1
|
Mayr CH, Sengupta A, Asgharpour S, Ansari M, Pestoni JC, Ogar P, Angelidis I, Liontos A, Rodriguez-Castillo JA, Lang NJ, Strunz M, Porras-Gonzalez D, Gerckens M, De Sadeleer LJ, Oehrle B, Viteri-Alvarez V, Fernandez IE, Tallquist M, Irmler M, Beckers J, Eickelberg O, Stoleriu GM, Behr J, Kneidinger N, Wuyts WA, Wasnick RM, Yildirim AÖ, Ahlbrecht K, Morty RE, Samakovlis C, Theis FJ, Burgstaller G, Schiller HB. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur Respir J 2024; 63:2301326. [PMID: 38212077 PMCID: PMC10850614 DOI: 10.1183/13993003.01326-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)β1. MEASUREMENTS AND MAIN RESULTS We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFβ1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFβ1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFβ1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.
Collapse
Affiliation(s)
- Christoph H Mayr
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- C.H. Mayr and A. Sengupta contributed equally to this work
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- C.H. Mayr and A. Sengupta contributed equally to this work
| | - Sara Asgharpour
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Jeanine C Pestoni
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Paulina Ogar
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Liontos
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | | | - Niklas J Lang
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Maximilian Strunz
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Diana Porras-Gonzalez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Laurens J De Sadeleer
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Bettina Oehrle
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Valeria Viteri-Alvarez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michelle Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, Freising, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabriel Mircea Stoleriu
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Jürgen Behr
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Nikolaus Kneidinger
- Department of Internal Medicine V, Ludwig-Maximilians University (LMU) Munich, Member of the German Center for Lung Research (DZL), CPC-M bioArchive, Munich, Germany
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, Leuven, Belgium
| | - Roxana Maria Wasnick
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Katrin Ahlbrecht
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Rory E Morty
- Department of Translational Pulmonology, University Hospital Heidelberg, and Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- G. Burgstaller and H.B. Schiller contributed equally to this article as lead authors and supervised the work
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- G. Burgstaller and H.B. Schiller contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
2
|
Rhoda C, Sunda F, Kidzeru E, Khumalo NP, Arowolo A. FAM111B dysregulation promotes malignancy in fibrosarcoma and POIKTMP and a low-cost method for its mutation screening. Cancer Treat Res Commun 2023; 34:100679. [PMID: 36610347 DOI: 10.1016/j.ctarc.2022.100679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Mutations in the uncharacterised human FAM111B gene are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. Moreover, FAM111B mutation screening may prove expensive in under-resourced facilities. Therefore, this study investigated its cellular function and dysfunction and described an inexpensive mutation screening method. MATERIALS AND METHODS FAM111B expression was assessed in silico and validated in vitro in cell lines and primary skin fibroblasts from a South African POIKTMP-patient with the heterozygous FAM111B gene mutation: NM_198947.4: c.1861T>G (p. Tyr621Asp or Y621D) by qPCR and western blot. The cellular function of FAM111B was studied in HT1080 using various cell-based functional assays, and the Y621D mutation was genotyped by PCR-RFLP. RESULTS Expression studies showed upregulated FAM111B mRNA and protein in the cancer cells. High FAM111B expression with robust nuclear localization occurred in HT1080. Additionally, expression data and cell-based assays indicated that FAM111B led to the upregulation of cell migration, decreased cell apoptosis, and modulatory effects on cell proliferation. Y621D mutation showed similar effects on cell migration but minimal impact on cell apoptosis. FAM111B mRNA and protein expression were markedly downregulated (p ≤ 0.05) in the POIKTMP-patient's fibroblasts. The PCR-RFLP method successfully genotyped Y621D gene mutation. DISCUSSION FAM111B is a cancer-associated nuclear protein: Its modulation by mutations or overexpression may contribute to the malignancy of cancers and POIKTMP/fibrosis and poor clinical outcomes and represents a viable prognostic marker or therapeutic target. Furthermore, the PCR-RFLP method could prove a valuable tool for FAM111B mutation validation or screening in resource-constrained laboratories.
Collapse
Affiliation(s)
- Cenza Rhoda
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Falone Sunda
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Elvis Kidzeru
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
3
|
Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
4
|
Liang J, Liu N, Liu X, Mena JM, Xie T, Geng Y, Huan C, Zhang Y, Taghavifar F, Huang G, Kurkciyan A, Barron V, Jiang D, Noble PW. Mitogen-activated Protein Kinase-activated Protein Kinase 2 Inhibition Attenuates Fibroblast Invasion and Severe Lung Fibrosis. Am J Respir Cell Mol Biol 2019; 60:41-48. [PMID: 30130411 DOI: 10.1165/rcmb.2018-0033oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Severe pulmonary fibrosis such as idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix and fibroblast activation. Targeting fibroblast activation has contributed to the development of antifibrotic therapeutics for patients with IPF. Mitogen-activated protein kinase-activated protein kinase 2 (MK2), downstream in the transforming growth factor-β/p38 mitogen-activated protein kinase pathway, has been implicated in inflammatory and fibrosing diseases. Increased concentrations of activated MK2 were expressed in IPF lung and in the mouse bleomycin model of lung fibrosis. The aim of the present study was to determine the role and the mechanisms of MK2 in fibroblast invasion and lung fibrosis. Our results showed that an MK2 inhibitor (MMI-0100) was able to inhibit the invasive capacity of lung fibroblasts isolated from patients with IPF, as well as fibroblasts isolated from both wild-type mice and mice with overexpressing hyaluronan synthase 2 (HAS2) in the myofibroblast compartment. We previously showed that hyaluronan and HAS2 regulate fibroblast invasion and lung fibrosis in vivo. The results of the present study showed that MMI-0100 reduced transforming growth factor-β-induced hyaluronan production in human and mouse fibroblasts in vitro and that HAS2 mediated MK2 activation, suggesting a feed-forward loop in fibroblast activation. More importantly, MK2 inhibition attenuated hyaluronan accumulation and reduced collagen content in bleomycin-injured mouse lungs in vivo. Conditional deletion of MK2 in fibroblasts attenuated bleomycin-induced lung fibrosis. These data provide evidence that MK2 has a role in fibroblast invasion and fibrosis and may be a novel therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ningshan Liu
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xue Liu
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jessica Monterrosa Mena
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ting Xie
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yan Geng
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Caijuan Huan
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yanli Zhang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Forough Taghavifar
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Guanling Huang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Adrianne Kurkciyan
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vivian Barron
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
5
|
Zhou J, Yi Z, Fu Q. Dynamic decreased expression and hypermethylation of secreted frizzled-related protein 1 and 4 over the course of pulmonary fibrosis in mice. Life Sci 2019; 218:241-252. [PMID: 30586565 DOI: 10.1016/j.lfs.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
Abstract
Aberrantly activated Wnt signaling pathway and dysregulation of extracellular antagonists of Wnt signaling have been revealed in pulmonary fibrosis. In this study we evaluated the expression of secreted frizzled-related proteins (SFRPs) and their aberrant promoter methylation to investigate the involvement of epigenetic regulation in pulmonary fibrosis. The pulmonary fibrosis induced by intratracheal injection of bleomycin (BLM) into mice was adopted. The transcription and relative protein expression of SFRPs were detected at Day 7 (D7), D14, and D21. DNA methylation analysis was performed by methylation-specific polymerase chain reaction (MSP). A DNA methyltransferase (DNMT) inhibitor (5-aza-2'-deoxycytidine; 5-aza) was used for demethylation and the relative β-catenin expression levels were measured to assess overactivity of the canonical Wnt signaling pathway. The transcription and protein expression of SFRP1 significantly decreased at D14 and D21, whereas the transcription and protein expression of SFRP4 significantly decreased at D7 and stayed downregulated until D21. The significantly hypermethylated promoters of SFRP1 and SFRP4 resulted in impaired transcription and decreased expression during pulmonary fibrosis in mice. Besides, reactivation of SFRP1 and SFRP4 by 5-aza reduced β-catenin mRNA and protein expression in vivo and in vitro. Animal experiments confirmed that 5-aza could significantly alleviate bleomycin-induced pulmonary fibrosis in mice. Thus, changes of promoter hypermethylation might downregulate SFRP1 and SFRP4 at different stages of pulmonary fibrosis, and the finding supports the usefulness of DNMT inhibitors, which might effectively reverse activation of β-catenin and reduce pulmonary fibrosis in mice. These data provide a possible new direction in the research on pulmonary fibrosis treatments.
Collapse
Affiliation(s)
- Junfei Zhou
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zheng Yi
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Qiang Fu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, HengYang 421001, PR China
| |
Collapse
|
6
|
Kim YB, Yoon YS, Choi YH, Park EM, Kang JL. Interaction of macrophages with apoptotic cells inhibits transdifferentiation and invasion of lung fibroblasts. Oncotarget 2017; 8:112297-112312. [PMID: 29348826 PMCID: PMC5762511 DOI: 10.18632/oncotarget.22737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
The invasion of activated fibroblasts is a key mechanism of tissue fibrosis pathology. The recognition and uptake of apoptotic cells can induce the anti-fibrogenic programming of macrophages. We demonstrate that after interacting with apoptotic cells, macrophages secrete bioactive molecules that antagonize TGF-β1-induced increases in myofibroblast (fibroproliferative) phenotypic markers and reduce the enhanced invasive capacity of TGF-β1- or EGF-treated mouse lung fibroblasts (MLg). Furthermore, numerous treatment strategies prevented the anti-fibrotic effects of conditioned media, including transfection of macrophages with COX-2 or RhoA siRNAs or treatment of MLg cells with receptor antagonists for prostaglandin E2 (PGE2), PGD2, or hepatocyte growth factor (HGF). Additionally, administration of apoptotic cells in vivo inhibited the bleomycin-mediated invasive capacity of primary fibroblasts, as well as adhesion and extracellular matrix protein mRNA expression. These data suggest that the anti-fibrogenic programming of macrophages by apoptotic cells can be used as a novel tool to control the progressive fibrotic reaction.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Young-So Yoon
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Youn-Hee Choi
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Eun-Mi Park
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| |
Collapse
|
7
|
Neri S, Miyashita T, Hashimoto H, Suda Y, Ishibashi M, Kii H, Watanabe H, Kuwata T, Tsuboi M, Goto K, Menju T, Sonobe M, Date H, Ochiai A, Ishii G. Fibroblast-led cancer cell invasion is activated by epithelial-mesenchymal transition through platelet-derived growth factor BB secretion of lung adenocarcinoma. Cancer Lett 2017; 395:20-30. [PMID: 28286261 DOI: 10.1016/j.canlet.2017.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022]
Abstract
Cancer-associated fibroblast (CAF)-dependent local invasion is the process by which cancer cells invade the extracellular matrix using tracks that have been physically remodeled by CAFs. In the present study, we investigated the process by which the epithelial-mesenchymal transition (EMT) of cancer cells affect CAF-dependent local invasion. Using an in vitro collagen invasion assay, we showed cancer cells undergoing EMT to promote the matrix-remodeling ability of CAFs and thereby enhance CAF-dependent local cancer cell invasion. Platelet-derived growth factor (PDGF)-BB secretion was significantly elevated in cancer cells undergoing EMT, and this induced an increase in the invasion ability of both CAFs and cancer cells. Conversely, knockdown of PDGF-B expression in cancer cells undergoing EMT, or treatment with a PDGF-receptor inhibitor, decreased the invasion ability of both CAFs and cancer cells. By analyzing the gene expression profiles of 442 patients with lung adenocarcinomas, we established that high expression of PDGF-B and presentation of mesenchymal-like tumors were significantly associated with a high rate of disease recurrence and poor patient prognosis. Thus, cancer cells undergoing EMT may accelerate their own ability to invade local tissues via PDGF-BB secretion to promote CAF matrix remodeling. Therefore, targeting PDGF signaling between cancer cells undergoing EMT and CAFs is a promising therapeutic target to inhibit cancer progression and improve patient prognosis.
Collapse
Affiliation(s)
- Shinya Neri
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomoyuki Miyashita
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hiroko Hashimoto
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yoshitaka Suda
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masayuki Ishibashi
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hiroaki Kii
- System Development Section, Development Department, Microscope Solutions Business Unit, Yokohama Plant, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa, 244-8533, Japan
| | - Hirotada Watanabe
- System Development Section, Development Department, Microscope Solutions Business Unit, Yokohama Plant, Nikon Corporation, 471, Nagaodai-cho, Sakae-ku, Yokohama, Kanagawa, 244-8533, Japan
| | - Takeshi Kuwata
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Masahiro Tsuboi
- Division of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Koichi Goto
- Division of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Makoto Sonobe
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Ochiai
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan; Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
8
|
Surolia R, Li FJ, Wang Z, Li H, Liu G, Zhou Y, Luckhardt T, Bae S, Liu RM, Rangarajan S, de Andrade J, Thannickal VJ, Antony VB. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight 2017; 2:e91377. [PMID: 28138565 DOI: 10.1172/jci.insight.91377] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive fibrotic lung disease characterized by the presence of invasive myofibroblasts in the lung. Currently, there are only two FDA-approved drugs (pirfenidone and nintedanib) for the treatment of IPF. There are no defined criteria to guide specific drug therapy. New methodologies are needed not only to predict personalized drug therapy, but also to screen novel molecules that are on the horizon for treatment of IPF. We have developed a model system that exploits the invasive phenotype of IPF lung tissue. This ex vivo 3D model uses lung tissue from patients to develop pulmospheres. Pulmospheres are 3D spheroids composed of cells derived exclusively from primary lung biopsies and inclusive of lung cell types reflective of those in situ, in the patient. We tested the pulmospheres of 20 subjects with IPF and 9 control subjects to evaluate the responsiveness of individual patients to antifibrotic drugs. Clinical parameters and outcomes were also followed in the same patients. Our results suggest that pulmospheres simulate the microenvironment in the lung and serve as a personalized and predictive model for assessing responsiveness to antifibrotic drugs in patients with IPF.
Collapse
Affiliation(s)
- Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Huashi Li
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Tracy Luckhardt
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Sejong Bae
- Division of Preventative Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | | | - Joao de Andrade
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| |
Collapse
|
9
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
10
|
Chen H, Qu J, Huang X, Kurundkar A, Zhu L, Yang N, Venado A, Ding Q, Liu G, Antony VB, Thannickal VJ, Zhou Y. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat Commun 2016; 7:12564. [PMID: 27535718 PMCID: PMC4992155 DOI: 10.1038/ncomms12564] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix stiffening is a prominent feature of pulmonary fibrosis. In this study, we demonstrate that matrix stiffness regulates the ability of fibrotic lung myofibroblasts to invade the basement membrane (BM). We identify α6-integrin as a mechanosensing integrin subunit that mediates matrix stiffness-regulated myofibroblast invasion. Increasing α6-expression, specifically the B isoform (α6B), couples β1-integrin to mediate MMP-2-dependent pericellular proteolysis of BM collagen IV, leading to myofibroblast invasion. Human idiopathic pulmonary fibrosis lung myofibroblasts express high levels of α6-integrin in vitro and in vivo. Genetic ablation of α6 in collagen-expressing mesenchymal cells or pharmacological blockade of matrix stiffness-regulated α6-expression protects mice against bleomycin injury-induced experimental lung fibrosis. These findings suggest that α6-integrin is a matrix stiffness-regulated mechanosensitive molecule which confers an invasive fibroblast phenotype and mediates experimental lung fibrosis. Targeting this mechanosensing α6(β1)-integrin offers a novel anti-fibrotic strategy against lung fibrosis. Matrix stiffening is a feature of pulmonary fibrosis, and is amplified by lung myofibroblasts. Here the authors find that a6 integrin expression is upregulated on lung myofibroblasts in response to matrix stiffness, and this integrin is required for myofibroblast invasion, and fibrosis in an experimental disease model.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Xiangwei Huang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Ashish Kurundkar
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Lanyan Zhu
- The Second Xiangya Hospital, Central-South University, Changsha 410011, China
| | - Naiheng Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Aida Venado
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA.,Department of Medicine, University of California at San Francisco, San Francisco, California 94143 USA
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Gang Liu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Veena B Antony
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294 USA
| |
Collapse
|