1
|
Nakamura N, Yoshida N, Suwa T. Three major reasons why transgenerational effects of radiation are difficult to detect in humans. Int J Radiat Biol 2023; 100:1297-1311. [PMID: 36880868 DOI: 10.1080/09553002.2023.2187478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Ionizing radiation can induce mutations in germ cells in various organisms, including fruit flies and mice. However, currently, there is no clear evidence for the transgenerational effects of radiation in humans. This review is an effort to identify possible reasons for the lack of such observations. METHODS Literature search and narrative review. RESULTS 1) In both mice and humans, resting oocytes locate primarily in the cortical region of the ovary where the number of blood vessels is very low especially when young and extra-cellular material is rich, and this region is consequently hypoxic, which probably leads to immature oocytes being resistant to the cell killing and mutagenic effects of radiation. 2) In studies of spermatogonia, the mouse genes used for specific locus test (SLT) studies, which include coat color genes, were hypermutable when compared to many other genes. Recent studies which examined over 1000 segments of genomic DNA indicate that the induction rate of deletion mutation per segment was on the order of 10-6 per Gy, which is one order of magnitude lower than that obtained from the SLT data. Therefore, it appears possible that detecting any transgenerational effects of radiation following human male exposures will be difficult due to a lack of mutable marker genes. 3) Fetal malformations were examined in studies in humans, but the genetic component in such malformations is low, and abnormal fetuses are prone to undergo miscarriage which does not occur in mice, and which leads to difficulties in detecting transgenerational effects. CONCLUSION The lack of clear evidence for radiation effects in humans probably does not result from any problem in the methodologies used but may be due largely to biological properties. Currently, whole genome sequencing studies of exposed parents and offspring are planned, but ethical guidelines need to be followed to avoid discrimination, which had once happened to the atomic bomb survivors.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Noriaki Yoshida
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tatsuya Suwa
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int J Mol Sci 2022; 23:ijms23169414. [PMID: 36012677 PMCID: PMC9409465 DOI: 10.3390/ijms23169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic male infertility is a highly prevalent diagnosis in developed countries with no specific treatment options. Although empirical medical treatment is widely used to restore male fertility, its efficacy remains limited and inconclusively proven. Therefore, the development of novel therapeutic approaches in this field is a high-priority task. Since the failure of testicular microenvironment components might be involved in the pathogenesis of idiopathic male infertility, application of mesenchymal stromal cells (MSCs) as well as the MSC secretome is worth considering. Previously, we showed that the intratesticular injection of MSCs or the MSC secretome led to the recovery of spermatogenesis at least through replenishing the testicular microenvironment and its maintenance by MSC-secreted paracrine factors. However, the clinical use of such products has been limited to single trials to date. This may be due to the lack of relevant potency tests reflecting mechanisms of action of the MSC secretome in male infertility models. Based on the presumptive MSC secretome mode of action on the testicular microenvironment, we suggest a novel approach to test the potential efficacy of the MSC secretome for idiopathic male infertility treatment. It represents a potency assay based on evaluation of testosterone production by isolated Leydig cells. We demonstrated that the MSC secretome stimulated testosterone secretion by Leydig cells in vitro. We then hypothesized that among the major factors of the MSC secretome, vascular endothelial growth factor (VEGF) could be responsible for the observed effects, which we confirmed by the revealed correlation between the extent of stimulated testosterone production and VEGF concentration in the MSC secretome. The pilot results obtained from the doxorubicin-induced male infertility murine model also indicate the important impact of VEGF in the MSC secretome’s regenerative effects. Utilizing VEGF as a surrogate factor, a novel approach to study the potency of MSC secretome-based products for idiopathic male infertility treatment is suggested. Further validation is required for its implementation into the biopharmaceutical manufacturing process.
Collapse
|
3
|
Givelet M, Firlej V, Lassalle B, Gille AS, Lapoujade C, Holtzman I, Jarysta A, Haghighirad F, Dumont F, Jacques S, Letourneur F, Pflumio F, Allemand I, Patrat C, Thiounn N, Wolf JP, Riou L, Barraud-Lange V, Fouchet P. Transcriptional profiling of β-2M -SPα-6 +THY1 + spermatogonial stem cells in human spermatogenesis. Stem Cell Reports 2022; 17:936-952. [PMID: 35334216 PMCID: PMC9023810 DOI: 10.1016/j.stemcr.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Male infertility is responsible for approximately half of all cases of reproductive issues. Spermatogenesis originates in a small pool of spermatogonial stem cells (SSCs), which are of interest for therapy of infertility but remain not well defined in humans. Using multiparametric analysis of the side population (SP) phenotype and the α-6 integrin, THY1, and β-2 microglobulin cell markers, we identified a population of human primitive undifferentiated spermatogonia with the phenotype β-2 microglobulin (β-2M)−SPα-6+THY1+, which is highly enriched in stem cells. By analyzing the expression signatures of this SSC-enriched population along with other germinal progenitors, we established an exhaustive transcriptome of human spermatogenesis. Transcriptome profiling of the human β-2M−SPα-6+THY1+ population and comparison with the profile of mouse undifferentiated spermatogonia provide insights into the molecular networks and key transcriptional regulators regulating human SSCs, including the basic-helix-loop-helix (bHLH) transcriptional repressor HES1, which we show to be implicated in maintenance of SSCs in vitro. Human β-2M−SPα-6+THY1+ undifferentiated spermatogonia are enriched in stem cells Comparative transcriptomics analysis of human and murine spermatogonia HES1 is involved in the physiology of SSCs in vitro
Collapse
Affiliation(s)
- Maelle Givelet
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Bruno Lassalle
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Anne Sophie Gille
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France; Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Clementine Lapoujade
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Isabelle Holtzman
- Institut Cochin, INSERM U1016, Département de Génétique, Développement et Cancer, Équipe Génomique Epigénétique et Physiopathologie de la Reproduction, 75014 Paris, France
| | - Amandine Jarysta
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Farahd Haghighirad
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, 92296 Châtenay-Malabry, France
| | - Sébastien Jacques
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Plateforme Séquençage et Génomique, 75014 Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS UMR8104, Plateforme Séquençage et Génomique, 75014 Paris, France
| | - Françoise Pflumio
- Université de Paris and Université Paris-Saclay, INSERM, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, LSHL, 92265 Fontenay-aux-Roses, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Catherine Patrat
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Nicolas Thiounn
- Department of urology and transplant surgery, Hôpital européen Georges-Pompidou, AP-HP, Université de Paris, 20 rue Leblanc, 75015 Paris, France
| | - Jean Philippe Wolf
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France
| | - Virginie Barraud-Lange
- UFR Médecine Paris Centre-Université de Paris, 15 rue de l'école de Médecine, 75006 Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, CHU Cochin, Histologie-Embryologie-Biologie de la Reproduction, 75014 Paris, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Laboratoire des Cellules Souches Germinales, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
4
|
Li X, Yao J, Hu J, Deng C, Xie Y, Wang Z. iTRAQ-based proteomics of testicular interstitial fluid during aging in mice. Theriogenology 2021; 175:44-53. [PMID: 34482126 DOI: 10.1016/j.theriogenology.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Advancing age is associated with a decline in fertility and testicular function in males. The testicular interstitial fluid (TIF) bathing the seminiferous tubules and testicular interstitium is considered an important part of the testicular microenvironment. However, the TIF proteome in mice and whether it changes with age remain unclear. This study aimed to map the TIF proteome and identify differentially abundant proteins (DEPs) among young, middle-aged, and old mice using isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry. A total of 1477 proteins were identified in murine TIF. The abundance of 706 proteins showed a linear change trend with age, of which 360 and 346 proteins increased and decreased, respectively. In addition, 45 age-related DEPs were identified (P < 0.05, with at least 1.2-fold up- or downregulation). Bioinformatic analyses revealed that these proteins were involved in "actin cytoskeleton organization," "intrinsic apoptotic signaling pathway," and "regulation of protein transport." Comparative analysis with relevant proteomes previously reported further revealed the characteristics of mouse TIF proteome. Moreover, two of the age-related DEPs (Fga and Qsox1) were also found to be age-related differentially expressed proteins in human blood plasma and senescence-related secretome of human peritubular myoid cells. Taken together, these findings may represent the foundation for a better understanding of the molecular function of TIF and testicular aging.
Collapse
Affiliation(s)
- Xiangping Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - JiaHui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiaying Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - ChunHua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhu Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Stöckl JB, Schmid N, Flenkenthaler F, Drummer C, Behr R, Mayerhofer A, Arnold GJ, Fröhlich T. Age-Related Alterations in the Testicular Proteome of a Non-Human Primate. Cells 2021; 10:cells10061306. [PMID: 34074003 PMCID: PMC8225046 DOI: 10.3390/cells10061306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Aging of human testis and associated cellular changes is difficult to assess. Therefore, we used a translational, non-human primate model to get insights into underlying cellular and biochemical processes. Using proteomics and immunohistochemistry, we analyzed testicular tissue of young (age 2 to 3) and old (age 10 to 12) common marmosets (Callithrix jacchus). Using a mass spectrometry-based proteomics approach, we identified 63,124 peptides, which could be assigned to 5924 proteins. Among them, we found proteins specific for germ cells and somatic cells, such as Leydig and Sertoli cells. Quantitative analysis showed 31 differentially abundant proteins, of which 29 proteins were more abundant in older animals. An increased abundance of anti-proliferative proteins, among them CDKN2A, indicate reduced cell proliferation in old testes. Additionally, an increased abundance of several small leucine rich repeat proteoglycans and other extracellular matrix proteins was observed, which may be related to impaired cell migration and fibrotic events. Furthermore, an increased abundance of proteins with inhibitory roles in smooth muscle cell contraction like CNN1 indicates functional alterations in testicular peritubular cells and may mirror a reduced capacity of these cells to contract in old testes.
Collapse
Affiliation(s)
- Jan B. Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Nina Schmid
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Artur Mayerhofer
- Biomedical Center (BMC), Anatomy III–Cell Biology, Medical Faculty, LMU München, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 München, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| |
Collapse
|
6
|
Bagdadi N, Sawaied A, AbuMadighem A, Lunenfeld E, Huleihel M. The Expression Levels and Cellular Localization of Pigment Epithelium Derived Factor (PEDF) in Mouse Testis: Its Possible Involvement in the Differentiation of Spermatogonial Cells. Int J Mol Sci 2021; 22:1147. [PMID: 33498962 PMCID: PMC7865766 DOI: 10.3390/ijms22031147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.
Collapse
Affiliation(s)
- Noy Bagdadi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Alaa Sawaied
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Eitan Lunenfeld
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- Department of OB/GYN, Soroka Medical Center, Beer Sheva 8410501, Israel
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; (N.B.); (A.S.); (A.A.)
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| |
Collapse
|
7
|
Neto FTL, Flannigan R, Goldstein M. Regulation of Human Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:255-286. [PMID: 34453741 DOI: 10.1007/978-3-030-77779-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human spermatogenesis (HS) is an intricate network of sequential processes responsible for the production of the male gamete, the spermatozoon. These processes take place in the seminiferous tubules (ST) of the testis, which are small tubular structures considered the functional units of the testes. Each human testicle contains approximately 600-1200 STs [1], and are capable of producing up to 275 million spermatozoa per day [2].
Collapse
Affiliation(s)
| | - Ryan Flannigan
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.,University of British Columbia, Vancouver, BC, Canada
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Stöckl JB, Schmid N, Flenkenthaler F, Drummer C, Behr R, Mayerhofer A, Arnold GJ, Fröhlich T. Proteomic Insights into Senescence of Testicular Peritubular Cells from a Nonhuman Primate Model. Cells 2020; 9:cells9112498. [PMID: 33213088 PMCID: PMC7698562 DOI: 10.3390/cells9112498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related changes in the human testis may include morphological alterations, disturbed steroidogenesis, and impaired spermatogenesis. However, the specific impact of cell age remains poorly understood and difficult to assess. Testicular peritubular cells fulfill essential functions, including sperm transport, contributions to the spermatogonial stem cell niche, and paracrine interactions within the testis. To study their role in age-associated decline of testicular functions, we performed comprehensive proteome and secretome analyses of repeatedly passaged peritubular cells from Callithrix jacchus. This nonhuman primate model better reflects the human testicular biology than rodents and further gives access to young donors unavailable from humans. Among 5095 identified proteins, 583 were differentially abundant between samples with low and high passage numbers. The alterations indicate a reduced ability of senescent peritubular cells to contract and secrete proteins, as well as disturbances in nuclear factor (NF)-κB signaling and a reduced capacity to handle reactive oxygen species. Since this in vitro model may not exactly mirror all molecular aspects of in vivo aging, we investigated the proteomes and secretomes of testicular peritubular cells from young and old donors. Even though the age-related alterations at the protein level were less pronounced, we found evidence for impaired protein secretion, altered NF-κB signaling, and reduced contractility of these in vivo aged peritubular cells.
Collapse
Affiliation(s)
- Jan B. Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 Munich, Germany; (J.B.S.); (F.F.)
| | - Nina Schmid
- LMU München, Biomedical Center (BMC), Anatomy III—Cell Biology, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 Munich, Germany; (J.B.S.); (F.F.)
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (C.D.); (R.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
| | - Artur Mayerhofer
- LMU München, Biomedical Center (BMC), Anatomy III—Cell Biology, 82152 Martinsried, Germany; (N.S.); (A.M.)
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 Munich, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, 81377 Munich, Germany; (J.B.S.); (F.F.)
- Correspondence: (G.J.A.); (T.F.)
| |
Collapse
|
9
|
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020; 8:903-914. [PMID: 31444950 PMCID: PMC7036326 DOI: 10.1111/andr.12703] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular architecture and sperm production are supported by a complex network of communication between various cell types. These signals ensure fertility by: regulating spermatogonial stem/progenitor cells; promoting steroidogenesis; and driving male-specific differentiation of the gonad. Sertoli cells have long been assumed to be the major cellular player in testis organogenesis and spermatogenesis. However, cells in the interstitial compartment, such as Leydig, vascular, immune, and peritubular cells, also play prominent roles in the testis but are less well understood. OBJECTIVES Here, we aim to outline our current knowledge of the cellular and molecular mechanisms by which interstitial cell types contribute to spermatogenesis and testicular development, and how these diverse constituents of the testis play essential roles in ensuring male sexual differentiation and fertility. METHODS We surveyed scientific literature and summarized findings in the field that address how interstitial cells interact with other interstitial cell populations and seminiferous tubules (i.e., Sertoli and germ cells) to support spermatogenesis, male-specific differentiation, and testicular function. These studies focused on 4 major cell types: Leydig cells, vascular cells, immune cells, and peritubular cells. RESULTS AND DISCUSSION A growing number of studies have demonstrated that interstitial cells play a wide range of functions in the fetal and adult testis. Leydig cells, through secretion of hormones and growth factors, are responsible for steroidogenesis and progression of spermatogenesis. Vascular, immune, and peritubular cells, apart from their traditionally acknowledged physiological roles, have a broader importance than previously appreciated and are emerging as essential players in stem/progenitor cell biology. CONCLUSION Interstitial cells take part in complex signaling interactions with both interstitial and tubular cell populations, which are required for several biological processes, such as steroidogenesis, Sertoli cell function, spermatogenesis, and immune regulation. These various processes are essential for testicular function and demonstrate how interstitial cells are indispensable for male fertility.
Collapse
Affiliation(s)
- Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Suite E-870, Cincinnati, OH, 45267, USA
| |
Collapse
|
10
|
Mayerhofer A, Walenta L, Mayer C, Eubler K, Welter H. Human testicular peritubular cells, mast cells and testicular inflammation. Andrologia 2019; 50:e13055. [PMID: 30569646 DOI: 10.1111/and.13055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022] Open
Abstract
In man, the wall of seminiferous tubules forms a testicular compartment, which contains several layers of smooth muscle-like, "myoid", peritubular cells and extracellular matrix. Its architecture and its cellular composition change in male infertility associated with impaired spermatogenesis. Increased deposits of extracellular matrix, changes in the smooth muscle-like phenotype of peritubular cells and accumulation of immune cells, especially mast cells, are among the striking alterations. Taken together, the changes indicate that inflammatory events take place in particular within this compartment. This short review summarises recent studies, which pinpoint possible mechanisms of the interplay between peritubular cells and mast cells, which may contribute to sterile inflammation and impairments of testicular function. These insights are based mainly on cellular studies, for which we used isolated human testicular peritubular cells (HTPCs), and on the examination of human testicular sections. Recent data on immunological properties of peritubular cells, unexpected roles of the extracellular matrix factor, biglycan, which is secreted by peritubular cells and functions of mast cell products (chymase, tryptase and ATP) are presented. We believe that the results may foster a better understanding of peritubular cells, their roles in the human testis and specifically their involvement in infertility.
Collapse
Affiliation(s)
- Artur Mayerhofer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Lena Walenta
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Christine Mayer
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Katja Eubler
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| | - Harald Welter
- Anatomy III - Cell Biology, Biomedical Center Munich, LMU München, Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Rossi SP, Walenta L, Rey-Ares V, Köhn FM, Schwarzer JU, Welter H, Calandra RS, Frungieri MB, Mayerhofer A. Alpha 1 adrenergic receptor-mediated inflammatory responses in human testicular peritubular cells. Mol Cell Endocrinol 2018; 474:1-9. [PMID: 29407194 DOI: 10.1016/j.mce.2018.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/14/2017] [Accepted: 01/29/2018] [Indexed: 01/15/2023]
Abstract
Stress activates the sympathetic nervous system and is linked to impaired fertility in man. We hypothesized that catecholamines by acting on testicular cells have a role in these events, possibly by fostering an inflammatory environment. The cells of the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), express adrenergic receptors (ADRs) α1B, α1D, β1 and β2. A selective α1-ADR agonist, phenylephrine, increased intracellular Ca2+-levels in cultured HTPCs and induced COX-2, IL-6 and MCP-1 mRNA expression without affecting IL-1β mRNA. These changes were paralleled by a significant increase in the secretion of IL-6 and MCP-1. Epinephrine was also effective, but salbutamol, a selective β2-ADR agonist was not. Our results suggest that stress-associated elevation of catecholamines may be able to promote inflammatory events by targeting peritubular cells in the human testis. Blockage of α1-ADRs may therefore be a novel way to interfere with stress-related impairment of male reproductive functions.
Collapse
Affiliation(s)
- Soledad Paola Rossi
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany; Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lena Walenta
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | - Verónica Rey-Ares
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | | | | | - Harald Welter
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| |
Collapse
|
12
|
Eubler K, Herrmann C, Tiefenbacher A, Köhn FM, Schwarzer JU, Kunz L, Mayerhofer A. Ca 2+ Signaling and IL-8 Secretion in Human Testicular Peritubular Cells Involve the Cation Channel TRPV2. Int J Mol Sci 2018; 19:ijms19092829. [PMID: 30235802 PMCID: PMC6165404 DOI: 10.3390/ijms19092829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Peritubular cells are part of the wall of seminiferous tubules in the human testis and their contractile abilities are important for sperm transport. In addition, they have immunological roles. A proteomic analysis of isolated human testicular peritubular cells (HTPCs) revealed expression of the transient receptor potential channel subfamily V member 2 (TRPV2). This cation channel is linked to mechano-sensation and to immunological processes and inflammation in other organs. We verified expression of TRPV2 in peritubular cells in human sections by immunohistochemistry. It was also found in other testicular cells, including Sertoli cells and interstitial cells. In cultured HTPCs, application of cannabidiol (CBD), a known TRPV2 agonist, acutely induced a transient increase in intracellular Ca2+ levels. These Ca2+ transients could be blocked both by ruthenium red, an unspecific Ca2+ channel blocker, and tranilast (TRA), an antagonist of TRPV2, and were also abolished when extracellular Ca2+ was removed. Taken together this indicates functional TRPV2 channels in peritubular cells. When applied for 24 to 48 h, CBD induced expression of proinflammatory factors. In particular, mRNA and secreted protein levels of the proinflammatory chemokine interleukin-8 (IL-8/CXCL8) were elevated. Via its known roles as a major mediator of the inflammatory response and as an angiogenic factor, this chemokine may play a role in testicular physiology and pathology.
Collapse
Affiliation(s)
- Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Astrid Tiefenbacher
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | | | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
13
|
Rey-Ares V, Rossi SP, Dietrich KG, Köhn FM, Schwarzer JU, Welter H, Frungieri MB, Mayerhofer A. Prostaglandin E 2 (PGE 2) is a testicular peritubular cell-derived factor involved in human testicular homeostasis. Mol Cell Endocrinol 2018; 473:217-224. [PMID: 29408603 DOI: 10.1016/j.mce.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/06/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
In man, blockage of prostaglandin (PG)-production e.g. by non-steroidal anti-inflammatory drug (NSAIDs) may have negative testicular side effects, implying beneficial actions of PGs in the testis. We examined human testicular samples and isolated human testicular peritubular cells (HTPCs) to explore sites of PG-synthesis and targets. HTPCs express cyclooxygenase 1 (COX1) and secrete PGE2. Receptors (EP1, 2, 4) were specifically identified in peritubular cells. In HTPCs PGE2 significantly increased mRNA levels of the contractility protein calponin, but did not induce contractions. PGE2, as well as EP1 and EP4 receptor agonists, significantly increased glia cell line derived neurotrophic factor (GDNF) mRNA and/or protein levels. Importantly, the NSAID ibuprofen reduced PGE2 and this action also lowered SMA and calponin mRNA levels and levels of secreted GDNF protein. The results reveal an unknown PGE2 system in the human testis, in involving peritubular cells, which may be prone to interference by NSAIDs.
Collapse
Affiliation(s)
- Verónica Rey-Ares
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| | - Soledad Paola Rossi
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany; Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Kim-Gwendolyn Dietrich
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| | | | | | - Harald Welter
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilian-University (LMU), D-82152 Planegg, Germany.
| |
Collapse
|
14
|
Pigment epithelium derived factor (PEDF) expression in the male tract of Wistar rats. Biochem Biophys Res Commun 2018; 504:257-262. [PMID: 30180954 DOI: 10.1016/j.bbrc.2018.08.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 11/21/2022]
Abstract
Pigment epithelium derived factor (PEDF) expression has been described in many organs as showing neurotrophic, anti-angiogenic, anti-apoptotic, anti-inflammatory, anti-oxidant and pro-cell survival properties. However, references to its activity in the male reproductive system are scarce. We aimed to characterize the expression of PEDF in the male reproductive tract of Wistar rats by using RT-PCR, western blot and immunostaining and also evaluate the effect of flutamide in PEDF expression. We found that PEDF is expressed in the epididymis, prostate and seminal vesicles in Wistar rats, but notably not in the testes. Under the effect of flutamide PEDF expression decreased, recovering by suppressing the antiandrogen. The epididymis is an essential organ in sperm maturation-storages. The role of PEDF in this physiological process has not been fully elucidated yet, but considering that in other systems PEDF has anti-apoptotic, anti-oxidants and pro-cell survival properties, its expression along the epididymis could play a role in the protection of spermatozoa while they are stored.
Collapse
|
15
|
Mayer C, Adam M, Walenta L, Schmid N, Heikelä H, Schubert K, Flenkenthaler F, Dietrich KG, Gruschka S, Arnold GJ, Fröhlich T, Schwarzer JU, Köhn FM, Strauss L, Welter H, Poutanen M, Mayerhofer A. Insights into the role of androgen receptor in human testicular peritubular cells. Andrology 2018; 6:756-765. [PMID: 29869453 DOI: 10.1111/andr.12509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
Contractile smooth muscle-like peritubular cells build the wall of seminiferous tubules in men. They are crucial for sperm transport and complement the functions of Sertoli cells by secreting factors, including glial cell line-derived neurotrophic factor. Previous studies revealed that they also secrete the chemokine C-X-C motif chemokine ligand 12 (CXCL12), which has known roles in spermatogenesis. Peritubular cells express the androgen receptor (AR), which is retained in isolated human testicular peritubular cells. We aimed to explore AR-regulated functions in human testicular peritubular cells. Bearing in mind that infertile men often have high aromatase activity, which may lower intratesticular androgen concentrations, an animal model for male infertility was studied. These mice display an age-dependent loss in spermatogenesis due to high aromatase activity. Human testicular peritubular cells were exposed to dihydrotestosterone or the antiandrogen flutamide. We studied AR, smooth muscle cell markers, glial cell line-derived neurotrophic factor and 15 secreted factors previously identified, including CXCL12. We used qPCR, Western blotting, ELISA or selected reaction monitoring (SRM). In the animal model for male infertility, we employed qPCR and immunohistochemistry. Dihydrotestosterone increased AR and flutamide prevented these actions. The smooth muscle cell markers calponin and smooth muscle actin were likewise increased, while cell size or cellular proliferation was not changed. Dihydrotestosterone did not increase glial cell line-derived neurotrophic factor or CXCL12 secretion but increased levels of serine proteinase inhibitor (SERPIN) E1. The animal model for male infertility with high aromatase activity showed reduced numbers of AR-immunoreactive testicular peritubular cells, suggesting that altered androgen and/or oestrogen levels could influence AR-mediated responses in peritubular cells. Androgens act on human testicular peritubular cells to enhance AR levels, their contractile phenotype and to modulate the secretion of some secreted factors. This study suggests that some aspects of human peritubular cell functions are regulated by androgens.
Collapse
Affiliation(s)
- C Mayer
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - M Adam
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,Turku Center for Disease Modeling and Institute of Biomedicine, University of Turku, Turku, Finland
| | - L Walenta
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - N Schmid
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - H Heikelä
- Turku Center for Disease Modeling and Institute of Biomedicine, University of Turku, Turku, Finland
| | - K Schubert
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - F Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - K-G Dietrich
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - S Gruschka
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU, Munich, Germany
| | | | | | - L Strauss
- Turku Center for Disease Modeling and Institute of Biomedicine, University of Turku, Turku, Finland
| | - H Welter
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - M Poutanen
- Turku Center for Disease Modeling and Institute of Biomedicine, University of Turku, Turku, Finland
| | - A Mayerhofer
- Cell Biology, Anatomy III, BMC Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| |
Collapse
|
16
|
Kaur G, Vadala S, Dufour JM. An overview of a Sertoli cell transplantation model to study testis morphogenesis and the role of the Sertoli cells in immune privilege. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx012. [PMID: 29492314 PMCID: PMC5804552 DOI: 10.1093/eep/dvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 05/29/2023]
Abstract
Advanced testicular germ cells, expressing novel cell surface and intracellular proteins, appear after the establishment of central tolerance and thus are auto-immunogenic. However, due to testis immune privilege these germ cells normally do not evoke a detrimental immune response. The Sertoli cell (SC) barrier (also known as the blood-testis barrier) creates a unique microenvironment required for the completion of spermatogenesis and sequesters the majority of the advanced germ cells from the immune system. Given that an intact SC barrier is necessary for spermatogenesis and that disruption of the SC barrier results in loss of advanced germ cells independent of an immune response, this dual role of the SC barrier makes it difficult to directly test the importance of the SC barrier in immune privilege. The ability of SCs to survive and protect co-grafted cells when transplanted ectopically (outside the testis) across immunological barriers is well-documented. Here, we will discuss the use of a SC transplantation model to investigate the role of SC and the SC barrier in immune privilege. Additionally, the formation of cord/tubule like structures in this model, containing both SCs and myoid cells, further extends its application to study testis morphogenesis. We will also discuss the potential use of this model to study the effects of drugs/environmental toxins on testis morphogenesis, tight junction formation and SC-myoid cell interactions.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Vadala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
17
|
Metzler VM, de Brot S, Robinson RS, Jeyapalan JN, Rakha E, Walton T, Gardner DS, Lund EF, Whitchurch J, Haigh D, Lochray JM, Robinson BD, Allegrucci C, Fray RG, Persson JL, Ødum N, Miftakhova RR, Rizvanov AA, Hughes IA, Tadokoro-Cuccaro R, Heery DM, Rutland CS, Mongan NP. Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development. Placenta 2017; 56:79-85. [PMID: 28238455 DOI: 10.1016/j.placenta.2017.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
Abstract
The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models.
Collapse
Affiliation(s)
- Veronika M Metzler
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Robert S Robinson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Jennie N Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Emad Rakha
- School of Medicine and Sciences, University of Nottingham, Nottingham City Hospital, NG5 1PB, UK
| | - Thomas Walton
- Department of Urology, Nottingham University Hospitals NHS Trust, NG5 1PB, UK
| | - David S Gardner
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Emma F Lund
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | | | - Daisy Haigh
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Jack M Lochray
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Brian D Robinson
- Department of Pathology, Weill Cornell Medicine, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK
| | - Rupert G Fray
- School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - Jenny L Persson
- Department of Translational Medicine, Lund University, Malmö, Sweden; Department of Molecular Biology, Umeå University, Sweden
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Regina R Miftakhova
- Department of Molecular Biology, Umeå University, Sweden; Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Albert A Rizvanov
- Kazan Federal University, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
| | | | - David M Heery
- School of Pharmacy, University of Nottingham, NG7 2TQ, UK
| | - Catrin S Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK.
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Health Sciences, University of Nottingham, LE12 5RD, UK; Department of Pharmacology, Weill Cornell Medicine, New York 10065, USA.
| |
Collapse
|