in the solid state and demonstrate the utility of 2D and 3D homo- and heteronuclear correlation spectra for resonance assignments. These experiments are demonstrated for an amino acid, U-13C,15N-histidine, and also for the significantly larger, natural product Posaconazole, an antifungal compound investigated at natural abundance. Our results illustrate the power for characterizing organic molecules, enabled by exploiting the increased 1H resolution and sensitivity at MAS frequencies above 100 kHz.
Collapse
Affiliation(s)
- Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Angela M Gronenborn
- Department of Structural Biology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15260 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15260 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
13
|
Lu X, Tsutsumi Y, Huang C, Xu W, Byrn SR, Templeton AC, Buevich AV, Amoureux JP, Su Y. Molecular packing of pharmaceuticals analyzed with paramagnetic relaxation enhancement and ultrafast magic angle pinning NMR. Phys Chem Chem Phys 2020; 22:13160-13170. [DOI: 10.1039/d0cp02049d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Probing molecular details of fluorinated pharmaceutical compounds at a faster acquisition utilizing paramagnetic relaxation enhancement and better resolution from ultrafast magic angle spinning (νrot = 110 kHz) and high magnetic field (B0 = 18.8 T).
Collapse
Affiliation(s)
| | | | | | - Wei Xu
- MRL, Merck & Co., Inc
- Kenilworth
- USA
| | - Stephen R. Byrn
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
- Purdue University
- Indiana 47907
- USA
| | | | | | | | - Yongchao Su
- MRL, Merck & Co., Inc
- Kenilworth
- USA
- Department of Industrial and Physical Pharmacy
- College of Pharmacy
| |
Collapse
|
14
|
Gopinath T, Veglia G. Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: Multi-acquisition of membrane protein spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106664. [PMID: 31837552 PMCID: PMC7003683 DOI: 10.1016/j.jmr.2019.106664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/05/2023]
Abstract
Proton-detected solid-state NMR (ssNMR) spectroscopy has dramatically improved the sensitivity and resolution of fast magic angle spinning (MAS) methods. While relatively straightforward for fibers and crystalline samples, the routine application of these techniques to membrane protein samples is still challenging. This is due to the low sensitivity of these samples, which require high lipid:protein ratios to maintain the structural and functional integrity of membrane proteins. We previously introduced a family of novel polarization optimized experiments (POE) that enable to make the best of nuclear polarization and obtain multiple-acquisitions from a single pulse sequence and one receiver. Here, we present the 1H-detected versions of POE using ultrafast MAS ssNMR. Specifically, we implemented proton detection into our three main POE strategies, H-DUMAS, H-MEIOSIS, and H-MAeSTOSO, achieving the acquisition of up to ten different experiments using a single pulse sequence. We tested these experiments on a model compound N-Acetyl-Val-Leu dipeptide and applied to a six transmembrane acetate transporter, SatP, reconstituted in lipid membranes. These new methods will speed up the spectroscopy of challenging biomacromolecules such as membrane proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
15
|
Zhang R, Duong NT, Nishiyama Y. Resolution enhancement and proton proximity probed by 3D TQ/DQ/SQ proton NMR spectroscopy under ultrafast magic-angle-spinning beyond 70 kHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:78-86. [PMID: 31146121 DOI: 10.1016/j.jmr.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Proton nuclear magnetic resonance (NMR) in solid state has gained significant attention in recent years due to the remarkable resolution and sensitivity enhancement afforded by ultrafast magic-angle-spinning (MAS). In spite of the substantial suppression of 1H-1H dipolar couplings, the proton spectral resolution is still poor compared to that of 13C or 15N NMR, rendering it challenging for the structural and conformational analysis of complex chemicals or biological solids. Herein, by utilizing the benefits of double-quantum (DQ) and triple-quantum (TQ) coherences, we propose a 3D single-channel pulse sequence that correlates proton triple-quantum/double-quantum/single-quantum (TQ/DQ/SQ) chemical shifts. In addition to the two-spin proximity information, this 3D TQ/DQ/SQ pulse sequence enables more reliable extraction of three-spin proximity information compared to the regular 2D TQ/SQ correlation experiment, which could aid in revealing the proton network in solids. Furthermore, the TQ/DQ slice taken at a specific SQ chemical shift only reveals the local correlations to the corresponding SQ chemical shift, and thus it enables accurate assignments of the proton peaks along the TQ and DQ dimensions and simplifies the interpretation of proton spectra especially for dense proton networks. The high performance of this 3D pulse sequence is well demonstrated on small compounds, L-alanine and a tripeptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (MLF). We expect that this new methodology can inspire the development of multidimensional solid-state NMR pulse sequences using the merits of TQ and DQ coherences and enable high-throughput investigations of complex solids using abundant protons.
Collapse
Affiliation(s)
- Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Nghia Tuan Duong
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, and Nano-Crystallography Unit, RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
16
|
Lu X, Skomski D, Thompson KC, McNevin MJ, Xu W, Su Y. Three-Dimensional NMR Spectroscopy of Fluorinated Pharmaceutical Solids under Ultrafast Magic Angle Spinning. Anal Chem 2019; 91:6217-6224. [DOI: 10.1021/acs.analchem.9b00884] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xingyu Lu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Karen C. Thompson
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Michael J. McNevin
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Merck Research Laboratories (MRLs), Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Pandey MK, Damron JT, Ramamoorthy A, Nishiyama Y. Proton-detected 3D 1H anisotropic/ 14N/ 1H isotropic chemical shifts correlation NMR under fast magic angle spinning on solid samples without isotopic enrichment. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 97:40-45. [PMID: 30623800 DOI: 10.1016/j.ssnmr.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The chemical shift anisotropy (CSA) interaction of a nucleus is an important indicator of the local electronic environment particularly for the contributions arising from hydrogen (H)-bonding, electrostatic and π-π interactions. CSAs of protons bonded to nitrogen atoms are of significant interest due to their common role as H-bonding partners in many chemical, pharmaceutical and biological systems. Although very fast (∼100 kHz) magic angle sample spinning (MAS) experiments have enabled the measurement of proton CSAs directly from solids, due to a narrow chemical shift (CS) distribution, overlapping NH proton resonances are common and necessitate the introduction of an additional frequency dimension to the regular 2D 1H CSA/1H CS correlation method to achieve sufficient resolution. While this can be accomplished by using the isotropic shift frequency of 14N or 15N nuclei, the use of the naturally-abundant 14N nucleus avoids 15N isotopic labeling and therefore would be useful for a variety of solids. To this end, we propose a proton-detected 3D 1H CSA/14N/1H CS correlation method under fast MAS (90 kHz) to determine the CSA tensors of NH protons in samples without isotopic enrichment. Our experimental results demonstrate that the proposed 3D NMR experiment is capable of resolving the overlapping 1H resonances of amide (NH) groups through the 14N isotropic shift frequency dimension and enables the accurate measurement of site-specific 1H CSAs directly from powder samples under fast MAS conditions. In addition to the 3D 1H CSA/14N/1H CS experiment, an approach employing 14N-edited 2D 1H CSA/1H CS experiment is also demonstrated as an additional means to address spectral overlap of NH resonances with aliphatic and other proton resonances in solids.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Indian Institute of Technology Ropar, Nangal Road, Rupnagar, 140001, Punjab, India.
| | - Joshua T Damron
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA; Biophysics Program, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan.
| |
Collapse
|
18
|
Pandey MK, Amoureux JP, Asakura T, Nishiyama Y. Sensitivity enhanced (14)N/(14)N correlations to probe inter-beta-sheet interactions using fast magic angle spinning solid-state NMR in biological solids. Phys Chem Chem Phys 2018; 18:22583-9. [PMID: 27477057 DOI: 10.1039/c6cp03848d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
(14)N/(14)N correlations are vital for structural studies of solid samples, especially those in which (15)N isotopic enrichment is challenging, time-consuming and expensive. Although (14)N nuclei have high isotopic abundance (99.6%), there are inherent difficulties in observing (14)N/(14)N correlations due to limited resolution and sensitivity related to: (i) low (14)N gyromagnetic ratio (γ), (ii) large (14)N quadrupolar couplings, (iii) integer (14)N spin quantum number (I = 1), and (iv) very weak (14)N-(14)N dipolar couplings. Previously, we demonstrated a proton-detected 3D (14)N/(14)N/(1)H correlation experiment at fast magic angle spinning (MAS) on l-histidine·HCl·H2O utilizing a through-bond (J) and residual dipolar-splitting (RDS) based heteronuclear multiple quantum correlation (J-HMQC) sequence mediated through (1)H/(1)H radio-frequency driven recoupling (RFDR). As an extension of our previous work, in this study we show the utility of dipolar-based HMQC (D-HMQC) in combination with (1)H/(1)H RFDR mixing to obtain sensitivity enhanced (14)N/(14)N correlations in more complex biological solids such as a glycyl-l-alanine (Gly-l-Ala) dipeptide, and parallel (P) and antiparallel (AP) β-strand alanine tripeptides (P-(Ala)3 and AP-(Ala)3, respectively). These systems highlight the mandatory necessity of 3D (14)N/(14)N/(1)H measurements to get (14)N/(14)N correlations when the amide proton resonances are overlapped. Moreover, the application of long selective (14)N pulses, instead of short hard ones, is shown to improve the sensitivity. Globally, we demonstrate that replacing J-scalar with dipolar interaction and hard- with selective-(14)N pulses allows gaining a factor of ca. 360 in experimental time. On the basis of intermolecular NH/NH distances and (14)N quadrupolar tensor orientations, (14)N/(14)N correlations are effectively utilized to make a clear distinction between the parallel and antiparallel arrangements of the β-strands in (Ala)3 through the observation of inter-β-sheet correlations.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan. and JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Jean-Paul Amoureux
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China and UCCS (CNRS-8181), Lille University, Lille 59650, France
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan. and JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| |
Collapse
|
19
|
Pandey MK, Hashi K, Ohki S, Nishijima G, Matsumoto S, Noguchi T, Deguchi K, Goto A, Shimizu T, Maeda H, Takahashi M, Yanagisawa Y, Yamazaki T, Iguchi S, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T, Nishiyama Y. 24 T High-Resolution and -Sensitivity Solid-State NMR Measurements of Low-Gamma Half-Integer Quadrupolar Nuclei 35Cl and 37Cl. ANAL SCI 2018; 32:1339-1345. [PMID: 27941265 DOI: 10.2116/analsci.32.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Solid-state NMR observations of low-gamma half-integer quadrupolar nuclei, 35Cl and 37Cl, were demonstrated using a 24 T hybrid magnet (1H resonance frequency of 1.02 GHz) comprised of the high-temperature (HTS) and low-temperature (LTS) superconductors, and compared with results using a 14.1 T standard NMR magnet. While at 24 T the linewidth is 1.7 times narrower than that at 14.1 T, the gain in the sensitivity is 7.0 times because of enhanced polarization, reduced linewidth, and the use of larger rotor. A simple theoretical model was used to rationalize the sensitivity enhancements. The ratio of 35Cl and 37Cl quadrupolar couplings agrees well with the ratio of quadrupolar moments, and no isotope-dependent chemical shift has been observed. In addition, the 3QMAS spectrum of 35Cl is shown to demonstrate the high sensitivity rendered by the 24 T spectrometer.
Collapse
|
20
|
Widdifield CM, Robson H, Hodgkinson P. Furosemide's one little hydrogen atom: NMR crystallography structure verification of powdered molecular organics. Chem Commun (Camb) 2017; 52:6685-8. [PMID: 27115483 DOI: 10.1039/c6cc02171a] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potential of NMR crystallography to verify molecular crystal structures deposited in structural databases is evaluated, with two structures of the pharmaceutical furosemide serving as examples. While the structures differ in the placement of one H atom, using this approach, we verify one of the structures in the Cambridge Structural Database using quantitative tools, while establishing that the other structure does not meet the verification criteria.
Collapse
Affiliation(s)
| | - Harry Robson
- Department of Chemistry, University of Durham, Durham DH1 3LE, UK.
| | - Paul Hodgkinson
- Department of Chemistry, University of Durham, Durham DH1 3LE, UK.
| |
Collapse
|
21
|
Zou X, Kui X, Zhang R, Zhang Y, Wang X, Wu Q, Chen T, Sun P. Viscoelasticity and Structures in Chemically and Physically Dual-Cross-Linked Hydrogels: Insights from Rheology and Proton Multiple-Quantum NMR Spectroscopy. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01854] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xueting Zou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xing Kui
- Department
of Polymer Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Rongchun Zhang
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Yue Zhang
- Department
of Polymer Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaoliang Wang
- Department
of Polymer Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Qiang Wu
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tiehong Chen
- Institute
of New Catalytic Materials Science, School of Materials Science and
Engineering, Key Laboratory of Advanced Energy Materials Chemistry
(MOE), Nankai University, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - Pingchuan Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Struppe J, Quinn CM, Lu M, Wang M, Hou G, Lu X, Kraus J, Andreas LB, Stanek J, Lalli D, Lesage A, Pintacuda G, Maas W, Gronenborn AM, Polenova T. Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:117-125. [PMID: 28732673 PMCID: PMC5824719 DOI: 10.1016/j.ssnmr.2017.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 05/20/2023]
Abstract
The recent breakthroughs in NMR probe technologies resulted in the development of MAS NMR probes with rotation frequencies exceeding 100 kHz. Herein, we explore dramatic increases in sensitivity and resolution observed at MAS frequencies of 110-111 kHz in a novel 0.7 mm HCND probe that enable structural analysis of fully protonated biological systems. Proton- detected 2D and 3D correlation spectroscopy under such conditions requires only 0.1-0.5 mg of sample and a fraction of time compared to conventional 13C-detected experiments. We discuss the performance of several proton- and heteronuclear- (13C-,15N-) based correlation experiments in terms of sensitivity and resolution, using a model microcrystalline fMLF tripeptide. We demonstrate the applications of ultrafast MAS to a large, fully protonated protein assembly of the 231-residue HIV-1 CA capsid protein. Resonance assignments of protons and heteronuclei, as well as 1H-15N dipolar and 1HN CSA tensors are readily obtained from the high sensitivity and resolution proton-detected 3D experiments. The approach demonstrated here is expected to enable the determination of atomic-resolution structures of large protein assemblies, inaccessible by current methodologies.
Collapse
Affiliation(s)
- Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States.
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xingyu Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280 CNRS / Ecole Normale Supérieure de Lyon, 5 rue de la Doua, 69100, Villeurbanne, Lyon, France
| | - Werner Maas
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
23
|
Malon M, Pandey MK, Nishiyama Y. Revealing the Local Proton Network through Three-Dimensional 13C/ 1H Double-Quantum/ 1H Single-Quantum and 1H Double-Quantum/ 13C/ 1H Single-Quantum Correlation Fast Magic-Angle Spinning Solid-State NMR Spectroscopy at Natural Abundance. J Phys Chem B 2017; 121:8123-8131. [PMID: 28782953 DOI: 10.1021/acs.jpcb.7b06203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1H double quantum (DQ)/1H single quantum (SQ) correlation solid-state NMR spectroscopy is widely used to obtain internuclear 1H-1H proximities, especially at fast magic-angle spinning (MAS) rate (>60 kHz). However, to date, 1H signals are not well-resolved because of intense 1H-1H homonuclear dipolar interactions even at the attainable maximum MAS frequencies of ∼100 kHz and/or under 1H-1H homonuclear dipolar decoupling irradiations. Here we introduce novel three-dimensional (3D) experiments to resolve the 1H DQ/1H SQ correlation peaks using the additional 13C dimension. Although the low natural abundance of 13C (1.1%) significantly reduces the sensitivities, the 1H indirect measurements alleviate this issue and make this experiment possible even in naturally abundant samples. The two different implementations of 13C/1H DQ/1H SQ correlations and 1H DQ/13C/1H SQ correlations are discussed and demonstrated using l-histidine·HCl·H2O at natural abundance to reveal the local 1H-1H networks near each 13C. In addition, the complete 1H resonance assignments are achieved from a single 3D 13C/1H DQ/1H SQ experiment. We have also demonstrated the applicability of our proposed method on a biologically relevant molecule, capsaicin.
Collapse
Affiliation(s)
- Michal Malon
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Ropar , Rupnagar, Punjab 140001, India
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan.,JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| |
Collapse
|
24
|
Zhang R, Duong NT, Nishiyama Y, Ramamoorthy A. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning. J Phys Chem B 2017; 121:5944-5952. [DOI: 10.1021/acs.jpcb.7b03480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rongchun Zhang
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Nghia Tuan Duong
- RIKEN
CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN
CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- JEOL Resonance Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
25
|
Tian D, Li T, Zhang R, Wu Q, Chen T, Sun P, Ramamoorthy A. Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective. J Phys Chem B 2017; 121:6108-6116. [DOI: 10.1021/acs.jpcb.7b02838] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Donglin Tian
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tao Li
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rongchun Zhang
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
| | - Qiang Wu
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tiehong Chen
- Institute
of New Catalytic Materials Science, School of Materials Science and
Engineering, Key Laboratory of Advanced Energy Materials Chemistry
(MOE), Nankai University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - Pingchuan Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education
and College of chemistry, Nankai University, Tianjin 300071, P. R. China
- State
Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - Ayyalusamy Ramamoorthy
- Biophysics
Program and Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
26
|
Gopinath T, Nelson SED, Soller KJ, Veglia G. Probing the Conformationally Excited States of Membrane Proteins via 1H-Detected MAS Solid-State NMR Spectroscopy. J Phys Chem B 2017; 121:4456-4465. [DOI: 10.1021/acs.jpcb.7b03268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. Gopinath
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarah E. D. Nelson
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kailey J. Soller
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gianluigi Veglia
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Zhang R, Mroue KH, Ramamoorthy A. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Acc Chem Res 2017; 50:1105-1113. [PMID: 28353338 DOI: 10.1021/acs.accounts.7b00082] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong 1H-1H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, 1H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow 1H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity of protons for structure determination using 1H-1H dipolar couplings and to evaluate the changes in chemical environments as well as the relative orientation to the external magnetic field using proton CSA. Due to the boost in signal sensitivity enabled by proton detection under ultrafast MAS, by virtue of high proton natural abundance and gyromagnetic ratio, proton-detected multidimensional experiments involving low-γ nuclei can now be accomplished within a reasonable time, while the higher dimension also offers additional resolution enhancement. In addition, the application of proton-based ssNMR spectroscopy under ultrafast MAS in various challenging and crystalline systems is also presented. Finally, we briefly discuss the limitations and challenges pertaining to proton-based ssNMR spectroscopy under ultrafast MAS conditions, such as the presence of high-order dipolar couplings, friction-induced sample heating, and limited sample volume. Although there are still a number of challenges that must be circumvented by further developments in radio frequency pulse sequences, MAS probe technology and approaches to prepare NMR-friendly samples, proton-based ssNMR has already gained much popularity in various research domains, especially in proteins where uniform or site-selective deuteration can be relatively easily achieved. In addition, implementation of the recently developed fast data acquisition approaches would also enable further developments in the design and applications of proton-based ultrafast MAS multidimensional ssNMR techniques.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kamal H. Mroue
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department
of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
28
|
Ravera E, Martelli T, Geiger Y, Fragai M, Goobes G, Luchinat C. Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Zhang R, Chen Y, Rodriguez-Hornedo N, Ramamoorthy A. Enhancing NMR Sensitivity of Natural-Abundance Low-γ Nuclei by Ultrafast Magic-Angle-Spinning Solid-State NMR Spectroscopy. Chemphyschem 2016; 17:2962-2966. [PMID: 27310287 PMCID: PMC5831690 DOI: 10.1002/cphc.201600637] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/18/2022]
Abstract
Although magic-angle-spinning (MAS) solid-state NMR spectroscopy has been able to provide piercing atomic-level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio natural-abundance 13 C NMR spectrum of a small amount of sample (≈2.0 mg) by using multiple-contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T1ρ of protons. The use of MCP for fast 2D 1 H/13 C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomic-resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Yitian Chen
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Science, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA.
| |
Collapse
|
30
|
Nishiyama Y. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 78:24-36. [PMID: 27400153 DOI: 10.1016/j.ssnmr.2016.06.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 186-8558, Japan.
| |
Collapse
|
31
|
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A 2016; 113:9187-92. [PMID: 27489348 DOI: 10.1073/pnas.1602248113] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.
Collapse
|
32
|
Ravera E, Cerofolini L, Martelli T, Louka A, Fragai M, Luchinat C. (1)H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. Sci Rep 2016; 6:27851. [PMID: 27279168 PMCID: PMC4899708 DOI: 10.1038/srep27851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023] Open
Abstract
Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional (1)H-(15)N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that (1)H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Tommaso Martelli
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Alexandra Louka
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
- Giotto Biotech S.R.L., Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
33
|
Pandey MK, Yarava JR, Zhang R, Ramamoorthy A, Nishiyama Y. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 76-77:1-6. [PMID: 27017575 PMCID: PMC4903906 DOI: 10.1016/j.ssnmr.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 05/15/2023]
Abstract
Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan
| | | | - Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
34
|
Zhang R, Ramamoorthy A. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS. J Chem Phys 2016; 144:034202. [PMID: 26801026 PMCID: PMC4723396 DOI: 10.1063/1.4940029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
35
|
Pandey MK, Zhang R, Hashi K, Ohki S, Nishijima G, Matsumoto S, Noguchi T, Deguchi K, Goto A, Shimizu T, Maeda H, Takahashi M, Yanagisawa Y, Yamazaki T, Iguchi S, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T, Ramamoorthy A, Nishiyama Y. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:1-5. [PMID: 26524647 PMCID: PMC4688097 DOI: 10.1016/j.jmr.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 05/05/2023]
Abstract
This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Kenjiro Hashi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinobu Ohki
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Gen Nishijima
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Shinji Matsumoto
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Takashi Noguchi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Kenzo Deguchi
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Atsushi Goto
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Tadashi Shimizu
- National Institute for Materials Science, Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Hideaki Maeda
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Masato Takahashi
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | - Toshio Yamazaki
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Seiya Iguchi
- Center for Life Science Technologies, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Ryoji Tanaka
- JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan
| | | | | | | | | | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
36
|
Zhang R, Nishiyama Y, Ramamoorthy A. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz. J Chem Phys 2015; 143:164201. [PMID: 26520504 PMCID: PMC4617735 DOI: 10.1063/1.4933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
37
|
Zhang R, Mroue KH, Ramamoorthy A. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy. J Chem Phys 2015; 143:144201. [PMID: 26472372 PMCID: PMC4608963 DOI: 10.1063/1.4933114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), (1)H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong (1)H-(1)H homonuclear dipolar couplings and narrow (1)H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) (1)H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about (1)H-(1)H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Kamal H Mroue
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
38
|
Zhang R, Ramamoorthy A. Selective excitation enables assignment of proton resonances and (1)H-(1)H distance measurement in ultrafast magic angle spinning solid state NMR spectroscopy. J Chem Phys 2015; 143:034201. [PMID: 26203019 PMCID: PMC4506299 DOI: 10.1063/1.4926834] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/03/2015] [Indexed: 11/14/2022] Open
Abstract
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|