1
|
Bäuml L, de Vivie-Riedle R. Coupled Nuclear and Electron Dynamics in Chlorophyll Unraveled by XMS-CASPT2 X-ray Absorption Spectra. J Phys Chem B 2025; 129:2159-2167. [PMID: 39960808 DOI: 10.1021/acs.jpcb.4c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Attosecond spectroscopy, especially time-resolved X-ray absorption spectra (XAS), enables direct observation of ultrafast molecular dynamics. The complementary and even preceding development of theoretical simulations can offer the necessary guidance and stimulate new experiments. In this work, we simulated high-level XAS for the magnesium and nitrogen K-edge of chlorophyll a. In our previous work on the ultrafast relaxation process in the Q-band, our quantum dynamics simulations found the Qx and Qy states to be energetically close and therefore strongly coupled. Here, we analyze the strong coupling between Qx and Qy via XAS, indicating promising possibilities for experimental observation. The excited-state energies, potential energy surfaces, and XAS are computed at the XMS-CASPT2 level of theory to capture the complex multireference character of chlorophyll excitations. In our simulated spectra, we could follow the ultrafast population transfer between Qx and Qy and thus draw conclusions about the strong vibrational coupling between them.
Collapse
Affiliation(s)
- Lena Bäuml
- Department of Chemistry, LMU Munich, Munich 81377, Germany
| | | |
Collapse
|
2
|
Gao RY, Zou JW, Shi YP, Li DH, Zheng J, Zhang JP. The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy. J Phys Chem Lett 2025; 16:789-794. [PMID: 39805070 DOI: 10.1021/acs.jpclett.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430-1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm-1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
Collapse
Affiliation(s)
- Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Wei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yan-Ping Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
3
|
Keil E, Kumar A, Bäuml L, Reiter S, Thyrhaug E, Moser S, Duffy CDP, de Vivie-Riedle R, Hauer J. Reassessing the role and lifetime of Q x in the energy transfer dynamics of chlorophyll a. Chem Sci 2025; 16:1684-1695. [PMID: 39629486 PMCID: PMC11610765 DOI: 10.1039/d4sc06441k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Chlorophylls are photoactive molecular building blocks essential to most photosynthetic systems. They have comparatively simple optical spectra defined by states with near-orthogonal transition dipole moments, referred to as B x and B y in the blue/green spectral region, and Q x and Q y in the red. Underlying these spectra is a surprisingly complex electronic structure, where strong electronic-vibrational interactions are crucial to the description of state characters. Following photoexcitation, energy-relaxation between these states is extremely fast and connected to only modest changes in spectral shapes. This has pushed conventional theoretical and experimental methods to their limits and left the energy transfer pathway under debate. In this work, we address the electronic structure and photodynamics of chlorophyll a using polarization-controlled static - and ultrafast - optical spectroscopies. We support the experimental data analysis with quantum dynamical simulations and effective heat dissipation models. We find clear evidence for B → Q transfer on a timescale of ∼100 fs and identify Q x signatures within fluorescence excitation and transient spectra. However, Q x is populated only fleetingly, with a lifetime well below our ∼30 fs experimental time resolution. Outside of these timescales, the kinetics are determined by vibrational relaxation and cooling. Despite its ultrashort lifetime, our theoretical analysis suggests that Q x plays a crucial role as a bridging state in B → Q energy transfer. In summary, our findings present a unified and consistent picture of chlorophyll relaxation dynamics based on ultrafast and polarization-resolved spectroscopic techniques supported by extensive theoretical models; they clarify the role of Q x in the energy deactivation network of chlorophyll a.
Collapse
Affiliation(s)
- Erika Keil
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry Lichtenbergstrasse 4 85748 Garching Germany
| | - Ajeet Kumar
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry Lichtenbergstrasse 4 85748 Garching Germany
| | - Lena Bäuml
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Erling Thyrhaug
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry Lichtenbergstrasse 4 85748 Garching Germany
| | - Simone Moser
- Institute of Pharmacy, Department of Pharmacognosy, University of Innsbruck Austria
| | - Christopher D P Duffy
- Digital Environment Research Institute, Queen Mary University of London London E1 4NS UK
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München Butenandtstr. 11 81377 Munich Germany
| | - Jürgen Hauer
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
4
|
Rukin PS, Fortino M, Prezzi D, Rozzi CA. Complementing Adiabatic and Nonadiabatic Methods To Understand Internal Conversion Dynamics in Porphyrin Derivatives. J Chem Theory Comput 2024; 20:10759-10769. [PMID: 39662887 DOI: 10.1021/acs.jctc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We analyze the internal conversion dynamics within the Qy and Qx excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.
Collapse
Affiliation(s)
- Pavel S Rukin
- Istituto Nanoscienze - CNR, via Campi 213/A, 41125 Modena, Italy
| | - Mariagrazia Fortino
- Dipartimento di Scienze della Salute, Università di Catanzaro, 88100 Catanzaro, Italy
| | - Deborah Prezzi
- Istituto Nanoscienze - CNR, via Campi 213/A, 41125 Modena, Italy
| | | |
Collapse
|
5
|
Liu H, Ruan M, Mao P, Wang Z, Chen H, Weng Y. Unraveling the excited-state vibrational cooling dynamics of chlorophyll-a using femtosecond broadband fluorescence spectroscopy. J Chem Phys 2024; 160:205101. [PMID: 38804490 DOI: 10.1063/5.0203819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Understanding the dynamics of excited-state vibrational energy relaxation in photosynthetic pigments is crucial for elucidating the mechanisms underlying energy transfer processes in light-harvesting complexes. Utilizing advanced femtosecond broadband transient fluorescence (TF) spectroscopy, we explored the excited-state vibrational dynamics of Chlorophyll-a (Chl-a) both in solution and within the light-harvesting complex II (LHCII). We discovered a vibrational cooling (VC) process occurring over ∼6 ps in Chl-a in ethanol solution following Soret band excitation, marked by a notable ultrafast TF blueshift and spectral narrowing. This VC process, crucial for regulating the vibronic lifetimes, was further elucidated through the direct observation of the population dynamics of higher vibrational states within the Qy electronic state. Notably, Chl-a within LHCII demonstrated significantly faster VC dynamics, unfolding within a few hundred femtoseconds and aligning with the ultrafast energy transfer processes observed within the complex. Our findings shed light on the complex interaction between electronic and vibrational states in photosynthetic pigments, underscoring the pivotal role of vibrational dynamics in enabling efficient energy transfer within light-harvesting complexes.
Collapse
Affiliation(s)
- Heyuan Liu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meixia Ruan
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Mao
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuan Wang
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yuxiang Weng
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of the Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
6
|
Petropoulos V, Rukin PS, Quintela F, Russo M, Moretti L, Moore A, Moore T, Gust D, Prezzi D, Scholes GD, Molinari E, Cerullo G, Troiani F, Rozzi CA, Maiuri M. Vibronic Coupling Drives the Ultrafast Internal Conversion in a Functionalized Free-Base Porphyrin. J Phys Chem Lett 2024; 15:4461-4467. [PMID: 38630018 DOI: 10.1021/acs.jpclett.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Pavel S Rukin
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Frank Quintela
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Mattia Russo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Moretti
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Ana Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Devens Gust
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Deborah Prezzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Elisa Molinari
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213A, I-41125 Modena, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Filippo Troiani
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Preston-Herrera C, Dadashi-Silab S, Oblinsky DG, Scholes GD, Stache EE. Molecular Photothermal Conversion Catalyst Promotes Photocontrolled Atom Transfer Radical Polymerization. J Am Chem Soc 2024; 146:8852-8857. [PMID: 38507569 PMCID: PMC11299229 DOI: 10.1021/jacs.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photothermal conversion is a growing research area that promotes thermal transformations with visible light irradiation. However, few examples of dual photothermal conversion and catalysis limit the power of this phenomenon. Here, we take inspiration from nature's ability to use porphyrinic compounds for nonradiative relaxation to convert light into heat to facilitate thermal polymerization catalysis. We identify the photothermal conversion catalytic activity of a vitamin B12 derivative, heptamethyl ester cobyrinate (HME-Cob), to perform atom transfer radical polymerization (ATRP) under irradiation. Rapid polymerization are obtained under photothermal activation while maintaining good control over polymerization with the aid of a photoinitiator to enable light-induced catalyst regeneration. The catalyst exhibits exquisite temporal control in photocontrolled thermal polymerization. Ultimately, the activation of this complex is accessed across a broad range of wavelengths, including near-IR light, with excellent temporal control. This work showcases the potential of developing photothermal conversion catalysts.
Collapse
Affiliation(s)
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
8
|
Cherepanov DA, Milanovsky GE, Neverov KV, Obukhov YN, Maleeva YV, Aybush AV, Kritsky MS, Nadtochenko VA. Exciton interactions of chlorophyll tetramer in water-soluble chlorophyll-binding protein BoWSCP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123847. [PMID: 38217986 DOI: 10.1016/j.saa.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
The exciton interaction of four chlorophyll a (Chl a) molecules in a symmetrical tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP was analyzed in the pH range of 3-11. Exciton splitting ΔE = 232 ± 2 cm-1 of the Qy band of Chl a into two subcomponents with relative intensities of 78.1 ± 0.7 % and 21.9 ± 0.7 % was determined by a joint decomposition of the absorption and circular dichroism spectra into Gaussian functions. The exciton coupling parameters were calculated based on the BoWSCP atomic structure in three approximations: the point dipole model, the distributed atomic monopoles, and direct ab initio calculations in the TDDFT/PCM approximation. The Coulomb interactions of monomers were calculated within the continuum model using three values of optical permittivity. The models based on the properties of free Chl a in solution suffer from significant errors both in estimating the absolute value of the exciton interaction and in the relative intensity of exciton transitions. Calculations within the TDDFT/PCM approximation reproduce the experimentally determined parameters of the exciton splitting and the relative intensities of the exciton bands. The following factors of pigment-protein and pigment-pigment interactions were examined: deviation of the macrocycle geometry from the planar conformation of free Chl; the formation of hydrogen bonds between the macrocycle and water molecules; the overlap of wave functions of monomers at close distances. The most significant factor is the geometrical deformation of the porphyrin macrocycle, which leads to an increase in the dipole moment of Chl monomer from 5.5 to 6.9 D and to a rotation of the dipole moment by 15° towards the cyclopentane ring. The contributions of resonant charge-transfer states to the wave functions of the Chl dimer were determined and the transition dipole moments of the symmetric and antisymmetric charge-transfer states were estimated.
Collapse
Affiliation(s)
- D A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation.
| | - G E Milanovsky
- A.N. Belozersky Institute Of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Leninskye gory, 1b.40, Russian Federation
| | - K V Neverov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation; Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - Yu N Obukhov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - Yu V Maleeva
- Faculty of Biology, Moscow State University, 119234 Moscow, Leninskye gory, 1b.12, Russian Federation
| | - A V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation
| | - M S Kritsky
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences", 119071 Moscow, Leninsky prospect, 33b.2, Russian Federation
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Kosygina str., 4, Russian Federation; Department of Chemistry, Moscow State University, 119991 Moscow, Leninskye gory, 1b.3, Russian Federation
| |
Collapse
|
9
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Timmer D, Lünemann DC, Riese S, Sio AD, Lienau C. Full visible range two-dimensional electronic spectroscopy with high time resolution. OPTICS EXPRESS 2024; 32:835-847. [PMID: 38175103 DOI: 10.1364/oe.511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful method to study coherent and incoherent interactions and dynamics in complex quantum systems by correlating excitation and detection energies in a nonlinear spectroscopy experiment. Such dynamics can be probed with a time resolution limited only by the duration of the employed laser pulses and in a spectral range defined by the pulse spectrum. In the blue spectral range (<500 nm), the generation of sufficiently broadband ultrashort pulses with pulse durations of 10 fs or less has been challenging so far. Here, we present a 2DES setup based on a hollow-core fiber supercontinuum covering the full visible range (400-700 nm). Pulse compression via custom-made chirped mirrors yields a time resolution of <10 fs. The broad spectral coverage, in particular the extension of the pulse spectra into the blue spectral range, unlocks new possibilities for coherent investigations of blue-light absorbing and multichromophoric compounds, as demonstrated by a 2DES measurement of chlorophyll a.
Collapse
|
11
|
Tweel JED, Ecclestone BR, Gaouda H, Dinakaran D, Wallace MP, Bigras G, Mackey JR, Reza PH. Photon Absorption Remote Sensing Imaging of Breast Needle Core Biopsies Is Diagnostically Equivalent to Gold Standard H&E Histologic Assessment. Curr Oncol 2023; 30:9760-9771. [PMID: 37999128 PMCID: PMC10670721 DOI: 10.3390/curroncol30110708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Photon absorption remote sensing (PARS) is a new laser-based microscope technique that permits cellular-level resolution of unstained fresh, frozen, and fixed tissues. Our objective was to determine whether PARS could provide an image quality sufficient for the diagnostic assessment of breast cancer needle core biopsies (NCB). We PARS imaged and virtually H&E stained seven independent unstained formalin-fixed paraffin-embedded breast NCB sections. These identical tissue sections were subsequently stained with standard H&E and digitally scanned. Both the 40× PARS and H&E whole-slide images were assessed by seven breast cancer pathologists, masked to the origin of the images. A concordance analysis was performed to quantify the diagnostic performances of standard H&E and PARS virtual H&E. The PARS images were deemed to be of diagnostic quality, and pathologists were unable to distinguish the image origin, above that expected by chance. The diagnostic concordance on cancer vs. benign was high between PARS and conventional H&E (98% agreement) and there was complete agreement for within-PARS images. Similarly, agreement was substantial (kappa > 0.6) for specific cancer subtypes. PARS virtual H&E inter-rater reliability was broadly consistent with the published literature on diagnostic performance of conventional histology NCBs across all tested histologic features. PARS was able to image unstained tissues slides that were diagnostically equivalent to conventional H&E. Due to its ability to non-destructively image fixed and fresh tissues, and the suitability of the PARS output for artificial intelligence assistance in diagnosis, this technology has the potential to improve the speed and accuracy of breast cancer diagnosis.
Collapse
Affiliation(s)
- James E. D. Tweel
- PhotoMedicine Labs, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (J.E.D.T.); (B.R.E.); (H.G.)
- Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada; (D.D.); (J.R.M.)
| | - Benjamin R. Ecclestone
- PhotoMedicine Labs, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (J.E.D.T.); (B.R.E.); (H.G.)
- Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada; (D.D.); (J.R.M.)
| | - Hager Gaouda
- PhotoMedicine Labs, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (J.E.D.T.); (B.R.E.); (H.G.)
- Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada; (D.D.); (J.R.M.)
| | - Deepak Dinakaran
- Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada; (D.D.); (J.R.M.)
| | - Michael P. Wallace
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Gilbert Bigras
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - John R. Mackey
- Illumisonics Inc., 22 King Street South, Suite 300, Waterloo, ON N2J 1N8, Canada; (D.D.); (J.R.M.)
| | - Parsin Haji Reza
- PhotoMedicine Labs, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (J.E.D.T.); (B.R.E.); (H.G.)
| |
Collapse
|
12
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap. ACS OMEGA 2023; 8:40015-40023. [PMID: 37929150 PMCID: PMC10620878 DOI: 10.1021/acsomega.3c05896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat-the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so-far undescribed roles for carotenoids (Crts, cf. previous article in this series) and Chl b (this article) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). The focus of the study is on the role of Chl b for EET in the Q and B bands. Further, the initial excited pigment distribution in the B band is computed for relevant solar irradiation and wavelength-centered laser pulses. It is found that both accessory pigment classes compete efficiently with Chl a absorption in the B band, leaving only 40% of B band excitations for Chl a. B state population is preferentially relocated to Chl b after excitation of any Chls, due to a near-perfect match of Chl b B band absorption with Chl a B state emission spectra. This results in an efficient depletion of the Chl a population (0.66 per IC/EET step, as compared to 0.21 in a Chl a-only system). Since Chl b only occurs in the peripheral antenna complexes of plants and algae, and RCs contain only Chl a, this would automatically trap potentially dangerous B state population in the antennae, preventing forwarding to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague
2, Czech Republic
| |
Collapse
|
13
|
Götze JP, Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS OMEGA 2023; 8:40005-40014. [PMID: 37929138 PMCID: PMC10620780 DOI: 10.1021/acsomega.3c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023]
Abstract
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.
Collapse
Affiliation(s)
- Jan P. Götze
- Institut
für Chemie und Biochemie, Fachbereich Biologie Chemie Pharmazie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Heiko Lokstein
- Department
of Chemical Physics and Optics, Charles
University, Ke Karlovu
3, 121 16 Prague, Czech Republic
| |
Collapse
|
14
|
Cherepanov DA, Neverov KV, Obukhov YN, Maleeva YV, Gostev FE, Shelaev IV, Aybush AV, Kritsky MS, Nadtochenko VA. Femtosecond Dynamics of Excited States of Chlorophyll Tetramer in Water-Soluble Chlorophyll-Binding Protein BoWSCP. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1580-1595. [PMID: 38105026 DOI: 10.1134/s0006297923100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
The paper reports on the absorption dynamics of chlorophyll a in a symmetric tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP. It was measured by a broadband femtosecond laser pump-probe spectroscopy within the range from 400 to 750 nm and with a time resolution of 20 fs-200 ps. When BoWSCP was excited in the region of the Soret band at a wavelength of 430 nm, nonradiative intramolecular conversion S3→S1 was observed with a characteristic time of 83 ± 9 fs. When the complex was excited in the region of the Qy band at 670 nm, relaxation transition between two excitonic states of the chlorophyll dimer was observed in the range of 105 ± 10 fs. Absorption spectra of the excited singlet states S1 and S3 of chlorophyll a were obtained. The delocalization of the excited state between exciton-coupled Chl molecules in BoWSCP tetramer changed in time and depended on the excitation energy. When BoWSCP is excited in the Soret band region, an ultrafast photochemical reaction is observed. This could result from the reduction of tryptophan in the vicinity of chlorophyll.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Konstantin V Neverov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuriy N Obukhov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Yulia V Maleeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Feodor E Gostev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseny V Aybush
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Michail S Kritsky
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Petry S, Tremblay JC, Götze JP. Impact of Structure, Coupling Scheme, and State of Interest on the Energy Transfer in CP29. J Phys Chem B 2023; 127:7207-7219. [PMID: 37581578 DOI: 10.1021/acs.jpcb.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The Qy and Bx excitation energy transfer (EET) in the minor light-harvesting complex CP29 (LHCII B4.1) antenna complex of Pisum sativum was characterized using a computational approach. We applied Förster resonance energy transfer (FRET) and the transition density cube (TDC) method to estimate the Coulombic coupling, based on a combination of classical molecular dynamics and quantum mechanics/molecular mechanics calculations. Employing TDC instead of FRET mostly affects the EET between chlorophylls (Chls) and carotenoids (Crts), as expected due to the Crts being spatially more challenging for FRET. Only between Chls, effects are found to be small (about only 0.1 EET efficiency change when introducing TDC instead of FRET). Effects of structural sampling were found to be small, illustrated by a small average standard deviation for the Qy state coupling elements (FRET/TDC: 0.97/0.94 cm-1). Due to the higher flexibility of the Bx state, the corresponding deviations are larger (FRET/TDC between Chl-Chl pairs: 17.58/22.67 cm-1, between Crt-Chl pairs: 62.58/31.63 cm-1). In summary, it was found for the Q band that the coupling between Chls varies only slightly depending on FRET or TDC, resulting in a minute effect on EET acceptor preference. In contrast, the coupling in the B band spectral region is found to be more affected. Here, the S2 (1Bu) states of the spatially challenging Crts may act as acceptors in addition to the B states of the Chls. Depending on FRET or TDC, several Chls show different Chl-to-Crt couplings. Interestingly, the EET between Chls or Crts in the B band is found to often outcompete the corresponding decay processes. The individual efficiencies for B band EET to Crts vary however strongly with the chosen coupling scheme (e.g., up to 0.29/0.99 FRET/TDC efficiency for the Chl a604/neoxanthin pair). Thus, the choice of the coupling scheme must involve a consideration of the state of interest.
Collapse
Affiliation(s)
- S Petry
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - J C Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, 57070 Metz, France
| | - J P Götze
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
16
|
Freixas VM, Malone W, Li X, Song H, Negrin-Yuvero H, Pérez-Castillo R, White A, Gibson TR, Makhov DV, Shalashilin DV, Zhang Y, Fedik N, Kulichenko M, Messerly R, Mohanam LN, Sharifzadeh S, Bastida A, Mukamel S, Fernandez-Alberti S, Tretiak S. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5356-5368. [PMID: 37506288 DOI: 10.1021/acs.jctc.3c00583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.
Collapse
Affiliation(s)
- Victor M Freixas
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Walter Malone
- Department of Physics, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Xinyang Li
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Royle Pérez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Alexander White
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie R Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | | - Yu Zhang
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard Messerly
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
17
|
Negrin-Yuvero H, Freixas VM, Ondarse-Alvarez D, Alfonso-Hernandez L, Rojas-Lorenzo G, Bastida A, Tretiak S, Fernandez-Alberti S. Vibrational Funnels for Energy Transfer in Organic Chromophores. J Phys Chem Lett 2023; 14:4673-4681. [PMID: 37167537 DOI: 10.1021/acs.jpclett.3c00748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.
Collapse
Affiliation(s)
- Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Victor Manuel Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Dianelys Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - Laura Alfonso-Hernandez
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina
| | - German Rojas-Lorenzo
- Departamento de Física Atómica y Molecular, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana 10400, Cuba
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos 87545, New Mexico, USA
| | | |
Collapse
|
18
|
Seibt J, Lindorfer D, Renger T. Signatures of intramolecular vibrational and vibronic Q[Formula: see text]-Q[Formula: see text] coupling effects in absorption and CD spectra of chlorophyll dimers. PHOTOSYNTHESIS RESEARCH 2023; 156:19-37. [PMID: 36040654 PMCID: PMC10070234 DOI: 10.1007/s11120-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
An electron-vibrational coupling model that includes the vibronic (non-adiabatic) coupling between the Q[Formula: see text] and Q[Formula: see text] transitions of chlorophyll (Chl), created by Reimers and coworkers (Scientific Rep. 3, 2761, 2013) is extended here to chlorophyll dimers with interchlorophyll excitonic coupling. The model is applied to a Chl a dimer of the water-soluble chlorophyll binding protein (WSCP). As for isolated chlorophyll, the vibronic coupling is found to have a strong influence on the high-frequency vibrational sideband in the absorption spectrum, giving rise to a band splitting. In contrast, in the CD spectrum the interplay of vibronic coupling and static disorder leads to a strong suppression of the vibrational sideband in excellent agreement with the experimental data. The conservative nature of the CD spectrum in the low-energy region is found to be caused by a delicate balance of the intermonomer excitonic coupling between the purely electronic Q[Formula: see text] transition and the Q[Formula: see text] transition involving intramolecular vibrational excitations on one hand and the coupling to higher-energy electronic transitions on the other hand.
Collapse
Affiliation(s)
- Joachim Seibt
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria.
| | - Dominik Lindorfer
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040, Linz, Austria
| |
Collapse
|
19
|
Li DH, Wang W, Zhou C, Zhang Y, Zhao S, Zhou YM, Gao RY, Yao HD, Fu LM, Wang P, Shen JR, Kuang T, Zhang JP. Photoinduced chlorophyll charge transfer state identified in the light-harvesting complex II from a marine green alga Bryopsis corticulans. iScience 2022; 26:105761. [PMID: 36594012 PMCID: PMC9804108 DOI: 10.1016/j.isci.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
The light-harvesting complex II of Bryopsis corticulans (B-LHCII), a green alga, differs from that of spinach (S-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of B-LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield (Φ FL) of LHCII and spectroelectrochemical (SEC) spectra of Chl a and b were measured to assist the spectral analysis. Red-light excitation at Chl Qy-band, but not Car-band, induced transient features resembling the characteristic SEC spectra of Chl a ⋅+ and Chl b ⋅-, indicating ultrafast photogeneration of Chl-Chl charge transfer (CT) species; Φ FL and 3Car∗ declined whereas CT species increased upon prolonging excitation wavelength, showing positive correlation of 1Chl∗ deactivation with Chl-Chl CT formation. Moreover, ultrafast Chl b-to-Chl a and Car-to-Chl singlet excitation transfer were illustrated. The red-light induction of Chl-Chl CT species, as also observed for S-LHCII, is considered a general occurrence for LHCIIs in light-harvesting form.
Collapse
Affiliation(s)
- Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Songhao Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi-Ming Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hai-Dan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Li-Min Fu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Corresponding author
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,Corresponding author
| |
Collapse
|
20
|
Šímová I, Kuznetsova V, Gardiner AT, Šebelík V, Koblížek M, Fuciman M, Polívka T. Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus. PHOTOSYNTHESIS RESEARCH 2022; 154:75-87. [PMID: 36066816 DOI: 10.1007/s11120-022-00952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Václav Šebelík
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching b. Munich, Germany
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
21
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
22
|
Liu J, Jiao D, Hoenders D, Lossada F, Yu W, Zhu B, Walther A, Zhang Q. An Opto- and Thermal-Rewrite PCM/CNF-IR 780 Energy Storage Nanopaper with Mechanical Regulated Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200688. [PMID: 35599429 DOI: 10.1002/smll.202200688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Indexed: 06/15/2023]
Abstract
In spite of efforts to fabricate self-assembled energy storage nanopaper with potential applications in displays, greenhouses, and sensors, few studies have investigated their multiple stimuli-sensitivities. Here, an opto- and thermal-rewrite phase change material/cellulose nanofibril (PCM/CNF) energy storage nanopaper with mechanical regulated performance is facilely fabricated, through 5 min sonication of PCMs and CNFs in an aqueous system. The combination of PCM and CNF not only guarantees the recyclability of PCM without leakage, but also offers nanopaper adaptive properties by leveraging the mobility and optical variation accompanying solid-to-liquid transition of PCM. Besides, trace near-infrared (NIR) dye (IR 780) in it imparts a PCM-embedded nanopaper photothermal effect to modulate the local transparency via time- and position-controlled laser exposure, leading to a reusable opto-writing nanopaper. Furthermore, since the synergistic effect of stick-and-slip function attributes from PCMs and pore structures are produced by calcium ions, the PCM/CNF energy storage nanopaper exhibits excellent mechanically regulated performance from rigid to flexible, which greatly enriches their application in energy-efficient smart buildings and displays.
Collapse
Affiliation(s)
- Jin Liu
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Xi'an Aerospace Propulsion Institute, Xi'an, 710100, P. R. China
| | - Dejin Jiao
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
| | - Daniel Hoenders
- A3BMS Lab: Adaptive, Active and Autonomous Bioinspired Material Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Francisco Lossada
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
| | - Wenqian Yu
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
| | - Baolei Zhu
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab: Adaptive, Active and Autonomous Bioinspired Material Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
23
|
Do TN, Nguyen HL, Caffarri S, Tan HS. Two-dimensional electronic spectroscopy of the Q x to Q y relaxation of chlorophylls a in photosystem II core complex. J Chem Phys 2022; 156:145102. [DOI: 10.1063/5.0079500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using two-dimensional electronic spectroscopy, we measured the Qx to Qy transfer dynamics of the chlorophyll a (Chl a) manifold in the photosystem II (PSII) monomeric core complex from Arabidopsis thaliana. A PSII monomeric core consists of 35 Chls a and no Chl b, thus allowing for a clear window to study Chl a Qx dynamics in a large pigment-protein complex. Initial excitation in the Qx band results in a transfer to the Qy band in less than 60 fs. Upon the ultrafast transfer, regardless of the excitation frequency within the Qx band, the quasi-transient absorption spectra are very similar. This observation indicates that Chl a’s Qx to Qy transfer is not frequency selective. Using a simple model, we determined that this is not due to the lifetime broadening of the ultrafast transfer but predominantly due to a lack of correlation between the PSII core complex’s Chl a Qx and Qy bands. We suggest the origin to be the intrinsic loss of correlation during the Qx to Qy internal conversion as observed in previous studies of molecular Chl a dissolved in solvents.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Hoang Long Nguyen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, LGBP Team, 13009 Marseille, France
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| |
Collapse
|
24
|
Reiter S, Bäuml L, Hauer J, de Vivie-Riedle R. Q-Band relaxation in chlorophyll: new insights from multireference quantum dynamics. Phys Chem Chem Phys 2022; 24:27212-27223. [DOI: 10.1039/d2cp02914f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ultrafast relaxation within the Q-bands of chlorophyll plays a crucial role in photosynthetic light-harvesting. We investigate this process via nuclear and electronic quantum dynamics on multireference potential energy surfaces.
Collapse
Affiliation(s)
- Sebastian Reiter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Lena Bäuml
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Regina de Vivie-Riedle
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| |
Collapse
|
25
|
Lishchuk A, Csányi E, Darroch B, Wilson C, Nabok A, Leggett GJ. Active control of strong plasmon-exciton coupling in biomimetic pigment-polymer antenna complexes grown by surface-initiated polymerisation from gold nanostructures. Chem Sci 2022; 13:2405-2417. [PMID: 35310503 PMCID: PMC8864694 DOI: 10.1039/d1sc05842h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Plexcitonic antenna complexes, inspired by photosynthetic light-harvesting complexes, are formed by attachment of chlorophylls (Chl) to poly(cysteine methacrylate) (PCysMA) scaffolds grown by atom-transfer radical polymerisation from gold nanostructure arrays. In these pigment–polymer antenna complexes, localised surface plasmon resonances on gold nanostructures are strongly coupled to Chl excitons, yielding hybrid light–matter states (plexcitons) that are manifested in splitting of the plasmon band. Modelling of the extinction spectra of these systems using a simple coupled oscillator model indicates that their coupling energies are up to twice as large as those measured for LHCs from plants and bacteria. Coupling energies are correlated with the exciton density in the grafted polymer layer, consistent with the collective nature of strong plasmon–exciton coupling. Steric hindrance in fully-dense PCysMA brushes limits binding of bulky chlorophylls, but the chlorophyll concentration can be increased to ∼2 M, exceeding that in biological light-harvesting complexes, by controlling the grafting density and polymerisation time. Moreover, synthetic plexcitonic antenna complexes display pH- and temperature-responsiveness, facilitating active control of plasmon–exciton coupling. Because of the wide range of compatible polymer chemistries and the mild reaction conditions, plexcitonic antenna complexes may offer a versatile route to programmable molecular photonic materials. Excitons in pigment–polymer antenna complexes formed by attachment of chlorophyll to surface grafted polymers are coupled strongly to plasmon modes, with coupling energies twice those for biological light-harvesting complexes and active control of plasmon–exciton coupling.![]()
Collapse
Affiliation(s)
- Anna Lishchuk
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Evelin Csányi
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Brice Darroch
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Chloe Wilson
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University City Campus Sheffield S1 1WB UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
26
|
Gruber E, Teiwes R, Kjær C, Brøndsted Nielsen S, Andersen LH. Tuning fast excited-state decay by ligand attachment in isolated chlorophyll a. Phys Chem Chem Phys 2021; 24:149-155. [PMID: 34901981 DOI: 10.1039/d1cp04356k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Excited-state dynamics plays a key role for light harvesting and energy transport in photosynthetic proteins but it is nontrivial to separate the intrinsic photophysics of the light-absorbers (chlorophylls) from interactions with the protein matrix. Here we study chlorophyll a (4-coordinate complex) and axially ligated chlorophyll a (5-coordinate complex) isolated in vacuo applying mass spectrometry to shed light on the intrinsic dynamics in the absence of nearby chlorophylls, carotenoids, amino acids, and water molecules. The 4-coordinate complexes are tagged by quaternary ammonium ions while the charge is provided by a formate ligand in the case of 5-coordinate complexes. Regardless of excitation to the Soret band or the Q band, a fast ps decay is observed, which is ascribed to the decay of the lowest excited singlet state either by intersystem crossing (ISC) to nearby triplet states or by excited-state relaxation on the excited-state potential-energy surface. The lifetime of the first excited state is 15 ps with Mg2+ at the chlorophyll center, but only 1.7 ps when formate is attached to Mg2+. When the Soret band is excited, an initial sup-ps relaxation is observed which is ascribed to fast internal conversion to the first excited state. With respect to ISC, two factors seem to play a role for the reduced lifetime of the formate-chlorophyll complex: (i) The Mg ion is pulled out of the porphyrin plane thus reducing the symmetry of the chromophore, and (ii) the first excited state (Q band) and T3 are tuned almost into resonance by the ligand, which increases the singlet-triplet mixing.
Collapse
Affiliation(s)
- Elisabeth Gruber
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | - Ricky Teiwes
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| | | | - Lars H Andersen
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000C, Denmark.
| |
Collapse
|
27
|
Galindo JF, Freixas VM, Tretiak S, Fernandez-Alberti S. Back-and-Forth Energy Transfer during Electronic Relaxation in a Chlorin-Perylene Dyad. J Phys Chem Lett 2021; 12:10394-10401. [PMID: 34669398 DOI: 10.1021/acs.jpclett.1c03034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Donor-acceptor dyads represent a practical approach to tuning the photophysical properties of linear conjugated polymers in materials chemistry. Depending on the absorption wavelength, the acceptor and donor roles can be interchanged, and as such, the directionality of the energy transfer can be controlled. Herein, nonadiabatic excited state molecular dynamics simulations have been performed in an arylethylene-linked perylene-chlorin dyad. After an initial photoexcitation at the Soret band of chlorin, we observe an ultrafast sequential electronic relaxation to the lowest excited state. This process is accomplished through an efficient round-trip chlorin-to-perylene-to-chlorin energy transfer. It is characterized by successive intermittent localized and delocalized vibronic dynamics. Nonradiative relaxation takes place mainly through energy transfer events with perylene acting as a "heat sink" through which the nonradiative relaxation is efficiently funneled, and the excess energy is dispersed in a larger space of vibrational degrees of freedom. Thus, our findings suggest the use of donor-acceptor dyads as a useful strategy when one needs to deactivate an electronic excitation.
Collapse
Affiliation(s)
- Johan F Galindo
- Department of Chemistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
28
|
Srivastava R. Physicochemical, antioxidant properties of carotenoids and its optoelectronic and interaction studies with chlorophyll pigments. Sci Rep 2021; 11:18365. [PMID: 34526535 PMCID: PMC8443628 DOI: 10.1038/s41598-021-97747-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
The physicochemical and antioxidant properties of seven carotenoids: antheraxanthin, β-carotene, neoxanthin, peridinin, violaxanthin, xanthrophyll and zeaxanthin were studied by theoretical means. Then the Optoelectronic properties and interaction of chlorophyll-carotenoid complexes are analysed by TDDFT and IGMPLOT. Global reactivity descriptors for carotenoids and chlorophyll (Chla, Chlb) are calculated via conceptual density functional theory (CDFT). The higher HOMO-LUMO (HL) gap indicated structural stability of carotenoid, chlorophyll and chlorophyll-carotenoid complexes. The chemical hardness for carotenoids and Chlorophyll is found to be lower in the solvent medium than in the gas phase. Results showed that carotenoids can be used as good reactive nucleophile due to lower µ and ω. As proton affinities (PAs) are much lower than the bond dissociation enthalpies (BDEs), it is anticipated that direct antioxidant activity in these carotenoids is mainly due to the sequential proton loss electron transfer (SPLET) mechanism with dominant solvent effects. Also lower PAs of carotenoid suggest that antioxidant activity by the SPLET mechanism should be a result of a balance between proclivities to transfer protons. Reaction rate constant with Transition-State Theory (TST) were estimated for carotenoid-Chlorophyll complexes in gas phase. Time dependent Density Functional Theory (TDDFT) showed that all the chlorophyll (Chla, Chlb)-carotenoid complexes show absorption wavelength in the visible region. The lower S1-T1 adiabatic energy gap indicated ISC transition from S1 to T1 state.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
29
|
Hancock AM, Son M, Nairat M, Wei T, Jeuken LJC, Duffy CDP, Schlau-Cohen GS, Adams PG. Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. Phys Chem Chem Phys 2021; 23:19511-19524. [PMID: 34524278 PMCID: PMC8442836 DOI: 10.1039/d1cp01628h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.
Collapse
Affiliation(s)
- Ashley M Hancock
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Tiejun Wei
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lars J C Jeuken
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.,Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
30
|
Cherepanov DA, Shelaev IV, Gostev FE, Nadtochenko VA, Xu W, Golbeck JH, Semenov AY. Symmetry breaking in photosystem I: ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. Photochem Photobiol Sci 2021; 20:1209-1227. [PMID: 34478050 DOI: 10.1007/s43630-021-00094-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
Femtosecond absorption spectroscopy of Photosystem I (PS I) complexes from the cyanobacterium Synechocystis sp. PCC 6803 was carried out on three pairs of complementary amino acid substitutions located near the second pair of chlorophyll molecules Chl2A and Chl2B (also termed A-1A and A-1B). The absorption dynamics at delays of 0.1-500 ps were analyzed by decomposition into discrete decay-associated spectra and continuously distributed exponential components. The multi-exponential deconvolution of the absorption changes revealed that the electron transfer reactions in the PsaA-N600M, PsaA-N600H, and PsaA-N600L variants near the B-branch of cofactors are similar to those of the wild type, while the PsaB-N582M, PsaB-N582H, and PsaB-N582L variants near the A-branch of cofactors cause significant alterations of the photochemical processes, making them heterogeneous and poorly described by a discrete exponential kinetic model. A redistribution of the unpaired electron between the second and the third monomers Chl2A/Chl2B and Chl3A/Chl3B was identified in the time range of 9-20 ps, and the subsequent reduction of A1 was identified in the time range of 24-70 ps. In the PsaA-N600L and PsaB-N582H/L variants, the reduction of A1 occurred with a decreased quantum yield of charge separation. The decreased quantum yield correlates with a slowing of the phylloquinone A0 → A1 reduction, but not with the initial transient spectra measured at the shortest time delay. The results support a branch competition model, where the electron is sheared between Chl2A-Chl3A and Chl2B-Chl3B cofactors before its transfer to phylloquinone in either A1A or A1B sites.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, 119991, Russian Federation
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16801, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| |
Collapse
|
31
|
Fortino M, Collini E, Bloino J, Pedone A. Unraveling the internal conversion process within the Q-bands of a chlorophyll-like-system through surface-hopping molecular dynamics simulations. J Chem Phys 2021; 154:094110. [PMID: 33685164 DOI: 10.1063/5.0039949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-radiative relaxation process within the Q-bands of chlorophylls represents a crucial preliminary step during the photosynthetic mechanism. Despite several experimental and theoretical efforts performed in order to clarify the complex dynamics characterizing this stage, a complete understanding of this mechanism is still far to be reached. In this study, non-adiabatic excited-state molecular dynamic simulations have been performed to model the non-radiative process within the Q-bands for a model system of chlorophylls. This system has been considered in the gas phase and then, to have a more representative picture of the environment, with implicit and mixed implicit-explicit solvation models. In the first part of this analysis, absorption spectra have been simulated for each model in order to guide the setup for the non-adiabatic excited-state molecular dynamic simulations. Then, non-adiabatic excited-state molecular dynamic simulations have been performed on a large set of independent trajectories and the population of the Qx and Qy states has been computed as the average of all the trajectories, estimating the rate constant for the process. Finally, with the aim of investigating the possible role played by the solvent in the Qx-Qy crossing mechanism, an essential dynamic analysis has been performed on the generated data, allowing one to find the most important motions during the simulated dynamics.
Collapse
Affiliation(s)
| | | | | | - Alfonso Pedone
- Università di Modena e Reggio Emilia, Modena 45125, Italy
| |
Collapse
|
32
|
Utilization of blue-green light by chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus: Ultrafast excitation energy conversion and transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148396. [PMID: 33581107 DOI: 10.1016/j.bbabio.2021.148396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/14/2023]
Abstract
Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret → Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret → Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.
Collapse
|
33
|
The role of mixed vibronic Q y-Q x states in green light absorption of light-harvesting complex II. Nat Commun 2020; 11:6011. [PMID: 33243997 PMCID: PMC7691517 DOI: 10.1038/s41467-020-19800-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
The importance of green light for driving natural photosynthesis has long been underappreciated, however, under the presence of strong illumination, green light actually drives photosynthesis more efficiently than red light. This green light is absorbed by mixed vibronic Qy-Qx states, arising from chlorophyll (Chl)-Chl interactions, although almost nothing is known about these states. Here, we employ polarization-dependent two-dimensional electronic-vibrational spectroscopy to study the origin and dynamics of the mixed vibronic Qy-Qx states of light-harvesting complex II. We show the states in this region dominantly arise from Chl b and demonstrate how it is possible to distinguish between the degree of vibronic Qy versus Qx character. We find that the dynamics for states of predominately Chl b Qy versus Chl b Qx character are markedly different, as excitation persists for significantly longer in the Qx states and there is an oscillatory component to the Qx dynamics, which is discussed. Our findings demonstrate the central role of electronic-nuclear mixing in efficient light-harvesting and the different functionalities of Chl a and Chl b. The green component of the solar spectrum can efficiently drive natural photosynthesis, but the process has been little investigated due to the complexity of the excited states involved. Here the authors utilize polarization-dependent two-dimensional electronic-vibrational spectroscopy to define the origin and dynamics of these states in light-harvesting complex II.
Collapse
|
34
|
Malone W, Nebgen B, White A, Zhang Y, Song H, Bjorgaard JA, Sifain AE, Rodriguez-Hernandez B, Freixas VM, Fernandez-Alberti S, Roitberg AE, Nelson TR, Tretiak S. NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:5771-5783. [DOI: 10.1021/acs.jctc.0c00248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Walter Malone
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Josiah A. Bjorgaard
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E. Sifain
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, United States
| | | | - Victor M. Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tammie R. Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Lystrom L, Tamukong P, Mihaylov D, Kilina S. Phonon-Driven Energy Relaxation in PbS/CdS and PbSe/CdSe Core/Shell Quantum Dots. J Phys Chem Lett 2020; 11:4269-4278. [PMID: 32354213 DOI: 10.1021/acs.jpclett.0c00845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the impact of the chemical composition on phonon-mediated exciton relaxation in the core/shell quantum dots (QDs), with 1 nm core made of PbX and the monolayer shell made of CdX, where X = S and Se. For this, time-domain nonadiabatic molecular dynamics (NAMD) based on density functional theory (DFT) and surface hopping techniques are applied. Simulations reveal twice faster energy relaxation in PbS/CdS than PbSe/CdSe because of dominant couplings to higher-energy optical phonons in structures with sulfur anions. For both QDs, the long-living intermediate states associated with the core-shell interface govern the dynamics. Therefore, a simple exponential model is not appropriate, and the four-state irreversible kinetic model is suggested instead, predicting 0.9 and 0.5 ps relaxation rates in PbSe/CdSe and PbS/CdS QDs, respectively. Thus, 2 nm PdSe/CdSe QDs with a single monolayer shell exhibit the phonon-mediated relaxation time sufficient for carrier multiplications to outpace energy dissipation and benefit the solar conversion efficiency.
Collapse
Affiliation(s)
- Levi Lystrom
- Chemistry & Biochemistry Department, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Patrick Tamukong
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Deyan Mihaylov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, United States
| | - Svetlana Kilina
- Chemistry & Biochemistry Department, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
36
|
Fresch E, Collini E. Relaxation Dynamics of Chlorophyll b in the Sub-ps Ultrafast Timescale Measured by 2D Electronic Spectroscopy. Int J Mol Sci 2020; 21:ijms21082836. [PMID: 32325770 PMCID: PMC7215592 DOI: 10.3390/ijms21082836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
A thorough characterization of the early time sub-100 fs relaxation dynamics of biologically relevant chromophores is of crucial importance for a complete understanding of the mechanisms regulating the ultrafast dynamics of the relaxation processes in more complex multichromophoric light-harvesting systems. While chlorophyll a has already been the object of several investigations, little has been reported on chlorophyll b, despite its pivotal role in many functionalities of photosynthetic proteins. Here the relaxation dynamics of chlorophyll b in the ultrafast regime have been characterized using 2D electronic spectroscopy. The comparison of experimental measurements performed at room temperature and 77 K allows the mechanisms and the dynamics of the sub-100 fs relaxation dynamics to be characterized, including spectral diffusion and fast internal conversion assisted by a specific set of vibrational modes.
Collapse
|
37
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
38
|
Khyasudeen MF, Nowakowski PJ, Nguyen HL, Sim JH, Do TN, Tan HS. Studying the spectral diffusion dynamics of chlorophyll a and chlorophyll b using two-dimensional electronic spectroscopy. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Song Y, Schubert A, Maret E, Burdick RK, Dunietz BD, Geva E, Ogilvie JP. Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations. Chem Sci 2019; 10:8143-8153. [PMID: 31857881 PMCID: PMC6836992 DOI: 10.1039/c9sc02329a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Q x and Q y states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Q x to Q y is found to be 11 ps-1. Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38-50 ps-1. We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| | - Alexander Schubert
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Elizabeth Maret
- Applied Physics Program , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA
| | - Ryan K Burdick
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Eitan Geva
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| |
Collapse
|
40
|
Energy transfer dynamics in a red-shifted violaxanthin-chlorophyll a light-harvesting complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:111-120. [DOI: 10.1016/j.bbabio.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/21/2022]
|
41
|
Khyasudeen MF, Nowakowski PJ, Tan HS. Measuring the Ultrafast Correlation Dynamics between the Qx and Qy Bands in Chlorophyll Molecules. J Phys Chem B 2019; 123:1359-1364. [DOI: 10.1021/acs.jpcb.9b00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- M. Faisal Khyasudeen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Paweł J. Nowakowski
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
42
|
Sifain AE, Gifford BJ, Gao DW, Lystrom L, Nelson TR, Tretiak S. NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline. J Phys Chem A 2018; 122:9403-9411. [DOI: 10.1021/acs.jpca.8b09103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, United States
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brendan J. Gifford
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David W. Gao
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Los Alamos High School, Los Alamos, New Mexico 87544, United States
| | - Levi Lystrom
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tammie R. Nelson
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
43
|
Jakučionis M, Chorošajev V, Abramavičius D. Vibrational damping effects on electronic energy relaxation in molecular aggregates. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Titov E, Humeniuk A, Mitrić R. Exciton localization in excited-state dynamics of a tetracene trimer: a surface hopping LC-TDDFTB study. Phys Chem Chem Phys 2018; 20:25995-26007. [PMID: 30298878 DOI: 10.1039/c8cp05240a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units.
Collapse
Affiliation(s)
- Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
45
|
Raman and 2D electronic spectroscopies: A fruitful alliance for the investigation of ground and excited state vibrations in chlorophyll a. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
46
|
Hartzler DA, Slipchenko LV, Savikhin S. Triplet–Triplet Coupling in Chromophore Dimers: Theory and Experiment. J Phys Chem A 2018; 122:6713-6723. [DOI: 10.1021/acs.jpca.8b04294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Semer J, Štroch M, Špunda V, Navrátil M. Partitioning of absorbed light energy within photosystem II in barley can be affected by chloroplast movement. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:98-106. [PMID: 30025290 DOI: 10.1016/j.jphotobiol.2018.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/28/2018] [Indexed: 02/03/2023]
Abstract
Plants have developed many ways to protect reaction centres of photosystems against overexcitation. One of the mechanisms involves reduction of the leaf absorption cross-section by light-induced chloroplast avoidance reaction. Decrease in the probability of photon absorption by the pigments bound within photosystem II (PSII) complexes leads to the increase in quantum yield of PSII photochemistry (ΦPSII). On the other hand, the decrease of PSII excitation probability causes reduction of chlorophyll a fluorescence intensity which is manifested as the apparent increase of determined quantum yield of regulated light-induced non-photochemical quenching (ΦNPQ). Absorption of different light intensity by phototropins led to the different chloroplast distribution within barley leaves, estimated by measurement of the leaf transmittance. Due to a weak blue light used for transmittance measurements, leaves exposed to actinic light with wavelengths longer than 520 nm undergo chloroplast accumulation reaction, in contrast with leaves exposed to light with shorter wavelengths, that showed a different extent of chloroplast avoidance reaction. Based on the ΦNPQ action spectra measured simultaneously with the transmittance, the influence of different chloroplast distribution on ΦNPQ was assessed. The analysis of results showed that decrease in the leaf absorption cross-section due to increasing part of chloroplasts reaching profile position significantly affected the partitioning of excitation energy within PSII and such rearrangement also distorted measured ΦNPQ and cannot be neglected in its interpretation. When the majority of chloroplasts reached profile position, the photoprotective effect appeared to be the most prominent for strong blue light that has the highest absorption in the upper leaf layers in comparison with green or red ones.
Collapse
Affiliation(s)
- J Semer
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
| | - M Štroch
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - V Špunda
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic; Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - M Navrátil
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic.
| |
Collapse
|
48
|
Sifain AE, Bjorgaard JA, Nelson TR, Nebgen BT, White AJ, Gifford BJ, Gao DW, Prezhdo OV, Fernandez-Alberti S, Roitberg AE, Tretiak S. Photoexcited Nonadiabatic Dynamics of Solvated Push–Pull π-Conjugated Oligomers with the NEXMD Software. J Chem Theory Comput 2018; 14:3955-3966. [DOI: 10.1021/acs.jctc.8b00103] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Brendan J. Gifford
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - David W. Gao
- Los Alamos High School, Los Alamos, New Mexico 87544, United States
| | | | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | |
Collapse
|
49
|
Freixas VM, Fernandez-Alberti S, Makhov DV, Tretiak S, Shalashilin D. An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules. Phys Chem Chem Phys 2018; 20:17762-17772. [DOI: 10.1039/c8cp02321b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidimensional wave function: a superposition of Gaussian coherent states guided by Ehrenfest trajectories suited to clone and swap their electronic amplitudes.
Collapse
Affiliation(s)
| | | | - Dmitry V. Makhov
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- School of Mathematics
| | - Sergei Tretiak
- Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT)
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | |
Collapse
|
50
|
Meneghin E, Leonardo C, Volpato A, Bolzonello L, Collini E. Mechanistic insight into internal conversion process within Q-bands of chlorophyll a. Sci Rep 2017; 7:11389. [PMID: 28900171 PMCID: PMC5595816 DOI: 10.1038/s41598-017-11621-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
The non-radiative relaxation of the excitation energy from higher energy states to the lowest energy state in chlorophylls is a crucial preliminary step for the process of photosynthesis. Despite the continuous theoretical and experimental efforts to clarify the ultrafast dynamics of this process, it still represents the object of an intense investigation because the ultrafast timescale and the congestion of the involved states makes its characterization particularly challenging. Here we exploit 2D electronic spectroscopy and recently developed data analysis tools to provide more detailed insights into the mechanism of internal conversion within the Q-bands of chlorophyll a. The measurements confirmed the timescale of the overall internal conversion rate (170 fs) and captured the presence of a previously unidentified ultrafast (40 fs) intermediate step, involving vibronic levels of the lowest excited state.
Collapse
Affiliation(s)
- Elena Meneghin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Leonardo
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Andrea Volpato
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Luca Bolzonello
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|