1
|
Chen M, Peng M, Yuan M, Huang C, Liu J, Wu Z, Chen W, Hu S, Liu Q, Dong J, Ling L. Detection of Salmonella enterica in food using targeted mass spectrometry. Food Chem 2025; 465:141985. [PMID: 39549512 DOI: 10.1016/j.foodchem.2024.141985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The high prevalence of Salmonella enterica necessitates rapid and efficient detection methods. Targeted mass spectrometry (MS) using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) has become a promising technique with improved specificity and sensitivity. We develop a novel targeted MS method for detecting S. enterica in food based on peptide biomarkers. Using a combination of four peptide biomarkers, this newly developed method could accurately distinguish S. enterica from other conventional food-borne pathogens. When combined with buoyant density centrifugation (BDC), Salmonella was efficiently separated from food matrices. Based on this discovery, this method was successfully applied to detect S. enterica in both artificially and naturally contaminated food samples, comparable to the culture method. These results demonstrate the potential of the targeted MS method in various food categories and are expected to be an alternative approach for S. enterica detection in food.
Collapse
Affiliation(s)
- Mengqi Chen
- Guangzhou Customs Technology Center, Guangzhou 510623, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Miaoxi Peng
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Muyun Yuan
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Chengdong Huang
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Jingwen Liu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Zuqing Wu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Wenrui Chen
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qing Liu
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Jie Dong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Li Ling
- Guangzhou Customs Technology Center, Guangzhou 510623, China.
| |
Collapse
|
2
|
Fitts EC, Dent EA, Burd EM. Validation of short culture method for rapid bacterial identification of blood cultures via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Antimicrob Chemother 2024; 79:i9-i12. [PMID: 39298361 PMCID: PMC11412242 DOI: 10.1093/jac/dkae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Development of rapid bacterial identification from blood cultures has been an area of intense study in diagnostic microbiology. Shortened turnaround time coupled with antimicrobial stewardship interventions have been shown to improve patient outcomes and decrease healthcare-associated costs. OBJECTIVES We report the validation of a short incubation method for Gram-positive and Gram-negative bacterial identification utilizing MALDI-TOF MS without additional instrumentation, processing or cost compared with current practice. METHODS Prospective, observational, single-centre study in a quaternary care academic hospital encompassing 376 blood cultures subjected to bacterial identification after short incubation periods of 3-4 and 6-8 h. RESULTS There was 97.5% species-level identification agreement with tests undertaken after 3-4 h incubation with 83.6% isolates identified, and 99.7% species-level identification agreement after 6-8 h incubation with 96.7% isolates identified. CONCLUSIONS The short incubation method provides a rapid MALDI-TOF MS bacterial identification method, reducing turnaround time by 10-18 h compared with standard practice without additional cost, processing or instrumentation.
Collapse
Affiliation(s)
- Eric C Fitts
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - E Alexander Dent
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eileen M Burd
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Gant MS, Chamot-Rooke J. Present and future perspectives on mass spectrometry for clinical microbiology. Microbes Infect 2024; 26:105296. [PMID: 38199266 DOI: 10.1016/j.micinf.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.
Collapse
Affiliation(s)
- Megan S Gant
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology 75015 Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology 75015 Paris, France.
| |
Collapse
|
4
|
Deforet F, Carrière R, Dufour PL'A, Prat R, Desbiolles C, Cottin N, Reuzeau A, Dauwalder O, Dupieux-Chabert C, Tristan A, Cecchini T, Lemoine J, Vandenesch F. Proteomic assay for rapid characterisation of Staphylococcus aureus antimicrobial resistance mechanisms directly from blood cultures. Eur J Clin Microbiol Infect Dis 2024; 43:1329-1342. [PMID: 38750334 DOI: 10.1007/s10096-024-04811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Staphylococcus aureus is one of the most common pathogens causing bloodstream infection. A rapid characterisation of resistance to methicillin and, occasionally, to aminoglycosides for particular indications, is therefore crucial to quickly adapt the treatment and improve the clinical outcomes of septic patients. Among analytical technologies, targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a promising tool to detect resistance mechanisms in clinical samples. METHODS A rapid proteomic method was developed to detect and quantify the most clinically relevant antimicrobial resistance effectors in S. aureus in the context of sepsis: PBP2a, PBP2c, APH(3')-III, ANT(4')-I, and AAC(6')-APH(2''), directly from positive blood cultures and in less than 70 min including a 30-min cefoxitin-induction step. The method was tested on spiked blood culture bottles inoculated with 124 S.aureus, accounting for the known genomic diversity of SCCmec types and the genetic background of the strains. RESULTS This method provided 99% agreement for PBP2a (n = 98/99 strains) detection. Agreement was 100% for PBP2c (n = 5/5), APH(3')-III (n = 16/16), and ANT(4')-I (n = 20/20), and 94% for AAC(6')-APH(2'') (n = 16/17). Across the entire strain collection, 100% negative agreement was reported for each of the 5 resistance proteins. Additionally, relative quantification of ANT(4')-I expression allowed to discriminate kanamycin-susceptible and -resistant strains, in all strains harbouring the ant(4')-Ia gene. CONCLUSION The LC-MS/MS method presented herein demonstrates its ability to provide a reliable determination of S. aureus resistance mechanisms, directly from positive blood cultures and in a short turnaround time, as required in clinical laboratories.
Collapse
Affiliation(s)
- Francis Deforet
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Romain Carrière
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - Pierre L 'Aour Dufour
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Roxane Prat
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Chloé Desbiolles
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Noémie Cottin
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Alicia Reuzeau
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Olivier Dauwalder
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Céline Dupieux-Chabert
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - Anne Tristan
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France
| | - Tiphaine Cecchini
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR 5280, Villeurbanne, France
| | - François Vandenesch
- Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France.
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France.
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), UMR5308, École Normale Supérieure (ENS) de Lyon, Lyon, France.
| |
Collapse
|
5
|
Abu-Aqil G, Lapidot I, Salman A, Huleihel M. Quick Detection of Proteus and Pseudomonas in Patients' Urine and Assessing Their Antibiotic Susceptibility Using Infrared Spectroscopy and Machine Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:8132. [PMID: 37836961 PMCID: PMC10575053 DOI: 10.3390/s23198132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Bacterial resistance to antibiotics is a primary global healthcare concern as it hampers the effectiveness of commonly used antibiotics used to treat infectious diseases. The development of bacterial resistance continues to escalate over time. Rapid identification of the infecting bacterium and determination of its antibiotic susceptibility are crucial for optimal treatment and can save lives in many cases. Classical methods for determining bacterial susceptibility take at least 48 h, leading physicians to resort to empirical antibiotic treatment based on their experience. This random and excessive use of antibiotics is one of the most significant drivers of the development of multidrug-resistant (MDR) bacteria, posing a severe threat to global healthcare. To address these challenges, considerable efforts are underway to reduce the testing time of taxonomic classification of the infecting bacterium at the species level and its antibiotic susceptibility determination. Infrared spectroscopy is considered a rapid and reliable method for detecting minor molecular changes in cells. Thus, the main goal of this study was the use of infrared spectroscopy to shorten the identification and the susceptibility testing time of Proteus mirabilis and Pseudomonas aeruginosa from 48 h to approximately 40 min, directly from patients' urine samples. It was possible to identify the Proteus mirabilis and Pseudomonas aeruginosa species with 99% accuracy and, simultaneously, to determine their susceptibility to different antibiotics with an accuracy exceeding 80%.
Collapse
Affiliation(s)
- George Abu-Aqil
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itshak Lapidot
- Department of Electrical Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Tel-Aviv 69107, Israel;
- Laboratoire Informatique d’Avignon (LIA), Avignon Université, 339 Chemin des Meinajaries, 84000 Avignon, France
| | - Ahmad Salman
- Department of Physics, SCE-Shamoon College of Engineering, Beer-Sheva 84100, Israel
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Dauwalder O, Cecchini T, Rasigade JP, Vandenesch F. Matrix Assisted Laser Desorption Ionisation/Time Of Flight (MALDI/TOF) mass spectrometry is not done revolutionizing clinical microbiology diagnostic. Clin Microbiol Infect 2023; 29:127-129. [PMID: 36216238 DOI: 10.1016/j.cmi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Olivier Dauwalder
- Hospices Civils de Lyon, 24/7 Microbiology Platform, Institut des Agents Infectieux, Centre de Biologie et Pathologie Nord, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, Lyon, France.
| | - Tiphaine Cecchini
- Hospices Civils de Lyon, 24/7 Microbiology Platform, Institut des Agents Infectieux, Centre de Biologie et Pathologie Nord, Lyon, France
| | - Jean Philippe Rasigade
- Hospices Civils de Lyon, 24/7 Microbiology Platform, Institut des Agents Infectieux, Centre de Biologie et Pathologie Nord, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - François Vandenesch
- Hospices Civils de Lyon, 24/7 Microbiology Platform, Institut des Agents Infectieux, Centre de Biologie et Pathologie Nord, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Foudraine DE, Dekker LJM, Strepis N, Nispeling SJ, Raaphorst MN, Kloezen W, Colle P, Verbon A, Klaassen CHW, Luider TM, Goessens WHF. Using Targeted Liquid Chromatography-Tandem Mass Spectrometry to Rapidly Detect β-Lactam, Aminoglycoside, and Fluoroquinolone Resistance Mechanisms in Blood Cultures Growing E. coli or K. pneumoniae. Front Microbiol 2022; 13:887420. [PMID: 35814653 PMCID: PMC9257628 DOI: 10.3389/fmicb.2022.887420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
New and rapid antimicrobial susceptibility/resistance testing methods are required for bacteria from positive blood cultures. In this study, a multiplex-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the detection of β-lactam, aminoglycoside, and fluoroquinolone resistance mechanisms in blood cultures growing Escherichia coli or Klebsiella pneumoniae complex. Selected targets were the β-lactamases SHV, TEM, OXA-1-like, CTX-M-1-like, CMY-2-like, chromosomal E. coli AmpC (cAmpC), OXA-48-like, NDM, VIM, and KPC; the aminoglycoside-modifying enzymes AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6′)-Ib, ANT(2′′)-I, and APH(3′)-VI; the 16S-RMTases ArmA, RmtB, RmtC, and RmtF; the quinolone resistance mechanisms QnrA, QnrB, AAC(6′)-Ib-cr; the wildtype quinolone resistance determining region of GyrA; and the E. coli porins OmpC and OmpF. The developed assay was evaluated using 100 prospectively collected positive blood cultures, and 148 negative blood culture samples spiked with isolates previously collected from blood cultures or isolates carrying less prevalent resistance mechanisms. The time to result was approximately 3 h. LC-MS/MS results were compared with whole-genome sequencing and antimicrobial susceptibility testing results. Overall, there was a high agreement between LC-MS/MS results and whole-genome sequencing results. In addition, the majority of susceptible and non-susceptible phenotypes were correctly predicted based on LC-MS/MS results. Exceptions were the predictions for ciprofloxacin and amoxicillin/clavulanic acid that matched with the phenotype in 85.9 and 63.7% of the isolates, respectively. Targeted LC-MS/MS based on parallel reaction monitoring can be applied for the rapid and accurate detection of various resistance mechanisms in blood cultures growing E. coli or K. pneumoniae complex.
Collapse
Affiliation(s)
- Dimard E. Foudraine
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
- *Correspondence: Dimard E. Foudraine,
| | - Lennard J. M. Dekker
- Department of Neurology, Neuro-Oncology Laboratory, Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Stan J. Nispeling
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Merel N. Raaphorst
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Wendy Kloezen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Piet Colle
- Da Vinci Laboratory Solutions, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Theo M. Luider
- Department of Neurology, Neuro-Oncology Laboratory, Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| |
Collapse
|
8
|
Foudraine DE, Aarents CNM, Wattel AA, van Boxtel R, Strepis N, ten Kate MT, Verbon A, Luider TM, Klaassen CHW, Hays J, Dekker LJM, Tommassen J, Goessens WHF. Liquid Chromatography-Tandem Mass Spectrometry Analysis Demonstrates a Decrease in Porins and Increase in CMY-2 β-Lactamases in Escherichia coli Exposed to Increasing Concentrations of Meropenem. Front Microbiol 2022; 13:793738. [PMID: 35295306 PMCID: PMC8918824 DOI: 10.3389/fmicb.2022.793738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
While Extended-Spectrum β-Lactamases (ESBL) and AmpC β-lactamases barely degrade carbapenem antibiotics, they are able to bind carbapenems and prevent them from interacting with penicillin-binding proteins, thereby inhibiting their activity. Further, it has been shown that Enterobacterales can become resistant to carbapenems when high concentrations of ESBL and AmpC β-lactamases are present in the bacterial cell in combination with a decreased influx of antibiotics (due to a decrease in porins and outer-membrane permeability). In this study, a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the detection of the Escherichia coli porins OmpC and OmpF, its chromosomal AmpC β-lactamase, and the plasmid-mediated CMY-2 β-lactamase. BlaCMY–2–like positive E. coli isolates were cultured in the presence of increasing concentrations of meropenem, and resistant mutants were analyzed using the developed LC-MS/MS assay, Western blotting, and whole genome sequencing. In five strains that became meropenem resistant, a decrease in OmpC and/or OmpF (caused by premature stop codons or gene interruptions) was the first event toward meropenem resistance. In four of these strains, an additional increase in MICs was caused by an increase in CMY-2 production, and in one strain this was most likely caused by an increase in CTX-M-15 production. The LC-MS/MS assay developed proved to be suitable for the (semi-)quantitative analysis of CMY-2-like β-lactamases and porins within 4 h. Targeted LC-MS/MS could have additional clinical value in the early detection of non-carbapenemase-producing carbapenem-resistant E. coli.
Collapse
Affiliation(s)
- Dimard E. Foudraine
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
- *Correspondence: Dimard E. Foudraine,
| | - Camiel N. M. Aarents
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Agnes A. Wattel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Ria van Boxtel
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Marian T. ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Theo M. Luider
- Department of Neurology, Neuro-Oncology Laboratory/Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - John Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Lennard J. M. Dekker
- Department of Neurology, Neuro-Oncology Laboratory/Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, Utrecht, Netherlands
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| |
Collapse
|
9
|
Vaca DJ, Dobler G, Fischer SF, Keller C, Konrad M, von Loewenich FD, Orenga S, Sapre SU, van Belkum A, Kempf VAJ. Contemporary diagnostics for medically relevant fastidious microorganisms belonging to the genera Anaplasma, Bartonella, Coxiella, Orientia, and Rickettsia. FEMS Microbiol Rev 2022; 46:6530194. [PMID: 35175353 PMCID: PMC9300619 DOI: 10.1093/femsre/fuac013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Many of the human infectious pathogens—especially the zoonotic or vector-borne bacteria—are fastidious organisms that are difficult to cultivate because of their strong adaption to the infected host culminating in their near-complete physiological dependence on this environment. These bacterial species exhibit reduced multiplication rates once they are removed from their optimal ecological niche. This fact complicates the laboratory diagnosis of the disease and hinders the detection and further characterization of the underlying organisms, e.g. at the level of their resistance to antibiotics due to their slow growth. Here, we describe the current state of microbiological diagnostics for five genera of human pathogens with a fastidious laboratory lifestyle. For Anaplasma spp., Bartonella spp., Coxiella burnetii, Orientia spp. and Rickettsia spp., we will summarize the existing diagnostic protocols, the specific limitations for implementation of novel diagnostic approaches and the need for further optimization or expansion of the diagnostic armamentarium. We will reflect upon the diagnostic opportunities provided by new technologies including mass spectrometry and next-generation nucleic acid sequencing. Finally, we will review the (im)possibilities of rapidly developing new in vitro diagnostic tools for diseases of which the causative agents are fastidiously growing and therefore hard to detect.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| | - Gerhard Dobler
- Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Germany
| | - Silke F Fischer
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | - Maik Konrad
- National Consulting Laboratory for Coxiella burnetii, State Health Office Baden-Württemberg, Germany
| | | | | | | | | | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, Goethe University of Frankfurt, Germany
| |
Collapse
|
10
|
Datar R, Orenga S, Pogorelcnik R, Rochas O, Simner PJ, van Belkum A. Recent Advances in Rapid Antimicrobial Susceptibility Testing. Clin Chem 2021; 68:91-98. [DOI: 10.1093/clinchem/hvab207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
Abstract
Background
Antimicrobial susceptibility testing (AST) is classically performed using growth-based techniques that essentially require viable bacterial matter to become visible to the naked eye or a sophisticated densitometer.
Content
Technologies based on the measurement of bacterial density in suspension have evolved marginally in accuracy and rapidity over the 20th century, but assays expanded for new combinations of bacteria and antimicrobials have been automated, and made amenable to high-throughput turn-around. Over the past 25 years, elevated AST rapidity has been provided by nucleic acid-mediated amplification technologies, proteomic and other “omic” methodologies, and the use of next-generation sequencing. In rare cases, AST at the level of single-cell visualization was developed. This has not yet led to major changes in routine high-throughput clinical microbiological detection of antimicrobial resistance.
Summary
We here present a review of the new generation of methods and describe what is still urgently needed for their implementation in day-to-day management of the treatment of infectious diseases.
Collapse
Affiliation(s)
- Rucha Datar
- bioMérieux, Microbiology Research, La Balme Les Grottes, France
| | - Sylvain Orenga
- bioMérieux, Microbiology Research, La Balme Les Grottes, France
| | | | - Olivier Rochas
- bioMérieux, Corporate Business Development, Marcy l'Etoile, France
| | - Patricia J Simner
- Department of Pathology, Bacteriology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, La Balme Les Grottes, France
| |
Collapse
|
11
|
Clinically Applicable System for Rapidly Predicting Enterococcus faecium Susceptibility to Vancomycin. Microbiol Spectr 2021; 9:e0091321. [PMID: 34756065 PMCID: PMC8579932 DOI: 10.1128/spectrum.00913-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium is a clinically important pathogen that can cause significant morbidity and death. In this study, we aimed to develop a machine learning (ML) algorithm-based rapid susceptibility method to distinguish vancomycin-resistant E. faecium (VREfm) and vancomycin-susceptible E. faecium (VSEfm) strains. A predictive model was developed and validated to distinguish VREfm and VSEfm strains by analyzing the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) spectra of unique E. faecium isolates from different specimen types. The algorithm used 5,717 mass spectra, including 2,795 VREfm and 2,922 VSEfm mass spectra, and was externally validated with 2,280 mass spectra of isolates (1,222 VREfm and 1,058 VSEfm strains). A random forest-based algorithm demonstrated overall good classification performances for the isolates from the specimens, with mean accuracy, sensitivity, and specificity of 0.78, 0.79, and 0.77, respectively, with 10-fold cross-validation, timewise validation, and external validation. Furthermore, the algorithm provided rapid results, which would allow susceptibility prediction prior to the availability of phenotypic susceptibility results. In conclusion, an ML algorithm designed using mass spectra obtained from the routine workflow may be able to rapidly differentiate VREfm strains from VSEfm strains; however, susceptibility results must be confirmed by routine methods, given the demonstrated performance of the assay. IMPORTANCE A modified binning method was incorporated to cluster MS shifting ions into a set of representative peaks based on a large-scale MS data set of clinical VREfm and VSEfm isolates, including 2,795 VREfm and 2,922 VSEfm isolates. Predictions with the algorithm were significantly more accurate than empirical antibiotic use, the accuracy of which was 0.50, based on the local epidemiology. The algorithm improved the accuracy of antibiotic administration, compared to empirical antibiotic prescription. An ML algorithm designed using MALDI-TOF MS spectra obtained from the routine workflow accurately differentiated VREfm strains from VSEfm strains, especially in blood and sterile body fluid samples, and can be applied to facilitate the rapid and accurate clinical testing of pathogens.
Collapse
|
12
|
Blumenscheit C, Pfeifer Y, Werner G, John C, Schneider A, Lasch P, Doellinger J. Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics. Anal Chem 2021; 93:14599-14608. [PMID: 34697938 DOI: 10.1021/acs.analchem.1c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) poses an increasing challenge for therapy and clinical management of bacterial infections. Currently, antimicrobial resistance detection relies on phenotypic assays, which are performed independently from species identification. Sequencing-based approaches are possible alternatives for AMR detection, although the analysis of proteins should be superior to gene or transcript sequencing for phenotype prediction as the actual resistance to antibiotics is almost exclusively mediated by proteins. In this proof-of-concept study, we present an unbiased proteomics workflow for detecting both bacterial species and AMR-related proteins in the absence of secondary antibiotic cultivation within <4 h from a primary culture. The workflow was designed to meet the needs in clinical microbiology. It introduces a new data analysis concept for bacterial proteomics, and a software (rawDIAtect) for the prediction and reporting of AMR from peptide identifications. The method was validated using a sample cohort of 7 bacterial species and 11 AMR determinants represented by 13 protein isoforms, which resulted in a sensitivity of 98% and a specificity of 100%.
Collapse
Affiliation(s)
- Christian Blumenscheit
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Charlyn John
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Andy Schneider
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Peter Lasch
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Joerg Doellinger
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| |
Collapse
|
13
|
Chen J, Navarro E, Nuñez E, Gau V. Rapid Electrochemical-Based PCR-Less Microbial Quantification and Antimicrobial Susceptibility Profiling Directly From Blood and Urine With Unknown Microbial Load or Species. Front Bioeng Biotechnol 2021; 9:744198. [PMID: 34604191 PMCID: PMC8481646 DOI: 10.3389/fbioe.2021.744198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Novel molecular platforms are available for identifying (ID) the causative agents of microbial infections and generating antimicrobial susceptibility testing (AST) profiles, which can inform the suitable course of treatment. Many methods claim to perform AST in minutes or hours, often ignoring the need for time-consuming steps such as enrichment cultures and isolation of pure cultures. In clinical microbiology laboratories, an infectious microbial must first be cultured (overnight to days) and identified at the species level, followed by a subsequent AST with an additional turnaround time of 12-48 h due to the need for regrowth of the organism in the absence and presence of relevant antibiotics. Here, we present an electrochemical-based direct-from-specimen ID/AST method for reporting directly from unprocessed urine and blood in hours. In a limit of detection study of 0.5-ml whole blood samples for point-of-care and pediatric applications, 16.7% (4/24) of samples contrived at 2 CFU/ml and 100% (24/24) of samples contrived at 6 CFU/ml were reported positive in 6.5 h, indicating a limit of detection of 6 CFU/ml. In a separate direct-from-specimen AST study, the categorical susceptibility was reported correctly for blinded susceptible, intermediate, resistant, and polymicrobial contrived specimens in 4 h.
Collapse
|
14
|
Kondori N, Kurtovic A, Piñeiro-Iglesias B, Salvà-Serra F, Jaén-Luchoro D, Andersson B, Alves G, Ogurtsov A, Thorsell A, Fuchs J, Tunovic T, Kamenska N, Karlsson A, Yu YK, Moore ERB, Karlsson R. Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood. Front Cell Infect Microbiol 2021; 11:634215. [PMID: 34381737 PMCID: PMC8350517 DOI: 10.3389/fcimb.2021.634215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amra Kurtovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gelio Alves
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nina Kamenska
- Norra-Älvsborgs-Länssjukhus (NÄL), Trollhättan, Sweden
| | | | - Yi-Kuo Yu
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| |
Collapse
|
15
|
Sabna S, Kamboj DV, Rajoria S, Kumar RB, Babele P, Goel AK, Tuteja U, Gupta MK, Alam SI. Protein biomarker elucidation for the verification of biological agents in the taxonomic group of Gammaproteobacteria using tandem mass spectrometry. World J Microbiol Biotechnol 2021; 37:74. [PMID: 33779874 DOI: 10.1007/s11274-021-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ajay Kumar Goel
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
16
|
A Phylogeny-Informed Proteomics Approach for Species Identification within the Burkholderia cepacia Complex. J Clin Microbiol 2020; 58:JCM.01741-20. [PMID: 32878952 DOI: 10.1128/jcm.01741-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.
Collapse
|
17
|
Tsuchida S, Umemura H, Nakayama T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020; 25:molecules25204775. [PMID: 33080897 PMCID: PMC7587594 DOI: 10.3390/molecules25204775] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Mass spectrometry (MS), a core technology for proteomics and metabolomics, is currently being developed for clinical applications. The identification of microorganisms in clinical samples using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) is a representative MS-based proteomics application that is relevant to daily clinical practice. This technology has the advantages of convenience, speed, and accuracy when compared with conventional biochemical methods. MALDI-TOF MS can shorten the time used for microbial identification by about 1 day in routine workflows. Sample preparation from microbial colonies has been improved, increasing the accuracy and speed of identification. MALDI-TOF MS is also used for testing blood, cerebrospinal fluid, and urine, because it can directly identify the microorganisms in these liquid samples without prior culture or subculture. Thus, MALDI-TOF MS has the potential to improve patient prognosis and decrease the length of hospitalization and is therefore currently considered an essential tool in clinical microbiology. Furthermore, MALDI-TOF MS is currently being combined with other technologies, such as flow cytometry, to expand the scope of clinical applications.
Collapse
|
18
|
Dupré M, Duchateau M, Malosse C, Borges-Lima D, Calvaresi V, Podglajen I, Clermont D, Rey M, Chamot-Rooke J. Optimization of a Top-Down Proteomics Platform for Closely Related Pathogenic Bacterial Discrimination. J Proteome Res 2020; 20:202-211. [PMID: 32929970 DOI: 10.1021/acs.jproteome.0c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.
Collapse
Affiliation(s)
- Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Christian Malosse
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Diogo Borges-Lima
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Valeria Calvaresi
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Isabelle Podglajen
- Microbiology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Dominique Clermont
- Collection of the Institut Pasteur (CIP), Institut Pasteur, Paris 75015, France
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| |
Collapse
|
19
|
Lovison OA, Rau RB, Lima-Morales D, Almeida EK, Crispim MN, Barreto F, Barth AL, Martins AF. High-performance method to detection of Klebsiella pneumoniae Carbapenemase in Enterobacterales by LC-MS/MS. Braz J Microbiol 2020; 51:1029-1035. [PMID: 31989451 PMCID: PMC7455676 DOI: 10.1007/s42770-019-00222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/27/2019] [Indexed: 01/16/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CREs) have been recognized as an important threat to global health. CRE cause the majority of the difficult-to-treat infections in health-care settings and are associated with high mortality. Klebsiella pneumoniae carbapenemase (KPC)-producing CREs, in particular Klebsiella pneumoniae, are globally disseminated and responsible for a large number of outbreaks. Development of rapid methods for KPC detection can provide great clinical and epidemiological benefits to prevent KPC dissemination. The aim of this study was to standardize and validate a LC-MS/MS method to detect KPC. This method was also tested against a broad variety of species, including CRE with other carbapenemase genes and the recently reported mcr-1. For validation, 111 isolates with reduced susceptibility to carbapenems were selected (49 KPC-positive and 62 KPC-negative). The presence of four tryptic peptides related to the KPC enzyme was evaluated, and the identification of at least two of them classified the isolate as "KPC-positive." The LTLGSALAAPQR and LALEGLGVNGQ peptides were both detected in 47 of 49 isolates with the blaKPC gene. The other two peptides, GFLAAAVLAR and APIVLAVYTR, were detected in 46 and 19 isolates with the blaKPC gene, respectively. The method correctly classified 47 of 49 KPC-positive and all KPC-negative isolates yielding 96.07% of sensitivity and 100% of specificity. In conclusion, our results demonstrate that the KPC peptide markers were robustly detected by the method which presented high sensitivity and full specificity and therefore can be used as a reliable method to identify this resistance mechanism.
Collapse
Affiliation(s)
- Otávio A Lovison
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renata B Rau
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório Nacional Agropecuário no Rio Grande do Sul (LANAGRO/RS), Porto Alegre, Brazil
| | - Daiana Lima-Morales
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Evellyn K Almeida
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Faculdade de Farmácia - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina N Crispim
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Fabiano Barreto
- Laboratório Nacional Agropecuário no Rio Grande do Sul (LANAGRO/RS), Porto Alegre, Brazil
| | - Afonso L Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Faculdade de Farmácia - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreza F Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Laboratório de Microbiologia Aplicada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
20
|
Qi P, Wang Y, Zhang D, Sun Y, Zheng L. Multichannel bacterial discrimination based on recognition and disintegration disparity of short antimicrobial peptides. Anal Biochem 2020; 600:113764. [DOI: 10.1016/j.ab.2020.113764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
|
21
|
Gouveia D, Grenga L, Gaillard J, Gallais F, Bellanger L, Pible O, Armengaud J. Shortlisting SARS-CoV-2 Peptides for Targeted Studies from Experimental Data-Dependent Acquisition Tandem Mass Spectrometry Data. Proteomics 2020; 20:e2000107. [PMID: 32462744 PMCID: PMC7267140 DOI: 10.1002/pmic.202000107] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/12/2020] [Indexed: 01/16/2023]
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a crucial tool for fighting the COVID-19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS-CoV-2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data-dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass-spectrometry method development and diagnostic of the new SARS-CoV-2 is proposed and the best candidates are commented.
Collapse
Affiliation(s)
- Duarte Gouveia
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Lucia Grenga
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Jean‐Charles Gaillard
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Fabrice Gallais
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Laurent Bellanger
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Olivier Pible
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAEDépartement Médicaments et Technologies pour la Santé (DMTS), SPIBagnols‐sur‐Cèze30200France
| |
Collapse
|
22
|
Nomura F, Tsuchida S, Murata S, Satoh M, Matsushita K. Mass spectrometry-based microbiological testing for blood stream infection. Clin Proteomics 2020; 17:14. [PMID: 32435163 PMCID: PMC7222329 DOI: 10.1186/s12014-020-09278-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The most successful application of mass spectrometry (MS) in laboratory medicine is identification (ID) of microorganisms using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in blood stream infection. We describe MALDI-TOF MS-based bacterial ID with particular emphasis on the methods so far developed to directly identify microorganisms from positive blood culture bottles with MALDI-TOF MS including our own protocols. We touch upon the increasing roles of Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) as well. MAIN BODY Because blood culture bottles contain a variety of nonbacterial proteins that may interfere with analysis and interpretation, appropriate pretreatments are prerequisites for successful ID. Pretreatments include purification of bacterial pellets and short-term subcultures to form microcolonies prior to MALDI-TOF MS analysis. Three commercial protocols are currently available: the Sepsityper® kit (Bruker Daltonics), the Vitek MS blood culture kit (bioMerieux, Inc.), and the rapid BACpro® II kit (Nittobo Medical Co., Tokyo). Because these commercially available kits are costly and bacterial ID rates using these kits are not satisfactory, particularly for Gram-positive bacteria, various home-brew protocols have been developed: 1. Stepwise differential sedimentation of blood cells and microorganisms, 2. Combination of centrifugation and lysis procedures, 3. Lysis-vacuum filtration, and 4. Centrifugation and membrane filtration technique (CMFT). We prospectively evaluated the performance of this CMFT protocol compared with that of Sepsityper® using 170 monomicrobial positive blood cultures. Although preliminary, the performance of the CMFT was significantly better than that of Sepsityper®, particularly for Gram-positive isolates. MALDI-TOF MS-based testing of polymicrobial blood specimens, however, is still challenging. Also, its contribution to assessment of susceptibility and resistance to antibiotics is still limited. For this purpose, liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) should be more useful because this approach can identify as many as several thousand peptide sequences. CONCLUSION MALDI-TOF MS is now an essential tool for rapid bacterial ID of pathogens that cause blood stream infection. For the purpose of assessment of susceptibility and resistance to antibiotics of the pathogens, the roles of liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) will increase in the future.
Collapse
Affiliation(s)
- Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Syota Murata
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| |
Collapse
|
23
|
Yee WLS, Drum CL. Increasing Complexity to Simplify Clinical Care: High Resolution Mass Spectrometry as an Enabler of AI Guided Clinical and Therapeutic Monitoring. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Loong Sherman Yee
- Yong Loo Lin School of MedicineDepartment of MedicineNational University of Singapore Singapore 119077 Singapore
- Cardiovascular Research Institute (CVRI)National University Health System Singapore 119228 Singapore
| | - Chester Lee Drum
- Yong Loo Lin School of MedicineDepartment of MedicineNational University of Singapore Singapore 119077 Singapore
- Cardiovascular Research Institute (CVRI)National University Health System Singapore 119228 Singapore
- Yong Loo Lin School of MedicineDepartment of BiochemistryNational University of Singapore Singapore 119077 Singapore
- The N.1 Institute for Health (N.1)National University of Singapore Singapore 119077 Singapore
| |
Collapse
|
24
|
Karlsson R, Thorsell A, Gomila M, Salvà-Serra F, Jakobsson HE, Gonzales-Siles L, Jaén-Luchoro D, Skovbjerg S, Fuchs J, Karlsson A, Boulund F, Johnning A, Kristiansson E, Moore ERB. Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping. Mol Cell Proteomics 2020; 19:518-528. [PMID: 31941798 PMCID: PMC7050107 DOI: 10.1074/mcp.ra119.001667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
Collapse
Affiliation(s)
- Roger Karlsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Nanoxis Consulting AB, SE-40016 Gothenburg, Sweden.
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, SE- 40530 Gothenburg, Sweden
| | - Margarita Gomila
- Microbiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, SE-41346 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Microbiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Hedvig E Jakobsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, SE- 40530 Gothenburg, Sweden
| | | | - Fredrik Boulund
- Center for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Anna Johnning
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg, SE-40234 Gothenburg, Sweden; Department of Clinical Microbiology, Sahlgrenska University Hospital, SE-413 46 Gothenburg, Region Västra Götaland, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, SE-41346 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40234 Gothenburg, Sweden
| |
Collapse
|
25
|
Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol 2020; 18:299-311. [PMID: 32055026 DOI: 10.1038/s41579-020-0327-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance (AMR) is a major threat to human health worldwide, and the rapid detection and quantification of resistance, combined with antimicrobial stewardship, are key interventions to combat the spread and emergence of AMR. Antimicrobial susceptibility testing (AST) systems are the collective set of diagnostic processes that facilitate the phenotypic and genotypic assessment of AMR and antibiotic susceptibility. Over the past 30 years, only a few high-throughput AST methods have been developed and widely implemented. By contrast, several studies have established proof of principle for various innovative AST methods, including both molecular-based and genome-based methods, which await clinical trials and regulatory review. In this Review, we discuss the current state of AST systems in the broadest technical, translational and implementation-related scope.
Collapse
|
26
|
Elucidation of protein biomarkers for verification of selected biological warfare agents using tandem mass spectrometry. Sci Rep 2020; 10:2205. [PMID: 32042063 PMCID: PMC7010682 DOI: 10.1038/s41598-020-59156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.
Collapse
|
27
|
Attenuated total reflection: Fourier transform infrared spectroscopy for detection of heterogeneous vancomycin—intermediate Staphylococcus aureus. World J Microbiol Biotechnol 2020; 36:22. [DOI: 10.1007/s11274-019-2788-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
|
28
|
Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019; 10:2711. [PMID: 31849870 PMCID: PMC6901965 DOI: 10.3389/fmicb.2019.02711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The two main pillars of clinical microbiological diagnostics are the identification of potentially pathogenic microorganisms from patient samples and the testing for antibiotic susceptibility (AST) to allow efficient treatment with active antimicrobial agents. While routine microbial species identification is increasingly performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routine AST still largely relies on conventional and molecular techniques such as broth microdilution or disk and gradient diffusion tests, PCR and automated variants thereof. However, shortly after the introduction of MALDI-TOF MS based routine identification, first attempts to perform AST on the same instruments were reported. Today, a number of different approaches to perform AST with MALDI-TOF MS and other MS techniques have been proposed, some restricted to particular microbial taxa and resistance mechanisms while others being more generic. Further, while some of the methods are in a stage of proof of principles, others are already commercialized. In this review we discuss the different principal approaches of mass spectrometry based AST and evaluate the advantages and disadvantages compared to conventional and molecular techniques. At present, the possibility that MS will soon become a routine tool for AST seems unlikely – still, the same was true for routine microbial identification a mere 15 years ago.
Collapse
Affiliation(s)
- Martin Welker
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| | - Alex van Belkum
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| |
Collapse
|
29
|
Foudraine DE, Dekker LJM, Strepis N, Bexkens ML, Klaassen CHW, Luider TM, Goessens WHF. Accurate Detection of the Four Most Prevalent Carbapenemases in E. coli and K. pneumoniae by High-Resolution Mass Spectrometry. Front Microbiol 2019; 10:2760. [PMID: 31849899 PMCID: PMC6901907 DOI: 10.3389/fmicb.2019.02760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background At present, phenotypic growth inhibition techniques are used in routine diagnostic microbiology to determine antimicrobial resistance of bacteria. Molecular techniques such as PCR are often used for confirmation but are indirect as they detect particular resistance genes. A direct technique would be able to detect the proteins of the resistance mechanism itself. In the present study targeted high resolution mass spectrometry assay was developed for the simultaneous detection of KPC, OXA-48-like, NDM, and VIM carbapenemases. Methods Carbapenemase specific target peptides were defined by comparing available sequences in GenBank. Selected peptide sequences were validated using 62 Klebsiella pneumoniae and Escherichia coli isolates containing: 16 KPC, 21 OXA-48-like, 16 NDM, 13 VIM genes, and 21 carbapenemase negative isolates. Results For each carbapenemase, two candidate peptides were validated. Method validation was performed in a blinded manner for all 83 isolates. All carbapenemases were detected. The majority was detected by both target peptides. All target peptides were 100% specific in the tested isolates and no peptide carry-over was detected. Conclusion The applied targeted bottom-up mass spectrometry technique is able to accurately detect the four most prevalent carbapenemases in a single analysis.
Collapse
Affiliation(s)
- Dimard E Foudraine
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Lennard J M Dekker
- Department of Neurology, Neuro-Oncology Laboratory/Clinical and Cancer Proteomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Michiel L Bexkens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Theo M Luider
- Department of Neurology, Neuro-Oncology Laboratory/Clinical and Cancer Proteomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
30
|
Hayoun K, Gouveia D, Grenga L, Pible O, Armengaud J, Alpha-Bazin B. Evaluation of Sample Preparation Methods for Fast Proteotyping of Microorganisms by Tandem Mass Spectrometry. Front Microbiol 2019; 10:1985. [PMID: 31555227 PMCID: PMC6742703 DOI: 10.3389/fmicb.2019.01985] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tandem mass spectrometry-based proteotyping allows characterizing microorganisms in terms of taxonomy and is becoming an important tool for investigating microbial diversity from several ecosystems. Fast and automatable sample preparation for obtaining peptide pools amenable to tandem mass spectrometry is necessary for enabling proteotyping as a high-throughput method. First, the protocol to increase the yield of lysis of several representative bacterial and eukaryotic microorganisms was optimized by using a long and drastic bead-beating setting with 0.1 mm silica beads, 0.1 and 0.5 mm glass beads, in presence of detergents. Then, three different methods to obtain greater digestion yield from these extracts were tested and optimized for improve efficiency and reduce application time: denaturing electrophoresis of proteins and in-gel proteolysis, suspension-trapping filter-based approach (S-Trap) and, solid-phase-enhanced sample preparation named SP3. The latter method outperforms the other two in terms of speed and delivers also more peptides and proteins than with the in-gel proteolysis (2.2 fold for both) and S-trap approaches (1.3 and 1.2 fold, respectively). Thus, SP3 directly improves tandem mass spectrometry proteotyping.
Collapse
Affiliation(s)
| | | | | | | | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, CEA, INRA, Bagnols-sur-Cèze, France
| | | |
Collapse
|
31
|
Grenga L, Pible O, Armengaud J. Pathogen proteotyping: A rapidly developing application of mass spectrometry to address clinical concerns. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:9-17. [DOI: 10.1016/j.clinms.2019.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
|
32
|
Xie Z, Gonzalez LE, Ferreira CR, Vorsilak A, Frabutt D, Sobreira TJP, Pugia M, Cooks RG. Multiple Reaction Monitoring Profiling (MRM-Profiling) of Lipids To Distinguish Strain-Level Differences in Microbial Resistance in Escherichia coli. Anal Chem 2019; 91:11349-11354. [PMID: 31398004 DOI: 10.1021/acs.analchem.9b02465] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhuoer Xie
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - L. Edwin Gonzalez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina R. Ferreira
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anna Vorsilak
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Dylan Frabutt
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Tiago J. P. Sobreira
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Pugia
- Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
34
|
Saleh S, Staes A, Deborggraeve S, Gevaert K. Targeted Proteomics for Studying Pathogenic Bacteria. Proteomics 2019; 19:e1800435. [DOI: 10.1002/pmic.201800435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Sara Saleh
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - An Staes
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| | - Stijn Deborggraeve
- Department of Biomedical SciencesInstitute of Tropical Medicine B‐2000 Antwerp Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology B‐9000 Ghent Belgium
- Department of Biomolecular MedicineGhent University B‐9000 Ghent Belgium
| |
Collapse
|
35
|
Sharaha U, Rodriguez-Diaz E, Sagi O, Riesenberg K, Salman A, Bigio IJ, Huleihel M. Fast and reliable determination of Escherichia coli susceptibility to antibiotics: Infrared microscopy in tandem with machine learning algorithms. JOURNAL OF BIOPHOTONICS 2019; 12:e201800478. [PMID: 30916881 DOI: 10.1002/jbio.201800478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial drugs have an important role in controlling bacterial infectious diseases. However, the increasing resistance of bacteria to antibiotics has become a global health care problem. Rapid determination of antimicrobial susceptibility of clinical isolates is often crucial for the optimal antimicrobial therapy. The conventional methods used in medical centers for susceptibility testing are time-consuming (>2 days). Two bacterial culture steps are needed, the first is used to grow the bacteria from urine on agar plates to determine the species of the bacteria (~24 hours). The second culture is used to determine the susceptibility by growing colonies from the first culture for another 24 hours. Here, the main goal is to examine the potential of infrared microscopy combined with multivariate analysis, to reduce the time it takes to identify Escherichia coli susceptibility to antibiotics and to determine the optimum choice of antibiotic to which the bacteria will respond. E coli colonies of the first culture from patients with urinary tract infections (UTI) were examined for the bacterial susceptibility using Fourier-transform infrared (FTIR). Our results show that it is possible to determine the optimum choice of antibiotic with better than 89% sensitivity, in the time span of few minutes, following the first culture.
Collapse
Affiliation(s)
- Uraib Sharaha
- Department of Microbiology, Immunology and Genetic, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eladio Rodriguez-Diaz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Section of Gastroenterology, VA Boston Healthcare System, Boston, Massachusetts
| | - Orli Sagi
- Microbiology Laboratory, Soroka University Medical Center, Beer-Sheva, Israel
| | - Klaris Riesenberg
- Infectious Diseases Department, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ahmad Salman
- Department of Physics, SCE-Shamoon College of Engineering, Beer-Sheva, Israel
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology and Genetic, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
36
|
Reliable identification of lactic acid bacteria by targeted and untargeted high-resolution tandem mass spectrometry. Food Chem 2019; 285:111-118. [DOI: 10.1016/j.foodchem.2019.01.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022]
|
37
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Kailasa SK, Koduru JR, Park TJ, Wu HF, Lin YC. Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst 2019; 144:1073-1103. [DOI: 10.1039/c8an02034e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospray ionization and rapid evaporative ionization mass spectrometric techniques have attracted much attention in the identification of microorganisms, and in the diagnosis of bacterial infections from clinical samples.
Collapse
Affiliation(s)
- Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat – 395007
- India
- Department of Chemistry
| | | | - Tae Jung Park
- Department of Chemistry
- Institute of Interdisciplinary Convergence Research
- Research Institute of Halal Industrialization Technology
- Chung-Ang University
- Seoul 06974
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| | - Ying-Chi Lin
- School of Pharmacy
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
39
|
Proteotyping bacteria: Characterization, differentiation and identification of pneumococcus and other species within the Mitis Group of the genus Streptococcus by tandem mass spectrometry proteomics. PLoS One 2018; 13:e0208804. [PMID: 30532202 PMCID: PMC6287849 DOI: 10.1371/journal.pone.0208804] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
A range of methodologies may be used for analyzing bacteria, depending on the purpose and the level of resolution needed. The capability for recognition of species distinctions within the complex spectrum of bacterial diversity is necessary for progress in microbiological research. In clinical settings, accurate, rapid and cost-effective methods are essential for early and efficient treatment of infections. Characterization and identification of microorganisms, using, bottom-up proteomics, or "proteotyping", relies on recognition of species-unique or associated peptides, by tandem mass spectrometry analyses, dependent upon an accurate and comprehensive foundation of genome sequence data, allowing for differentiation of species, at amino acid-level resolution. In this study, the high resolution and accuracy of MS/MS-based proteotyping was demonstrated, through analyses of the three phylogenetically and taxonomically most closely-related species of the Mitis Group of the genus Streptococcus: i.e., the pathogenic species, Streptococcus pneumoniae (pneumococcus), and the commensal species, Streptococcus pseudopneumoniae and Streptococcus mitis. To achieve high accuracy, a genome sequence database used for matching peptides was created and carefully curated. Here, MS-based, bottom-up proteotyping was observed and confirmed to attain the level of resolution necessary for differentiating and identifying the most-closely related bacterial species, as demonstrated by analyses of species of the Streptococcus Mitis Group, even when S. pneumoniae were mixed with S. pseudopneumoniae and S. mitis, by matching and identifying more than 200 unique peptides for each species.
Collapse
|
40
|
Perez JJ, Chen CY. Implementation of normalized retention time (iRT) for bottom-up proteomic analysis of the aminoglycoside phosphotransferase enzyme facilitating method distribution. Anal Bioanal Chem 2018; 411:4701-4708. [DOI: 10.1007/s00216-018-1377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 01/05/2023]
|
41
|
van Belkum A, Rochas O. Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing. Front Microbiol 2018; 9:1437. [PMID: 30008711 PMCID: PMC6034072 DOI: 10.3389/fmicb.2018.01437] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/11/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen of animals and humans that is capable of both colonizing and infecting its eukaryotic host. It is frequently detected in the clinical microbiology routine laboratory. S. aureus is capable of acquiring antibiotic resistance traits with ease and, given its rapid global dissemination, resistance to meticillin in S. aureus has received extensive coverage in the popular and medical press. The detection of meticillin-resistant versus meticillin-susceptible S. aureus (MRSA and MSSA) is of significant clinical importance. Detection of meticillin resistance is relatively straightforward since it is defined by a single determinant, penicillin-binding protein 2a', which exists in a limited number of genetic variants carried on various Staphylococcal Cassette Chromosomes mec. Diagnosis of MRSA and MSSA has evolved significantly over the past decades and there has been a strong shift from culture-based, phenotypic methods toward molecular detection, especially given the close correlation between the presence of the mec genes and phenotypic resistance. This brief review summarizes the current state of affairs concerning the mostly polymerase chain reaction-mediated detection of MRSA and MSSA in either the classical laboratory setting or at the point of care. The potential diagnostic impact of the currently emerging whole genome sequencing (WGS) technology will be discussed against a background of diagnostic, surveillance, and infection control parameters. Adequate detection of MSSA and MRSA is at the basis of any subsequent, more generic antibiotic susceptibility testing, epidemiological characterization, and detection of virulence factors, whether performed with classical technology or WGS analyses.
Collapse
Affiliation(s)
- Alex van Belkum
- Data Analytics Unit, bioMérieux, La Balme-les-Grottes, France
| | - Olivier Rochas
- Strategic Intelligence, Business Development Direction, bioMérieux, Marcy-l'Étoile, France
| |
Collapse
|
42
|
Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Sci Rep 2018; 8:8181. [PMID: 29802257 PMCID: PMC5970244 DOI: 10.1038/s41598-018-26079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/04/2018] [Indexed: 01/24/2023] Open
Abstract
The development of antibiotic resistance during treatment is a threat to patients and their environment. Insight in the mechanisms of resistance development is important for appropriate therapy and infection control. Here, we describe how through the application of mass spectrometry-based proteomics, a novel beta-lactamase Axc was identified as an indicator of acquired carbapenem resistance in a clinical isolate of Achromobacter xylosoxidans. Comparative proteomic analysis of consecutively collected susceptible and resistant isolates from the same patient revealed that high Axc protein levels were only observed in the resistant isolate. Heterologous expression of Axc in Escherichia coli significantly increased the resistance towards carbapenems. Importantly, direct Axc mediated hydrolysis of imipenem was demonstrated using pH shift assays and 1H-NMR, confirming Axc as a legitimate carbapenemase. Whole genome sequencing revealed that the susceptible and resistant isolates were remarkably similar. Together these findings provide a molecular context for the fast development of meropenem resistance in A. xylosoxidans during treatment and demonstrate the use of mass spectrometric techniques in identifying novel resistance determinants.
Collapse
|
43
|
van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues? Ann Lab Med 2018; 37:475-483. [PMID: 28840984 PMCID: PMC5587819 DOI: 10.3343/alm.2017.37.6.475] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement.
Collapse
Affiliation(s)
- Alex van Belkum
- Scientific Office, bioMérieux, La Balme Les Grottes, France.
| | - Martin Welker
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | - David Pincus
- Scientific Office, bioMérieux, La Balme Les Grottes, France
| | | | | |
Collapse
|
44
|
Cecchini T, Yoon EJ, Charretier Y, Bardet C, Beaulieu C, Lacoux X, Docquier JD, Lemoine J, Courvalin P, Grillot-Courvalin C, Charrier JP. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics. Mol Cell Proteomics 2017; 17:442-456. [PMID: 29259044 DOI: 10.1074/mcp.ra117.000107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.
Collapse
Affiliation(s)
- Tiphaine Cecchini
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Eun-Jeong Yoon
- ¶Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Yannick Charretier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Chloé Bardet
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Corinne Beaulieu
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France
| | - Xavier Lacoux
- ‖R&D ImmunoAssays, bioMérieux SA, Marcy l'Etoile, France
| | | | - Jerome Lemoine
- §UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | | | | | - Jean-Philippe Charrier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France;
| |
Collapse
|
45
|
Zhou Y, Chen E, Wu X, Hu Y, Ge H, Xu P, Zou Y, Jin J, Wang P, Ying K. Rational lung tissue and animal models for rapid breath tests to determine pneumonia and pathogens. Am J Transl Res 2017; 9:5116-5126. [PMID: 29218109 PMCID: PMC5714795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE This study works to develop novel models that may be adopted for earlier non-invasive breathomics tests to determine pneumonia pathogens. METHODS Two types of pneumonia models were created, both in vitro and in vivo. Paraneoplasm lung tissue and specific pathogen-free (SPF) rabbits were adopted and separately challenged with sterile saline solution control or three pathogens: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. After inoculation, headspace air or exhaled air were absorbed by solid phase micro-extraction (SPME) fibers and subsequently analyzed with gas chromatograph Mass Spectrometer (GCMS). RESULTS Pneumonia and pathogen-specific discriminating VOC patterns (1H-Pyrrole-3-carbonitrile, Diethyl phthalate, Cedrol, Decanoic acid, Cyclohexane, Diisooctyl phthalate) were determined. CONCLUSION Our study successfully generated nosocomial pneumonia models for pneumonia diagnosis and pathogen-discriminating breath tests. The tests may allow for earlier pneumonia and pathogen diagnoses, and may transfer empirical therapy to targeted therapy earlier, thus improving clinical outcomes.
Collapse
Affiliation(s)
- Yong Zhou
- Respiratory Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Enguo Chen
- Respiratory Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xiaohong Wu
- Respiratory Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Yanjie Hu
- Respiratory Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Huiqing Ge
- Respiratory Therapy Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Peifeng Xu
- Respiratory Therapy Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Yingchang Zou
- Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Joy Jin
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San FranciscoUSA
| | - Ping Wang
- Biosensor National Special Lab, Key Lab for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Kejing Ying
- Respiratory Department, Sir Run Run Shaw Hospital, Medical School, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
46
|
A Decade of Development of Chromogenic Culture Media for Clinical Microbiology in an Era of Molecular Diagnostics. Clin Microbiol Rev 2017; 30:449-479. [PMID: 28122803 DOI: 10.1128/cmr.00097-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the last 25 years, chromogenic culture media have found widespread application in diagnostic clinical microbiology. In the last decade, the range of media available to clinical laboratories has expanded greatly, allowing specific detection of additional pathogens, including Pseudomonas aeruginosa, group B streptococci, Clostridium difficile, Campylobacter spp., and Yersinia enterocolitica. New media have also been developed to screen for pathogens with acquired antimicrobial resistance, including vancomycin-resistant enterococci, carbapenem-resistant Acinetobacter spp., and Enterobacteriaceae with extended-spectrum β-lactamases and carbapenemases. This review seeks to explore the utility of chromogenic media in clinical microbiology, with particular attention given to media that have been commercialized in the last decade. The impact of laboratory automation and complementary technologies such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is also assessed. Finally, the review also seeks to demarcate the role of chromogenic media in an era of molecular diagnostics.
Collapse
|
47
|
Berendsen EM, Levin E, Braakman R, der Riet-van Oeveren DV, Sedee NJA, Paauw A. Identification of microorganisms grown in blood culture flasks using liquid chromatography–tandem mass spectrometry. Future Microbiol 2017; 12:1135-1145. [DOI: 10.2217/fmb-2017-0050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Bloodstream infections are a common cause of disease and a fast and accurate identification of the causative agent or agents of bloodstream infections would aid the start of adequate treatment. Materials & methods: A liquid chromatography–tandem mass spectrometry (LC–MS/MS) shotgun proteomics method was developed for the identification of bacterial species directly from blood cultures that were simulated by inoculating blood culture bottles with single or multiple clinically relevant microorganisms. Results: Using LC–MS/MS, the single species were correctly identified in 100% of the blood cultures, whereas for polymicrobial infections, 78% of both species were correctly identified in blood cultures. Conclusion: The LC–MS/MS method allows for the identification of the causative agent of positive blood cultures.
Collapse
Affiliation(s)
- Erwin M Berendsen
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Evgeni Levin
- Department of Microbiology & Systems Biology, Netherlands Organization for Applied Scientific Research TNO, Utrechtseweg 48, 3704HE Zeist, The Netherlands
| | - René Braakman
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Debora van der Riet-van Oeveren
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Norbert JA Sedee
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| | - Armand Paauw
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
48
|
Sloan A, Wang G, Cheng K. Traditional approaches versus mass spectrometry in bacterial identification and typing. Clin Chim Acta 2017; 473:180-185. [PMID: 28866114 DOI: 10.1016/j.cca.2017.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Biochemical methods such as metabolite testing and serotyping are traditionally used in clinical microbiology laboratories to identify and categorize microorganisms. Due to the large variety of bacteria, identifying representative metabolites is tedious, while raising high-quality antisera or antibodies unique to specific biomarkers used in serotyping is very challenging, sometimes even impossible. Although serotyping is a certified approach for differentiating bacteria such as E. coli and Salmonella at the subspecies level, the method is tedious, laborious, and not practical during an infectious disease outbreak. Mass spectrometry (MS) platforms, especially matrix assisted laser desorption and ionization-time of flight mass spectrometry (MALDI-TOF-MS), have recently become popular in the field of bacterial identification due to their fast speed and low cost. In the past few years, we have used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches to solve various problems hindering serotyping and have overcome some insufficiencies of the MALDI-TOF-MS platform. The current article aims to review the characteristics, advantages, and disadvantages of MS-based platforms over traditional approaches in bacterial identification and categorization.
Collapse
Affiliation(s)
- Angela Sloan
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
49
|
Sharaha U, Rodriguez-Diaz E, Riesenberg K, Bigio IJ, Huleihel M, Salman A. Using Infrared Spectroscopy and Multivariate Analysis to Detect Antibiotics' Resistant Escherichia coli Bacteria. Anal Chem 2017; 89:8782-8790. [PMID: 28731324 DOI: 10.1021/acs.analchem.7b01025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial pathogens are one of the primary causes of human morbidity worldwide. Historically, antibiotics have been highly effective against most bacterial pathogens; however, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Early and rapid determination of bacterial susceptibility to antibiotics has become essential in many clinical settings and, sometimes, can save lives. Currently classical procedures require at least 48 h for determining bacterial susceptibility, which can constitute a life-threatening delay for effective treatment. Infrared (IR) microscopy is a rapid and inexpensive technique, which has been used successfully for the detection and identification of various biological samples; nonetheless, its true potential in routine clinical diagnosis has not yet been established. In this study, we evaluated the potential of this technique for rapid identification of bacterial susceptibility to specific antibiotics based on the IR spectra of the bacteria. IR spectroscopy was conducted on bacterial colonies, obtained after 24 h culture from patients' samples. An IR microscope was utilized, and a computational classification method was developed to analyze the IR spectra by novel pattern-recognition and statistical tools, to determine E. coli susceptibility within a few minutes to different antibiotics, gentamicin, ceftazidime, nitrofurantoin, nalidixic acid, ofloxacin. Our results show that it was possible to classify the tested bacteria into sensitive and resistant types, with success rates as high as 85% for a number of examined antibiotics. These promising results open the potential of this technique for faster determination of bacterial susceptibility to certain antibiotics.
Collapse
Affiliation(s)
- Uraib Sharaha
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Eladio Rodriguez-Diaz
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine , Boston, Massachusetts 02118, United States.,USA 2 Section of Gastroenterology, VA Boston Healthcare System , Boston, Massachusetts 02130, United States
| | | | - Irving J Bigio
- Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215, United States.,Department of Electrical & Computer Engineering, Boston University , Boston, Massachusetts 02215, United States
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Ahmad Salman
- Department of Physics, SCE-Shamoon College of Engineering , Beer-Sheva 84100, Israel
| |
Collapse
|
50
|
Wang H, Drake SK, Youn JH, Rosenberg AZ, Chen Y, Gucek M, Suffredini AF, Dekker JP. Peptide Markers for Rapid Detection of KPC Carbapenemase by LC-MS/MS. Sci Rep 2017; 7:2531. [PMID: 28566732 PMCID: PMC5451396 DOI: 10.1038/s41598-017-02749-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022] Open
Abstract
Carbapenemase producing organisms (CPOs) represent an urgent public health threat, and the need for new rapid methods to detect these organisms has been widely recognized. CPOs carrying the Klebsiella pneumoniae carbapenemase (blaKPC) gene have caused outbreaks globally with substantial attributable mortality. Here we describe the validation of a rapid MS method for the direct detection of unique tryptic peptides of the KPC protein in clinical bacterial isolates with an isolate-to-result time of less than 90 minutes. Using a genoproteomic discovery approach that combines theoretical peptidome analysis and liquid chromatography-tandem MS (LC-MS/MS), we selected three high abundance peptide markers of the KPC protein that can be robustly detected following rapid tryptic digestion. Protein BLAST analysis confirmed that the chosen peptide markers were unique to KPC. A blinded validation set containing 20 KPC-positive and 80 KPC-negative clinical isolates, performed in triplicate (300 runs) demonstrated 100% sensitivity and 100% specificity (60/60 positive identifications, 240/240 negative identifications) using defined rules for positive calls. The most robust tryptic peptide marker in the validation was LTLGSALAAPQR. The peptide discovery and detection methods validated here are general and should be broadly applicable to allow the direct and rapid detection of other resistance determinants.
Collapse
Affiliation(s)
- Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven K Drake
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z Rosenberg
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.,Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yong Chen
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|