1
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Lins J, Miloslavina YA, Carrara SC, Rösler L, Hofmann S, Herr K, Theiß F, Wienands L, Avrutina O, Kolmar H, Buntkowsky G. Parahydrogen-induced polarization allows 2000-fold signal enhancement in biologically active derivatives of the peptide-based drug octreotide. Sci Rep 2023; 13:6388. [PMID: 37076553 PMCID: PMC10115808 DOI: 10.1038/s41598-023-33577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Octreotide, a somatostatin analogue, has shown its efficacy for the diagnostics and treatment of various types of cancer, i.e., in octreotide scan, as radio-marker after labelling with a radiopharmaceutical. To avoid toxicity of radio-labeling, octreotide-based assays can be implemented into magnetic resonance techniques, such as MRI and NMR. Here we used a Parahydrogen-Induced Polarization (PHIP) approach as a cheap, fast and straightforward method. Introduction of L-propargyl tyrosine as a PHIP marker at different positions of octreotide by manual Solid-Phase Peptide Synthesis (SPPS) led to up to 2000-fold proton signal enhancement (SE). Cell binding studies confirmed that all octreotide variants retained strong binding affinity to the surface of human-derived cancer cells expressing somatostatin receptor 2. The hydrogenation reactions were successfully performed in methanol and under physiologically compatible mixtures of water with methanol or ethanol. The presented results open up new application areas of biochemical and pharmacological studies with octreotide.
Collapse
Affiliation(s)
- Jonas Lins
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Yuliya A Miloslavina
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Stefania C Carrara
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Lorenz Rösler
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Sarah Hofmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Franziska Theiß
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Laura Wienands
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
3
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
4
|
Hune T, Mamone S, Schroeder H, Jagtap AP, Sternkopf S, Stevanato G, Korchak S, Fokken C, Müller CA, Schmidt AB, Becker D, Glöggler S. Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1- 13 C-Pyruvate-d 3. Chemphyschem 2023; 24:e202200615. [PMID: 36106366 PMCID: PMC10092681 DOI: 10.1002/cphc.202200615] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.
Collapse
Affiliation(s)
- Theresa Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christoph A Müller
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Andreas B Schmidt
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.,Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, 48202, Detroit, MI, USA
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| |
Collapse
|
5
|
Saul P, Mamone S, Glöggler S. Hyperpolarization of 15N in an amino acid derivative. RSC Adv 2022; 12:2282-2286. [PMID: 35425247 PMCID: PMC8979135 DOI: 10.1039/d1ra08808d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarization is a nuclear magnetic resonance (NMR) technique which can be used to significantly enhance the signal in NMR experiments. In recent years, the possibility to enhance the NMR signal of heteronuclei by the use of para-hydrogen induced polarization (PHIP) has gained attention, especially in the area of possible applications in magnetic resonance imaging (MRI). Herein we introduce a way to synthesize a fully deuterated, 15N labelled amino acid derivative and the possibility to polarize the 15N by means of hydrogenation with para-hydrogen to a polarization level of 0.18%. The longevity of the polarization with a longitudinal relaxation time of more than a minute can allow for the observation of dynamic processes and metabolic imaging in vivo. In addition, we observe the phenomenon of proton–deuterium exchange with a homogeneous catalyst leading to signal enhanced allyl moeities in the precursor. A perdeuterated, 15N-labeled derivative of the amino acid glycine has been synthesized and polarized by means of para-hydrogen induced polarization (PHIP).![]()
Collapse
Affiliation(s)
- Philip Saul
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Salvatore Mamone
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| | - Stefan Glöggler
- Research Group for NMR Signal Enhancement, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37 077 Göttingen Germany +49 551 3961 108.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straßze 3A 37 075 Göttingen Germany
| |
Collapse
|
6
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
7
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parahydrogen-Induced Polarization of Amino Acids. Angew Chem Int Ed Engl 2021; 60:23496-23507. [PMID: 33635601 PMCID: PMC8596608 DOI: 10.1002/anie.202100109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH2 ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Gerd Buntkowsky
- Technical University DarmstadtEduard-Zintl-Institute for Inorganic and Physical ChemistryAlarich-Weiss-Strasse 864287DarmstadtGermany
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York, HeslingtonYorkYO10 5NYUK
| | - Igor V. Koptyug
- International Tomography CenterSB RAS3A Institutskaya st.630090NovosibirskRussia
- Novosibirsk State University2 Pirogova st.630090NovosibirskRussia
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
8
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parawasserstoff‐induzierte Polarisation von Aminosäuren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Gerd Buntkowsky
- Technical University Darmstadt Eduard-Zintl-Institute for Inorganic and Physical Chemistry Alarich-Weiss-Straße 8 64287 Darmstadt Deutschland
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM) Department of Chemistry University of York, Heslington York YO10 5NY Vereinigtes Königreich
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya st. 630090 Novosibirsk Russland
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russland
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| |
Collapse
|
9
|
Salnikov OG, Chukanov NV, Kovtunova LM, Bukhtiyarov VI, Kovtunov KV, Shchepin RV, Koptyug IV, Chekmenev EY. Heterogeneous 1 H and 13 C Parahydrogen-Induced Polarization of Acetate and Pyruvate Esters. Chemphyschem 2021; 22:1389-1396. [PMID: 33929077 PMCID: PMC8249325 DOI: 10.1002/cphc.202100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Magnetic resonance imaging of [1-13 C]hyperpolarized carboxylates (most notably, [1-13 C]pyruvate) allows one to visualize abnormal metabolism in tumors and other pathologies. Herein, we investigate the efficiency of 1 H and 13 C hyperpolarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties using heterogeneous hydrogenation of corresponding vinyl, allyl and propargyl precursors in isotopically unlabeled and 1-13 C-enriched forms with parahydrogen over Rh/TiO2 catalysts in methanol-d4 and in D2 O. The maximum obtained 1 H polarization was 0.6±0.2 % (for propyl acetate in CD3 OD), while the highest 13 C polarization was 0.10±0.03 % (for ethyl acetate in CD3 OD). Hyperpolarization of acetate esters surpassed that of pyruvates, while esters with a triple carbon-carbon bond in unsaturated alcoholic moiety were less efficient as parahydrogen-induced polarization precursors than esters with a double bond. Among the compounds studied, the maximum 1 H and 13 C NMR signal intensities were observed for propyl acetate. Ethyl acetate yielded slightly less intense NMR signals which were dramatically greater than those of other esters under study.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Roman V Shchepin
- Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines & Technology, 57701, Rapid City, South Dakota, United States
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, Michigan, United States
- Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
10
|
Pokochueva EV, Burueva DB, Salnikov OG, Koptyug IV. Heterogeneous Catalysis and Parahydrogen-Induced Polarization. Chemphyschem 2021; 22:1421-1440. [PMID: 33969590 DOI: 10.1002/cphc.202100153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/05/2021] [Indexed: 01/11/2023]
Abstract
Parahydrogen-induced polarization with heterogeneous catalysts (HET-PHIP) has been a subject of extensive research in the last decade since its first observation in 2007. While NMR signal enhancements obtained with such catalysts are currently below those achieved with transition metal complexes in homogeneous hydrogenations in solution, this relatively new field demonstrates major prospects for a broad range of advanced fundamental and practical applications, from providing catalyst-free hyperpolarized fluids for biomedical magnetic resonance imaging (MRI) to exploring mechanisms of industrially important heterogeneous catalytic processes. This review covers the evolution of the heterogeneous catalysts used for PHIP observation, from metal complexes immobilized on solid supports to bulk metals and single-atom catalysts and discusses the general visions for maximizing the obtained NMR signal enhancements using HET-PHIP. Various practical applications of HET-PHIP, both for catalytic studies and for potential production of hyperpolarized contrast agents for MRI, are described.
Collapse
Affiliation(s)
- Ekaterina V Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, 3 A Institutskaya St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| |
Collapse
|
11
|
Chekmenev EY, Goodson BM, Bukhtiyarov VI, Koptyug IV. Bridging the Gap: From Homogeneous to Heterogeneous Parahydrogen-induced Hyperpolarization and Beyond. Chemphyschem 2021; 22:710-715. [PMID: 33825286 PMCID: PMC8357055 DOI: 10.1002/cphc.202001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Demonstration of parahydrogen-induced polarization effects in hydrogenations catalyzed by heterogeneous catalysts instead of metal complexes in a homogeneous solution has opened an entirely new dimension for parahydrogen-based research, demonstrating its applicability not only for the production of catalyst-free hyperpolarized liquids and gases and long-lived non-equilibrium spin states for potential biomedical applications, but also for addressing challenges of modern fundamental and industrial catalysis including advanced mechanistic studies of catalytic reactions and operando NMR and MRI of reactors. This essay summarizes the progress achieved in this field by highlighting the research contributed to it by our colleague and friend Kirill V. Kovtunov whose scientific career ended unexpectedly and tragically at the age of 37. His role in this research was certainly crucial, further enhanced by a vast network of his contacts and collaborations at the national and international level.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University Karmanos Cancer Institute (KCI), Detroit, MI 48202, USA
- Russian Academy of Sciences, 14 Leninskiy prospect, Moscow, 119991, Russia
| | - Boyd M Goodson
- Southern Illinois University Department of Chemistry and Biochemistry Materials Technology Center, Carbondale, IL 62901, USA
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev pr., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Reineri F, Cavallari E, Carrera C, Aime S. Hydrogenative-PHIP polarized metabolites for biological studies. MAGMA (NEW YORK, N.Y.) 2021; 34:25-47. [PMID: 33527252 PMCID: PMC7910253 DOI: 10.1007/s10334-020-00904-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
ParaHydrogen induced polarization (PHIP) is an efficient and cost-effective hyperpolarization method, but its application to biological investigations has been hampered, so far, due to chemical challenges. PHIP is obtained by means of the addition of hydrogen, enriched in the para-spin isomer, to an unsaturated substrate. Both hydrogen atoms must be transferred to the same substrate, in a pairwise manner, by a suitable hydrogenation catalyst; therefore, a de-hydrogenated precursor of the target molecule is necessary. This has strongly limited the number of parahydrogen polarized substrates. The non-hydrogenative approach brilliantly circumvents this central issue, but has not been translated to in-vivo yet. Recent advancements in hydrogenative PHIP (h-PHIP) considerably widened the possibility to hyperpolarize metabolites and, in this review, we will focus on substrates that have been obtained by means of this method and used in vivo. Attention will also be paid to the requirements that must be met and on the issues that have still to be tackled to obtain further improvements and to push PHIP substrates in biological applications.
Collapse
Affiliation(s)
- Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy.
| | - Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| | - Carla Carrera
- Institute of Biostructures and Bioimaging, National Research Council, Via Nizza 52, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Turin, Italy
| |
Collapse
|
13
|
Kundra M, Grall T, Ng D, Xie Z, Hornung CH. Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tom Grall
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | | |
Collapse
|
14
|
Kovtunov KV, Salnikov OG, Skovpin IV, Chukanov NV, Burueva DB, Koptyug IV. Catalytic hydrogenation with parahydrogen: a bridge from homogeneous to heterogeneous catalysis. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One of the essential themes in modern catalysis is that of bridging the gap between its homogeneous and heterogeneous counterparts to combine their individual advantages and overcome shortcomings. One more incentive can now be added to the list, namely the ability of transition metal complexes to provide strong nuclear magnetic resonance (NMR) signal enhancement upon their use in homogeneous hydrogenations of unsaturated compounds with parahydrogen in solution. The addition of both H atoms of a parahydrogen molecule to the same substrate, a prerequisite for such effects, is implemented naturally with metal complexes that operate via the formation of a dihydride intermediate, but not with most heterogeneous catalysts. Despite that, it has been demonstrated in recent years that various types of heterogeneous catalysts are able to perform the required pairwise H2 addition at least to some extent. This has opened a major gateway for developing highly sensitive and informative tools for mechanistic studies of heterogeneous hydrogenations and other processes involving H2. Besides, production of catalyst-free fluids with NMR signals enhanced by 3-4 orders of magnitude is essential for modern applications of magnetic resonance imaging (MRI), including biomedical research and practice. The ongoing efforts to design heterogeneous catalysts which can implement the homogeneous (pairwise) hydrogenation mechanism are reported.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Oleg G. Salnikov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| | - Ivan V. Skovpin
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| | - Nikita V. Chukanov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Dudari B. Burueva
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Igor V. Koptyug
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| |
Collapse
|
15
|
|
16
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. “Direct”
13
C Hyperpolarization of
13
C‐Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Miranda N. Limbach
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Thomas R. Gebhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Clark W. Eriksson
- Department of Biomedical Engineering University of Virginia Charlottesville VA USA
| | - Shannon L. Eriksson
- Department of Chemistry Duke University Durham NC USA
- School of Medicine Duke University Durham NC USA
| | | | | | - Warren S. Warren
- Department of Chemistry Duke University Durham NC USA
- James B. Duke Professor, Physics Chemistry, Radiology, and Biomedical Engineering; Director Center for Molecular and Biomolecular Imaging Duke University Durham NC USA
| | - Eduard Y. Chekmenev
- Department of Chemistry Karmanos Cancer Institute (KCI) Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
- Russian Academy of Sciences (RAS) Moscow 119991 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
17
|
Gemeinhardt ME, Limbach MN, Gebhardt TR, Eriksson CW, Eriksson SL, Lindale JR, Goodson EA, Warren WS, Chekmenev EY, Goodson BM. "Direct" 13 C Hyperpolarization of 13 C-Acetate by MicroTesla NMR Signal Amplification by Reversible Exchange (SABRE). Angew Chem Int Ed Engl 2019; 59:418-423. [PMID: 31661580 DOI: 10.1002/anie.201910506] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Indexed: 01/06/2023]
Abstract
Herein, we demonstrate "direct" 13 C hyperpolarization of 13 C-acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir-IMes; [IrCl(COD)(IMes)], (IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1-13 C-acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE-SHEATH) resulted in positive enhancements of up to ≈100-fold in the 13 C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of "direct" transfer of spin order from parahydrogen to 13 C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the 13 C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE-SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism.
Collapse
Affiliation(s)
- Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Thomas R Gebhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Clark W Eriksson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Shannon L Eriksson
- Department of Chemistry, Duke University, Durham, NC, USA.,School of Medicine, Duke University, Durham, NC, USA
| | | | | | - Warren S Warren
- Department of Chemistry, Duke University, Durham, NC, USA.,James B. Duke Professor, Physics, Chemistry, Radiology, and Biomedical Engineering; Director, Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA.,Russian Academy of Sciences (RAS), Moscow, 119991, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA.,Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
18
|
Jagtap AP, Kaltschnee L, Glöggler S. Hyperpolarization of 15N-pyridinium and 15N-aniline derivatives by using parahydrogen: new opportunities to store nuclear spin polarization in aqueous media. Chem Sci 2019; 10:8577-8582. [PMID: 31803432 PMCID: PMC6839503 DOI: 10.1039/c9sc02970b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/30/2023] Open
Abstract
Hyperpolarization techniques hold the promise to improve the sensitivity of magnetic resonance imaging (MRI) contrast agents by over 10 000-fold. Among these techniques, para-hydrogen induced polarization (PHIP) allows for generating contrast agents within seconds. Typical hyperpolarized contrast agents are traceable for 2-3 minutes only, thus prolonging tracking-times holds great importance for the development of new ways to diagnose and monitor diseases. Here, we report on the design of perdeuterated 15N-containing molecules with longitudinal relaxation times (T 1) of several minutes. T 1 is a measure for how long hyperpolarization can be stored. In particular, we introduce two new hyperpolarizable families of compounds that we signal enhanced with para-hydrogen: tert-amine aniline derivatives and a quaternary pyridinium compound with 15N-T 1 of about 8 minutes. Especially the latter compound has great potential for applicability since we achieved 15N-polarization up to 8% and the pyridinium motif is contained in a variety of drug molecules and is also used in drug delivery systems.
Collapse
Affiliation(s)
- Anil P Jagtap
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Lukas Kaltschnee
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry , Am Fassberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration , Von-Siebold-Str. 3a , 37075 Göttingen , Germany
| |
Collapse
|
19
|
Salnikov OG, Chukanov NV, Shchepin RV, Manzanera Esteve IV, Kovtunov KV, Koptyug IV, Chekmenev EY. Parahydrogen-Induced Polarization of 1- 13C-Acetates and 1- 13C-Pyruvates Using Sidearm Hydrogenation of Vinyl, Allyl, and Propargyl Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:12827-12840. [PMID: 31363383 PMCID: PMC6664436 DOI: 10.1021/acs.jpcc.9b02041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
13C-hyperpolarized carboxylates, such as pyruvate and acetate, are emerging molecular contrast agents for MRI visualization of various diseases, including cancer. Here we present a systematic study of 1H and 13C parahydrogen-induced polarization of acetate and pyruvate esters with ethyl, propyl and allyl alcoholic moieties. It was found that allyl pyruvate is the most efficiently hyperpolarized compound from those under study, yielding 21% and 5.4% polarization of 1H and 13C nuclei, respectively, in CD3OD solutions. Allyl pyruvate and ethyl acetate were also hyperpolarized in aqueous phase using homogeneous hydrogenation with parahydrogen over water-soluble rhodium catalyst. 13C polarization of 0.82% and 2.1% was obtained for allyl pyruvate and ethyl acetate, respectively. 13C-hyperpolarized methanolic and aqueous solutions of allyl pyruvate and ethyl acetate were employed for in vitro MRI visualization, demonstrating the prospects for translation of the presented approach to biomedical in vivo studies.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Isaac V. Manzanera Esteve
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya
Street 3A, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova Street 2,
Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS),
Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Radiology, Vanderbilt University, Nashville,
Tennessee 37232-2310, United States
- Department of Biomedical Engineering, and Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt
University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio),
Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202,
United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow
119991, Russia
| |
Collapse
|
20
|
Itoda M, Naganawa Y, Ito M, Nonaka H, Sando S. Structural exploration of rhodium catalysts and their kinetic studies for efficient parahydrogen-induced polarization by side arm hydrogenation. RSC Adv 2019; 9:18183-18190. [PMID: 35515260 PMCID: PMC9064692 DOI: 10.1039/c9ra02580d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
New rhodium catalysts for parahydrogen-induced polarization.
Collapse
Affiliation(s)
- Marino Itoda
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Yuki Naganawa
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Makoto Ito
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
21
|
Korchak S, Emondts M, Mamone S, Blümich B, Glöggler S. Production of highly concentrated and hyperpolarized metabolites within seconds in high and low magnetic fields. Phys Chem Chem Phys 2019; 21:22849-22856. [DOI: 10.1039/c9cp05227e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We introduce two experiments that allow for the rapid production of hyperpolarized metabolites. More than 50% 13C polarization in 50 mM concentrations is achieved. This can be translated to portable low field NMR devices.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials
- D-52056 Aachen
- Germany
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| | - Bernhard Blümich
- Institut für Technische Chemie und Makromolekulare Chemie
- RWTH-Aachen University
- Worringerweg 2
- Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry
- 37077 Göttingen
- Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Straße 3A
- 37075 Göttingen
| |
Collapse
|
22
|
Pokochueva EV, Kovtunov KV, Salnikov OG, Gemeinhardt ME, Kovtunova LM, Bukhtiyarov VI, Chekmenev EY, Goodson BM, Koptyug IV. Heterogeneous hydrogenation of phenylalkynes with parahydrogen: hyperpolarization, reaction selectivity, and kinetics. Phys Chem Chem Phys 2019; 21:26477-26482. [DOI: 10.1039/c9cp02913c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parahydrogen-induced polarization (PHIP) is a powerful technique for studying hydrogenation reactions in both gas and liquid phases.
Collapse
Affiliation(s)
- Ekaterina V. Pokochueva
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Oleg G. Salnikov
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry
- Southern Illinois University
- Carbondale
- USA
| | - Larisa M. Kovtunova
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- Boreskov Institute of Catalysis SB RAS
- 630090 Novosibirsk
| | | | - Eduard Y. Chekmenev
- Department of Chemistry
- Integrative Biosciences (Ibio)
- Wayne State University
- Karmanos Cancer Institute (KCI)
- Detroit
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry
- Southern Illinois University
- Carbondale
- USA
- Materials Technology Center
| | - Igor V. Koptyug
- International Tomography Center SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
23
|
Manoharan A, Rayner PJ, Fekete M, Iali W, Norcott P, Hugh Perry V, Duckett SB. Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization. Chemphyschem 2018; 20:285-294. [DOI: 10.1002/cphc.201800915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Anand Manoharan
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Peter J. Rayner
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Marianna Fekete
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Wissam Iali
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - Philip Norcott
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| | - V. Hugh Perry
- School of Biological Sciences; University of Southampton; Southampton UK
| | - Simon B. Duckett
- University of York; Department of Chemistry Heslington; York YO10 5DD UK
| |
Collapse
|
24
|
Kidd BE, Mashni JA, Limbach MN, Shi F, Chekmenev EY, Hou Y, Goodson BM. Toward Cleavable Metabolic/pH Sensing "Double Agents" Hyperpolarized by NMR Signal Amplification by Reversible Exchange. Chemistry 2018; 24:10641-10645. [PMID: 29800491 PMCID: PMC6097920 DOI: 10.1002/chem.201802622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/05/2022]
Abstract
We show the simultaneous generation of hyperpolarized 13 C-labeled acetate and 15 N-labeled imidazole following spin-relay of hyperpolarization and hydrolysis of the acetyl moiety on 1-13 C-15 N2 -acetylimidazole. Using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), transfer of spin order occurs from parahydrogen to acetylimidazole 15 N atoms and the acetyl 13 C site (≈263-fold enhancement), giving rise to relatively long hyperpolarization lifetimes at 0.3 T (T1 ≈52 s and ≈149 s for 13 C and 15 N, respectively). Immediately following polarization transfer, the 13 C-labeled acetyl group is hydrolytically cleaved to produce hyperpolarized 13 C-acetate/acetic acid (≈140-fold enhancement) and 15 N-imidazole (≈180-fold enhancement), the former with a 13 C T1 of ≈14 s at 0.3 T. Straightforward synthetic routes, efficient spin-relay of SABRE hyperpolarization, and facile bond cleavage open a door to the cheap and rapid generation of long-lived hyperpolarized states within a wide range of molecular targets, including biologically relevant carboxylic acid derivatives, for metabolic and pH imaging.
Collapse
Affiliation(s)
- Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jamil A Mashni
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Yuqing Hou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
25
|
Korchak S, Mamone S, Glöggler S. Over 50 % 1H and 13C Polarization for Generating Hyperpolarized Metabolites-A para-Hydrogen Approach. ChemistryOpen 2018; 7:672-676. [PMID: 30191091 PMCID: PMC6121117 DOI: 10.1002/open.201800086] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
para‐Hydrogen‐induced polarization (PHIP) is a method to rapidly generate hyperpolarized compounds, enhancing the signal of nuclear magnetic resonance (NMR) experiments by several thousand‐fold. The hyperpolarization of metabolites and their use as contrast agents in vivo is an emerging diagnostic technique. High degrees of polarization and extended polarization lifetime are necessary requirements for the detection of metabolites in vivo. Here, we present pulsed NMR methods for obtaining hyperpolarized magnetization in two metabolites. We demonstrate that the hydrogenation with para‐hydrogen of perdeuterated vinyl acetate allows us to create hyperpolarized ethyl acetate with close to 60 % 1H two‐spin order. With nearly 100 % efficiency, this order can either be transferred to 1H in‐phase magnetization or 13C magnetization of the carbonyl function. Close to 60 % polarization is experimentally verified for both nuclei. Cleavage of the ethyl acetate precursor in a 20 s reaction yields ethanol with approximately 27 % 1H polarization and acetate with around 20 % 13C polarization. This development will open new opportunities to generate metabolic contrast agents in less than one minute.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Germany
| |
Collapse
|
26
|
Chukanov N, Salnikov OG, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis of Unsaturated Precursors for Parahydrogen-Induced Polarization and Molecular Imaging of 1- 13C-Acetates and 1- 13C-Pyruvates via Side Arm Hydrogenation. ACS OMEGA 2018; 3:6673-6682. [PMID: 29978146 PMCID: PMC6026840 DOI: 10.1021/acsomega.8b00983] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Hyperpolarized forms of 1-13C-acetates and 1-13C-pyruvates are used as diagnostic contrast agents for molecular imaging of many diseases and disorders. Here, we report the synthetic preparation of 1-13C isotopically enriched and pure from solvent acetates and pyruvates derivatized with unsaturated ester moiety. The reported unsaturated precursors can be employed for NMR hyperpolarization of 1-13C-acetates and 1-13C-pyruvates via parahydrogen-induced polarization (PHIP). In this PHIP variant, Side arm hydrogenation (SAH) of unsaturated ester moiety is followed by the polarization transfer from nascent parahydrogen protons to 13C nucleus via magnetic field cycling procedure to achieve hyperpolarization of 13C nuclear spins. This work reports the synthesis of PHIP-SAH precursors: vinyl 1-13C-acetate (55% yield), allyl 1-13C-acetate (70% yield), propargyl 1-13C-acetate (45% yield), allyl 1-13C-pyruvate (60% yield), and propargyl 1-13C-pyruvate (35% yield). Feasibility of PHIP-SAH 13C hyperpolarization was verified by 13C NMR spectroscopy: hyperpolarized allyl 1-13C-pyruvate was produced from propargyl 1-13C-pyruvate with 13C polarization of ∼3.2% in CD3OD and ∼0.7% in D2O. 13C magnetic resonance imaging is demonstrated with hyperpolarized 1-13C-pyruvate in aqueous medium.
Collapse
Affiliation(s)
- Nikita
V. Chukanov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
- Department
of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- E-mail:
| |
Collapse
|
27
|
Korchak S, Yang S, Mamone S, Glöggler S. Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen. ChemistryOpen 2018; 7:344-348. [PMID: 29761065 PMCID: PMC5938614 DOI: 10.1002/open.201800024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 01/13/2023] Open
Abstract
Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para-hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para-hydrogen directly in a high magnetic field without the need for field cycling.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Shengjun Yang
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max-Planck-Institute for Biophysical Chemistry Am Faßberg 11 37077 Göttingen Germany.,Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
28
|
Wang W, Xu J, Zhao Y, Qi G, Wang Q, Wang C, Li J, Deng F. Facet dependent pairwise addition of hydrogen over Pd nanocrystal catalysts revealed via NMR using para-hydrogen-induced polarization. Phys Chem Chem Phys 2018; 19:9349-9353. [PMID: 28138682 DOI: 10.1039/c7cp00352h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We demonstrated the facet dependence of pairwise addition of hydrogen in heterogeneous catalysis over Pd nanocrystal catalysts via NMR using para-hydrogen-induced polarization.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yanxi Zhao
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Guodong Qi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jinlin Li
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Kovtunov KV, Kovtunova LM, Gemeinhardt ME, Bukhtiyarov AV, Gesiorski J, Bukhtiyarov VI, Chekmenev EY, Koptyug IV, Goodson BM. Heterogeneous Microtesla SABRE Enhancement of 15 N NMR Signals. Angew Chem Int Ed Engl 2017; 56:10433-10437. [PMID: 28644918 PMCID: PMC5561492 DOI: 10.1002/anie.201705014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/06/2022]
Abstract
The hyperpolarization of heteronuclei via signal amplification by reversible exchange (SABRE) was investigated under conditions of heterogeneous catalysis and microtesla magnetic fields. Immobilization of [IrCl(COD)(IMes)], [IMes=1,3-bis(2,4,6-trimethylphenyl), imidazole-2-ylidene; COD=cyclooctadiene] catalyst onto silica particles modified with amine linkers engenders an effective heterogeneous SABRE (HET-SABRE) catalyst that was used to demonstrate a circa 100-fold enhancement of 15 N NMR signals in 15 N-pyridine at 9.4 T following parahydrogen bubbling within a magnetic shield. No 15 N NMR enhancement was observed from the supernatant liquid following catalyst separation, which along with XPS characterization supports the fact that the effects result from SABRE under heterogeneous catalytic conditions. The technique can be developed further for producing catalyst-free agents via SABRE with hyperpolarized heteronuclear spins, and thus is promising for biomedical NMR and MRI applications.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Andrey V Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Jonathan Gesiorski
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN, 37232-2310, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
30
|
Kovtunov KV, Kovtunova LM, Gemeinhardt ME, Bukhtiyarov AV, Gesiorski J, Bukhtiyarov VI, Chekmenev EY, Koptyug IV, Goodson BM. Heterogeneous Microtesla SABRE Enhancement of
15
N NMR Signals. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center, SB RAS 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
| | - Larisa M. Kovtunova
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Max E. Gemeinhardt
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - Andrey V. Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr. Novosibirsk 630090 Russia
| | - Jonathan Gesiorski
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | | | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology Department of Biomedical Engineering Department of Physics and Astronomy, Vanderbilt-Ingram Cancer Center (VICC) Nashville TN 37232-2310 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 119991 Moscow Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center, SB RAS 3A Institutskaya St. Novosibirsk 630090 Russia
- Novosibirsk State University 2 Pirogova St. Novosibirsk 630090 Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University Carbondale IL 62901 USA
| |
Collapse
|
31
|
Cavallari E, Carrera C, Reineri F. ParaHydrogen Hyperpolarized Substrates for Molecular Imaging Studies. Isr J Chem 2017. [DOI: 10.1002/ijch.201700030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eleonora Cavallari
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| | - Carla Carrera
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences; University of Torino; Via Nizza 52 Torino Italy
| |
Collapse
|
32
|
Salnikov OG, Burueva DB, Gerasimov EY, Bukhtiyarov AV, Khudorozhkov AK, Prosvirin IP, Kovtunova LM, Barskiy DA, Bukhtiyarov VI, Kovtunov KV, Koptyug IV. The effect of oxidative and reductive treatments of titania-supported metal catalysts on the pairwise hydrogen addition to unsaturated hydrocarbons. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Kovtunov KV, Barskiy DA, Shchepin RV, Salnikov OG, Prosvirin IP, Bukhtiyarov AV, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Production of Pure Aqueous 13 C-Hyperpolarized Acetate by Heterogeneous Parahydrogen-Induced Polarization. Chemistry 2016; 22:16446-16449. [PMID: 27607402 PMCID: PMC5544125 DOI: 10.1002/chem.201603974] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Indexed: 12/18/2022]
Abstract
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13 C-hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13 C-enriched ethyl acetate-1-13 C detected at 9.4 T. An approximately 14-fold 13 C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen-derived protons to 13 C nuclei. This first observation of 13 C PHIP-hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst-free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP-SAH) approach.
Collapse
Affiliation(s)
- Kirill V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Roman V Shchepin
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA
| | - Oleg G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Igor P Prosvirin
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Andrey V Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Larisa M Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Valerii I Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia.
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee, 37232-2310, USA.
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia.
| |
Collapse
|
34
|
Kovtunov KV, Salnikov OG, Zhivonitko VV, Skovpin IV, Bukhtiyarov VI, Koptyug IV. Catalysis and Nuclear Magnetic Resonance Signal Enhancement with Parahydrogen. Top Catal 2016. [DOI: 10.1007/s11244-016-0688-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kovtunov KV, Barskiy DA, Salnikov OG, Shchepin RV, Coffey AM, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Toward Production of Pure 13C Hyperpolarized Metabolites Using Heterogeneous Parahydrogen-Induced Polarization of Ethyl[1- 13C]acetate. RSC Adv 2016; 6:69728-69732. [PMID: 28042472 DOI: 10.1039/c6ra15808k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report the production of 13C-hyperpolarized ethyl acetate via heterogeneously catalyzed pairwise addition of parahydrogen to vinyl acetate over TiO2-supported rhodium nanoparticles, followed by magnetic field cycling. Importantly, the hyperpolarization is demonstrated even at the natural abundance of 13C isotope (ca. 1.1%) along with the easiest separation of the catalyst from the hyperpolarized liquid.
Collapse
Affiliation(s)
- K V Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - D A Barskiy
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - O G Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - R V Shchepin
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - A M Coffey
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA
| | - L M Kovtunova
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia; Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr., Novosibirsk, 630090 Russia
| | - V I Bukhtiyarov
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia; Boreskov Institute of Catalysis SB RAS 5 Acad. Lavrentiev Pr., Novosibirsk, 630090 Russia
| | - I V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center SB RAS, Institutskaya St. 3A, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - E Y Chekmenev
- Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee, 37232-2310, USA; Russian Academy of Sciences, Leninskiy Prospect 14, 119991 Moscow, Russia
| |
Collapse
|
36
|
Shchepin RV, Barskiy DA, Coffey AM, Manzanera Esteve IV, Chekmenev EY. Efficient Synthesis of Molecular Precursors for Para‐Hydrogen‐Induced Polarization of Ethyl Acetate‐1‐
13
C and Beyond. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roman V. Shchepin
- Department of Radiology Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Nashville TN 37232 USA
| | - Danila A. Barskiy
- Department of Radiology Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Nashville TN 37232 USA
| | - Aaron M. Coffey
- Department of Radiology Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Nashville TN 37232 USA
| | - Isaac V. Manzanera Esteve
- Department of Radiology Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Nashville TN 37232 USA
| | - Eduard Y. Chekmenev
- Department of Radiology Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Nashville TN 37232 USA
- Russian Academy of Sciences 119991 Moscow Russia
| |
Collapse
|
37
|
Shchepin RV, Barskiy DA, Coffey AM, Manzanera Esteve IV, Chekmenev EY. Efficient Synthesis of Molecular Precursors for Para-Hydrogen-Induced Polarization of Ethyl Acetate-1-(13) C and Beyond. Angew Chem Int Ed Engl 2016; 55:6071-4. [PMID: 27061815 DOI: 10.1002/anie.201600521] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/18/2016] [Indexed: 12/15/2022]
Abstract
A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry.
Collapse
Affiliation(s)
- Roman V Shchepin
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN, 37232, USA
| | - Danila A Barskiy
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN, 37232, USA
| | - Isaac V Manzanera Esteve
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN, 37232, USA
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Department of Biomedical Engineering, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN, 37232, USA. .,Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|