1
|
Hakim MS, Gazali FM, Widyaningsih SA, Parvez MK. Driving forces of continuing evolution of rotaviruses. World J Virol 2024; 13:93774. [PMID: 38984077 PMCID: PMC11229848 DOI: 10.5501/wjv.v13.i2.93774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/24/2024] Open
Abstract
Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.
Collapse
Affiliation(s)
- Mohamad Saifudin Hakim
- Postgraduate School of Molecular Medicine, Erasmus MC-University Medical Center, Rotterdam 3015GD, Netherlands
- Viral Infection Working Group, International Society of Antimicrobial Chemotherapy, London EC4R 9AN, United Kingdom
| | - Faris Muhammad Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Suci Ardini Widyaningsih
- Master of Medical Sciences in Clinical Investigation, Harvard Medical School, Boston, MA 02115, United States
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Zeng M, Ma WJ. Reply to the Letter to the Editor regarding cross-protection of RotaTeq. J Pediatr 2024; 268:113953. [PMID: 38336202 DOI: 10.1016/j.jpeds.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Mei Zeng
- Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Jie Ma
- Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Carias C, Hartwig S, Kanibir N, Matthijnssens J, Tu Y. Letter to the Editor on Cross-Protection of RotaTeq. J Pediatr 2024; 268:113952. [PMID: 38336206 DOI: 10.1016/j.jpeds.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
| | | | - Nabi Kanibir
- Global Medical and Scientific Affairs, MSD International GmbH Luzern, Switzerland
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Research Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
Louge Uriarte EL, Badaracco A, Spetter MJ, Miño S, Armendano JI, Zeller M, Heylen E, Späth E, Leunda MR, Moreira AR, Matthijnssens J, Parreño V, Odeón AC. Molecular Epidemiology of Rotavirus A in Calves: Evolutionary Analysis of a Bovine G8P[11] Strain and Spatio-Temporal Dynamics of G6 Lineages in the Americas. Viruses 2023; 15:2115. [PMID: 37896894 PMCID: PMC10611311 DOI: 10.3390/v15102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Rotavirus A (RVA) causes diarrhea in calves and frequently possesses the G6 and P[5]/P[11] genotypes, whereas G8 is less common. We aimed to compare RVA infections and G/P genotypes in beef and dairy calves from major livestock regions of Argentina, elucidate the evolutionary origin of a G8 strain and analyze the G8 lineages, infer the phylogenetic relationship of RVA field strains, and investigate the evolution and spatio-temporal dynamics of the main G6 lineages in American countries. Fecal samples (n = 422) from diarrheic (beef, 104; dairy, 137) and non-diarrheic (beef, 78; dairy, 103) calves were analyzed by ELISA and semi-nested multiplex RT-PCR. Sequencing, phylogenetic, phylodynamic, and phylogeographic analyses were performed. RVA infections were more frequent in beef (22.0%) than in dairy (14.2%) calves. Prevalent genotypes and G6 lineages were G6(IV)P[5] in beef (90.9%) and G6(III)P[11] (41.2%) or mixed genotypes (23.5%) in dairy calves. The only G8 strain was phylogenetically related to bovine and artiodactyl bovine-like strains. Re-analyses inside the G8 genotype identified G8(I) to G8(VIII) lineages. Of all G6 strains characterized, the G6(IV)P[5](I) strains from "Cuenca del Salado" (Argentina) and Uruguay clustered together. According to farm location, a clustering pattern for G6(IV)P[5] strains of beef farms was observed. Both G6 lineage strains together revealed an evolutionary rate of 1.24 × 10-3 substitutions/site/year, and the time to the most recent common ancestor was dated in 1853. The most probable ancestral locations were Argentina in 1981 for G6(III) strains and the USA in 1940 for G6(IV) strains. The highest migration rates for both G6 lineages together were from Argentina to Brazil and Uruguay. Altogether, the epidemiology, genetic diversity, and phylogeny of RVA in calves can differ according to the production system and farm location. We provide novel knowledge about the evolutionary origin of a bovine G8P[11] strain. Finally, bovine G6 strains from American countries would have originated in the USA nearly a century before its first description.
Collapse
Affiliation(s)
- Enrique L. Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Alejandra Badaracco
- Instituto Nacional de Tecnología Agropecuaria, EEA Montecarlo, Av. El Libertador Nº 2472, Montecarlo CP3384, Misiones, Argentina;
| | - Maximiliano J. Spetter
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CP7000, Buenos Aires, Argentina; (M.J.S.); (J.I.A.)
| | - Samuel Miño
- Instituto Nacional de Tecnología Agropecuaria, EEA Cerro Azul, Ruta 14, km 836, Cerro Azul CP3313, Misiones, Argentina;
| | - Joaquín I. Armendano
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CP7000, Buenos Aires, Argentina; (M.J.S.); (J.I.A.)
| | - Mark Zeller
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Elisabeth Heylen
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Ernesto Späth
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (E.S.); (A.C.O.)
| | - María Rosa Leunda
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Ana Rita Moreira
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (M.R.L.); (A.R.M.)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; (M.Z.); (E.H.)
| | - Viviana Parreño
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Virología e Innovaciones Tecnológicas, Nicolas Repetto y de los Reseros s/n, Hurlingham CP1686, Buenos Aires, Argentina
| | - Anselmo C. Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce B7620, Buenos Aires, Argentina; (E.S.); (A.C.O.)
| |
Collapse
|
5
|
Medeiros RS, França Y, Viana E, de Azevedo LS, Guiducci R, de Lima Neto DF, da Costa AC, Luchs A. Genomic Constellation of Human Rotavirus G8 Strains in Brazil over a 13-Year Period: Detection of the Novel Bovine-like G8P[8] Strains with the DS-1-like Backbone. Viruses 2023; 15:664. [PMID: 36992373 PMCID: PMC10056101 DOI: 10.3390/v15030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.
Collapse
Affiliation(s)
- Roberta Salzone Medeiros
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Lais Sampaio de Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| | - Daniel Ferreira de Lima Neto
- General Coordination of Public Health Laboratories, Department of Strategic Articulation in Epidemiology and Health Surveillance, Ministry of Health, Brasília 70068-900, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-902, Brazil
| |
Collapse
|
6
|
Mozgovoj M, Miño S, Barbieri E, Tort F, Victoria-Montero M, Frydman C, Cap M, Baron P, Colina R, Matthijnssens J, Parreño V. GII.4 human norovirus and G8P[1] bovine-like rotavirus in oysters (Crassostrea gigas) from Argentina. Int J Food Microbiol 2022; 365:109553. [DOI: 10.1016/j.ijfoodmicro.2022.109553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
|
7
|
Bergman H, Henschke N, Hungerford D, Pitan F, Ndwandwe D, Cunliffe N, Soares-Weiser K. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2021; 11:CD008521. [PMID: 34788488 PMCID: PMC8597890 DOI: 10.1002/14651858.cd008521.pub6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Rotavirus is a common cause of diarrhoea, diarrhoea-related hospital admissions, and diarrhoea-related deaths worldwide. Rotavirus vaccines prequalified by the World Health Organization (WHO) include Rotarix (GlaxoSmithKline), RotaTeq (Merck), and, more recently, Rotasiil (Serum Institute of India Ltd.), and Rotavac (Bharat Biotech Ltd.). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO for their efficacy and safety in children. SEARCH METHODS On 30 November 2020, we searched PubMed, the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation Index-Science, Conference Proceedings Citation Index-Social Science & Humanities. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies, and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) conducted in children that compared rotavirus vaccines prequalified for use by the WHO with either placebo or no intervention. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and assessed risk of bias. One author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analyses by under-five country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Sixty trials met the inclusion criteria and enrolled a total of 228,233 participants. Thirty-six trials (119,114 participants) assessed Rotarix, 15 trials RotaTeq (88,934 participants), five trials Rotasiil (11,753 participants), and four trials Rotavac (8432 participants). Rotarix Infants vaccinated and followed up for the first year of life In low-mortality countries, Rotarix prevented 93% of severe rotavirus diarrhoea cases (14,976 participants, 4 trials; high-certainty evidence), and 52% of severe all-cause diarrhoea cases (3874 participants, 1 trial; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 79% of severe rotavirus diarrhoea cases (31,671 participants, 4 trials; high-certainty evidence), and 36% of severe all-cause diarrhoea cases (26,479 participants, 2 trials; high-certainty evidence). In high-mortality countries, Rotarix prevented 58% of severe rotavirus diarrhoea cases (15,882 participants, 4 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, Rotarix prevented 90% of severe rotavirus diarrhoea cases (18,145 participants, 6 trials; high-certainty evidence), and 51% of severe all-cause diarrhoea episodes (6269 participants, 2 trials; moderate-certainty evidence). In medium-mortality countries, Rotarix prevented 77% of severe rotavirus diarrhoea cases (28,834 participants, 3 trials; high-certainty evidence), and 26% of severe all-cause diarrhoea cases (23,317 participants, 2 trials; moderate-certainty evidence). In high-mortality countries, Rotarix prevented 35% of severe rotavirus diarrhoea cases (13,768 participants, 2 trials; moderate-certainty evidence), and 17% of severe all-cause diarrhoea cases (2764 participants, 1 trial; high-certainty evidence). RotaTeq Infants vaccinated and followed up for the first year of life In low-mortality countries, RotaTeq prevented 97% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 57% of severe rotavirus diarrhoea cases (6775 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RotaTeq prevented 96% of severe rotavirus diarrhoea cases (5442 participants, 2 trials; high-certainty evidence). In medium-mortality countries, RotaTeq prevented 79% of severe rotavirus diarrhoea cases (3863 participants, 1 trial; low-certainty evidence). In high-mortality countries, RotaTeq prevented 44% of severe rotavirus diarrhoea cases (6744 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (5977 participants, 2 trials; high-certainty evidence). We did not identify RotaTeq studies reporting on severe all-cause diarrhoea in low- or medium-mortality countries. Rotasiil Rotasiil has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotasiil prevented 48% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotasiil prevented 44% of severe rotavirus diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence), and resulted in little to no difference in severe all-cause diarrhoea cases (11,008 participants, 2 trials; high-certainty evidence). Rotavac Rotavac has not been assessed in any RCT in countries with low or medium child mortality. Infants vaccinated and followed up for the first year of life In high-mortality countries, Rotavac prevented 57% of severe rotavirus diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (6799 participants, 1 trial; moderate-certainty evidence). Children vaccinated and followed up for two years In high-mortality countries, Rotavac prevented 54% of severe rotavirus diarrhoea cases (6541 participants, 1 trial; moderate-certainty evidence); no Rotavac studies have reported on severe all-cause diarrhoea at two-years follow-up. Safety No increased risk of serious adverse events (SAEs) was detected with Rotarix (103,714 participants, 31 trials; high-certainty evidence), RotaTeq (82,502 participants, 14 trials; moderate to high-certainty evidence), Rotasiil (11,646 participants, 3 trials; high-certainty evidence), or Rotavac (8210 participants, 3 trials; moderate-certainty evidence). Deaths were infrequent and the analysis had insufficient evidence to show an effect on all-cause mortality. Intussusception was rare. AUTHORS' CONCLUSIONS: Rotarix, RotaTeq, Rotasiil, and Rotavac prevent episodes of rotavirus diarrhoea. The relative effect estimate is smaller in high-mortality than in low-mortality countries, but more episodes are prevented in high-mortality settings as the baseline risk is higher. In high-mortality countries some results suggest lower efficacy in the second year. We found no increased risk of serious adverse events, including intussusception, from any of the prequalified rotavirus vaccines.
Collapse
Affiliation(s)
| | | | - Daniel Hungerford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council , Cape Town, South Africa
| | - Nigel Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
8
|
Isanaka S, Langendorf C, McNeal MM, Meyer N, Plikaytis B, Garba S, Sayinzoga-Makombe N, Soumana I, Guindo O, Makarimi R, Scherrer MF, Adehossi E, Ciglenecki I, Grais RF. Rotavirus vaccine efficacy up to 2 years of age and against diverse circulating rotavirus strains in Niger: Extended follow-up of a randomized controlled trial. PLoS Med 2021; 18:e1003655. [PMID: 34214095 PMCID: PMC8253401 DOI: 10.1371/journal.pmed.1003655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rotavirus vaccination is recommended in all countries to reduce the burden of diarrhea-related morbidity and mortality in children. In resource-limited settings, rotavirus vaccination in the national immunization program has important cost implications, and evidence for protection beyond the first year of life and against the evolving variety of rotavirus strains is important. We assessed the extended and strain-specific vaccine efficacy of a heat-stable, affordable oral rotavirus vaccine (Rotasiil, Serum Institute of India, Pune, India) against severe rotavirus gastroenteritis (SRVGE) among healthy infants in Niger. METHODS AND FINDINGS From August 2014 to November 2015, infants were randomized in a 1:1 ratio to receive 3 doses of Rotasiil or placebo at approximately 6, 10, and 14 weeks of age. Episodes of gastroenteritis were assessed through active and passive surveillance and graded using the Vesikari score. The primary endpoint was vaccine efficacy of 3 doses of vaccine versus placebo against a first episode of laboratory-confirmed SRVGE (Vesikari score ≥ 11) from 28 days after dose 3, as previously reported. At the time of the primary analysis, median age was 9.8 months. In the present paper, analyses of extended efficacy were undertaken for 3 periods (28 days after dose 3 to 1 year of age, 1 to 2 years of age, and the combined period 28 days after dose 3 to 2 years of age) and by individual rotavirus G type. Among the 3,508 infants included in the per-protocol efficacy analysis (mean age at first dose 6.5 weeks; 49% male), the vaccine provided significant protection against SRVGE through the first year of life (3.96 and 9.98 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 60.3%, 95% CI 43.6% to 72.1%) and over the entire efficacy follow-up period up to 2 years of age (2.13 and 4.69 cases per 100 person-years for vaccine and placebo, respectively; vaccine efficacy 54.7%, 95% CI 38.1% to 66.8%), but the difference was not statistically significant in the second year of life. Up to 2 years of age, rotavirus vaccination prevented 2.56 episodes of SRVGE per 100 child-years. Estimates of efficacy against SRVGE by individual rotavirus genotype were consistent with the overall protective efficacy. Study limitations include limited generalizability to settings with administration of oral polio virus due to low concomitant administration, limited power to assess vaccine efficacy in the second year of life owing to a low number of events among older children, potential bias due to censoring of placebo children at the time of study vaccine receipt, and suboptimal adapted severity scoring based on the Vesikari score, which was designed for use in settings with high parental literacy. CONCLUSIONS Rotasiil provided protection against SRVGE in infants through an extended follow-up period of approximately 2 years. Protection was significant in the first year of life, when the disease burden and risk of death are highest, and against a changing pattern of rotavirus strains during the 2-year efficacy period. Rotavirus vaccines that are safe, effective, and protective against multiple strains represent the best hope for preventing the severe consequences of rotavirus infection, especially in resource-limited settings, where access to care may be limited. Studies such as this provide valuable information for the planning of national immunization programs and future vaccine development. TRIAL REGISTRATION ClinicalTrials.gov NCT02145000.
Collapse
Affiliation(s)
- Sheila Isanaka
- Department of Research, Epicentre, Paris, France
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | | | - Monica Malone McNeal
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nicole Meyer
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Brian Plikaytis
- BioStat Consulting, Jasper, Georgia, United States of America
| | | | | | | | | | | | | | | | - Iza Ciglenecki
- Operational Center Geneva, Médecins Sans Frontières, Geneva, Switzerland
| | | |
Collapse
|
9
|
Kawata K, Hoque SA, Nishimura S, Yagyu F, Islam MT, Sharmin LS, Pham NTK, Onda-Shimizu Y, Quang TD, Takanashi S, Okitsu S, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Role of rotavirus vaccination on G9P[8] rotavirus strain during a seasonal outbreak in Japan. Hum Vaccin Immunother 2021; 17:3613-3618. [PMID: 34033735 DOI: 10.1080/21645515.2021.1925060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although two live oral rotavirus (RV) vaccines, Rotarix and RotaTeq, play a critical role toward reducing disease severity, hospitalization, and death rate in RV infections, regular monitoring of vaccine effectiveness (VE) is yet necessary because the segmented genome structure and reassortment capability of RVs pose considerable threats toward waning VE. In this study, we examined the VE by a test-negative study design against G9P[8]I2 strain during a seasonal outbreak in February-May, 2018, in an outpatient clinic in Kyoto Prefecture, Japan. It remains important because G9P[8]I2 strain remains partially heterotypic to these vaccines and predominating in post-vaccination era. During year-long surveillance, RV infections were detected only from February to May. During this outbreak, 33 (42.3%) children out of 78 with acute gastroenteritis (AGE) remained RV-positive, of which 29 (87.8%) children were infected with G9P[8]I2. Two immunochromatographic (IC) assay kits exhibited 100% sensitivity and specificity to detect G9P[8]I2 strain. Only 23.2% children were found to be vaccinated. Yet, significant VE 69.7% (95% CI: 2.5%-90.6%) was recognized against all RV strains that increased with disease severity. Similar significant VE 71.8% (95% CI: 1%-92%) was determined against G9P[8]I2 strain. The severity score remained substantially low in vaccinated children. Our data reveal that vaccine-preventable G9P[8]I2 strain yet may cause outbreak where vaccination coverage remains low. Thus, this study emphasizes the necessity of global introduction of RV-vaccines in national immunization programs of every country.
Collapse
Affiliation(s)
- Kimiko Kawata
- Division on Nursing Sciences, Midwifery, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | | | - Fumihiro Yagyu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Onda-Shimizu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Trinh Duy Quang
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Sayaka Takanashi
- Department of Developmental Medical Sciences, School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Elkady G, Zhu J, Peng Q, Chen M, Liu X, Chen Y, Hu C, Chen H, Guo A. Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. INFECTION GENETICS AND EVOLUTION 2021; 89:104715. [PMID: 33434703 DOI: 10.1016/j.meegid.2021.104715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Rotaviruses (RVs) account for severe diarrhea in children and young animals globally. In the current study, the fecal samples of diarrheic calves from a beef farm in Inner Mongolia were screened for RVA by ELISA and RT-PCR, followed by culture of three positive RVA samples in the MA-104 cell line. After 10 blind passages, cytopathic effects (CPE) appeared as detachment, granulation, and clustering of the inoculated cells. The virus isolates were identified by RT-PCR (VP6 gene RVA) and ESI-LC-MS/MS for whole protein sequencing. The protein sequences demonstrated the presence of two strains from species A rotavirus and one RVB strain; RVA/Cow-tc/CHN/35333/2019/G6P[5] was mixed with one RVB strain (RVB/Cow-tc/CHN/35334/2019/G5P[3]) in two samples, and RVA/Cow-tc/CHN/10927/2019/G8P[7] was found in one sample. They are of genotype constellations (G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3), (G8-P[7]-I5-R1-C1- M2-A1-N1-T1-E1-H1), and (G5-P[3]-I3-R5-C5-A5-N4-H5), respectively. Besides, phylogenetic analysis of the obtained sequences demonstrated viral evolution.
Collapse
Affiliation(s)
- Gehad Elkady
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhu
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingjie Peng
- Wuhan Keqian Biology Co. Ltd, Wuhan 430023, China
| | - Ming Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Liu
- College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China; College of Veterinary Medicine, Cooperative Innovation Centre of Substantial Pig Production, Hubei Province China, Huazhong Agricultural University, Wuhan 430070, China; National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Sadiq A, Bostan N. Comparative Analysis of G1P[8] Rotaviruses Identified Prior to Vaccine Implementation in Pakistan With Rotarix™ and RotaTeq™ Vaccine Strains. Front Immunol 2020; 11:562282. [PMID: 33133073 PMCID: PMC7562811 DOI: 10.3389/fimmu.2020.562282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023] Open
Abstract
Group A rotavirus (RVA) is the leading cause of severe childhood diarrhea globally, even with all effective interventions, particularly in developing countries. Among the diverse genotypes of RVA, G1P[8] is a common genotype that has continued to pervade around the world, including Pakistan. Two universally accepted rotavirus vaccines-Rotarix™ and RotaTeq™ contain the genotype G1P[8]. The current work was aimed at identifying differences between antigenic epitopes of Pakistan’s G1P[8] strains and those of the two licensed vaccines. We sequenced 6 G1P[8] rotavirus strains previously reported in Rawalpindi, Islamabad, Pakistan in 2015 and 2016 for their outer capsid genes (VP7 and VP4). Phylogenetic analysis was then conducted in order to classify their specific lineages and to detect their association with strains isolated throughout world. Compared with the Rotarix™ and RotaTeq™ vaccine strains (G1-lineage II, P[8]-lineage III), our study G1-lineage I, P[8]-lineage IV strains showed 3 and 5 variations in the VP7 epitopes, respectively, and 13 and 11 variations in the VP4 epitopes, respectively. The G1 lineage II strains showed no single amino acid change compared to Rotarix™ (lineage II), but exhibited changes at 2 positions compared to RotaTeq™ (lineage III). So, this has been proposed that these G1 strains exist in our natural setting, or that they may have been introduced in Pakistan from other countries of the world. The distinct P[8]-lineage IV (OP354-like) strains showed twelve and thirteen amino acid variations, with Rotarix™ and RotaTeq™ (lineages II and III) strains, respectively. Such findings have shown that the VP4-P[8] component of the G1P[8] strains circulating in Pakistan differs considerably from that of the vaccine viruses compared to that of the VP7-G1. To monitor the long-term effects of vaccines on the emergence of G1P[8] strains with different lineages, routine and successful monitoring of these strains will be crucial.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Islamabad, Pakistan
| |
Collapse
|
12
|
Stubbs SCB, Quaye O, Acquah ME, Adadey SM, Kean IRL, Gupta S, Blacklaws BA. Full genomic characterization of a porcine rotavirus strain detected in an asymptomatic piglet in Accra, Ghana. BMC Vet Res 2020; 16:11. [PMID: 31924206 PMCID: PMC6954506 DOI: 10.1186/s12917-019-2226-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/25/2019] [Indexed: 12/03/2022] Open
Abstract
Background The introduction of rotavirus A vaccination across the developing world has not proved to be as efficacious as first hoped. One cause of vaccine failure may be infection by zoonotic rotaviruses that are very variable antigenically from the vaccine strain. However, there is a lack of genomic information about the circulating rotavirus A strains in farm animals in the developing world that may be a source of infection for humans. We therefore screened farms close to Accra, Ghana for animals sub-clinically infected with rotavirus A and then sequenced the virus found in one of these samples. Results 6.1% of clinically normal cows and pigs tested were found to be Rotavirus A virus antigen positive in the faeces. A subset of these (33.3%) were also positive for virus RNA. The most consistently positive pig sample was taken forward for metagenomic sequencing. This gave full sequence for all open reading frames except segment 5 (NSP1), which is missing a single base at the 5′ end. The virus infecting this pig had genome constellation G5-P[7]-I5-R1-C1-M1-A8-N1-T7-E1-H1, a known porcine genotype constellation. Conclusions Farm animals carry rotavirus A infection sub-clinically at low frequency. Although the rotavirus A genotype discovered here has a pig-like genome constellation, a number of the segments most closely resembled those isolated from humans in suspected cases of zoonotic transmission. Therefore, such viruses may be a source of variable gene segments for re-assortment with other viruses to cause vaccine breakdown. It is recommended that further human and pig strains are characterized in West Africa, to better understand this dynamic.
Collapse
Affiliation(s)
- Samuel C B Stubbs
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana.
| | - Maame Ekua Acquah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Volta Road, P. O. Box LG 54, Legon, Accra, Ghana
| | - Iain R L Kean
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Srishti Gupta
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Soares‐Weiser K, Bergman H, Henschke N, Pitan F, Cunliffe N. Vaccines for preventing rotavirus diarrhoea: vaccines in use. Cochrane Database Syst Rev 2019; 2019:CD008521. [PMID: 31684685 PMCID: PMC6816010 DOI: 10.1002/14651858.cd008521.pub5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac. RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence). RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence). Children vaccinated and followed up for two years In low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence). Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up. Children vaccinated and followed up for two years Rotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence). No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence). There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events. 21 October 2019 Up to date All studies incorporated from most recent search All published trials found in the last search (4 Apr, 2018) were included and 15 ongoing studies are currently awaiting completion (see 'Characteristics of ongoing studies').
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| | | |
Collapse
|
14
|
Maguire JE, Glasgow K, Glass K, Roczo-Farkas S, Bines JE, Sheppeard V, Macartney K, Quinn HE. Rotavirus Epidemiology and Monovalent Rotavirus Vaccine Effectiveness in Australia: 2010-2017. Pediatrics 2019; 144:peds.2019-1024. [PMID: 31530719 DOI: 10.1542/peds.2019-1024] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Rotavirus vaccine has been funded for infants under the Australian National Immunisation Program since 2007, with Rotarix vaccine used in New South Wales, Australia, from that time. In 2017, New South Wales experienced a large outbreak of rotavirus gastroenteritis. We examined epidemiology, genotypic profiles, and vaccine effectiveness (VE) among cases. METHODS Laboratory-confirmed cases of rotavirus notified in New South Wales between January 1, 2010 and December 31, 2017 were analyzed. VE was estimated in children via a case-control analysis. Specimens from a sample of hospitalized case patients were genotyped and analyzed. RESULTS In 2017, 2319 rotavirus cases were reported, representing a 3.1-fold increase on the 2016 notification rate. The highest rate was among children aged <2 years. For notified cases in 2017, 2-dose VE estimates were 88.4%, 83.7%, and 78.7% in those aged 6 to 11 months, 1 to 3 years, and 4 to 9 years, respectively. VE was significantly reduced from 89.5% within 1 year of vaccination to 77.0% at 5 to 10 years postvaccination. Equinelike G3P[8] (48%) and G8P[8] (23%) were identified as the most common genotypes in case patients aged ≥6 months. CONCLUSIONS Rotarix is highly effective at preventing laboratory-confirmed rotavirus in Australia, especially in infants aged 6 to 11 months. Reduced VE in older age groups and over time suggests waning protection, possibly related to the absence of subclinical immune boosting from continuously circulating virus. G8 genotypes have not been common in Australia, and their emergence, along with equinelike G3P[8], may be related to vaccine-induced selective pressure; however, further strain-specific VE studies are needed.
Collapse
Affiliation(s)
- Julia E Maguire
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia; .,National Centre for Epidemiology and Public Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Keira Glasgow
- Communicable Diseases Branch, Health Protection New South Wales, Sydney, New South Wales, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Public Health, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Susie Roczo-Farkas
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; and
| | - Vicky Sheppeard
- Communicable Diseases Branch, Health Protection New South Wales, Sydney, New South Wales, Australia
| | - Kristine Macartney
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney Children's Hospital Westmead Clinical School, Westmead, New South Wales, Australia
| | - Helen E Quinn
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia.,Discipline of Child and Adolescent Health, The University of Sydney Children's Hospital Westmead Clinical School, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
Sadiq A, Bostan N, Bokhari H, Matthijnssens J, Yinda KC, Raza S, Nawaz T. Molecular characterization of human group A rotavirus genotypes circulating in Rawalpindi, Islamabad, Pakistan during 2015-2016. PLoS One 2019; 14:e0220387. [PMID: 31361761 PMCID: PMC6667158 DOI: 10.1371/journal.pone.0220387] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Group A rotaviruses (RVA) are one of the major causes of acute gastroenteritis (AGE) in young children worldwide. Owing to lack of proper surveillance programs and health facilities, developing countries of Asia and Africa carry a disproportionately heavy share of the RVA disease burden. The aim of this hospital-based study was to investigate the circulation of RVA genotypes in Rawalpindi and Islamabad, Pakistan in 2015 and 2016, prior to the implementation of RVA vaccine. 639 faecal samples collected from children under 10 years of age hospitalized with AGE were tested for RVA antigen by ELISA. Among 171 ELISA positive samples, 143 were successfully screened for RT-PCR and sequencing. The prevalence of RVA was found to be 26.8% with the highest frequency (34.9%) found among children of age group 6-11 months. The most predominant circulating genotypes were G3P[8] (22.4%) followed by G12P[6] (20.3%), G2P[4] (12.6%), G1P[8] (11.9%), G9P[6] (11.9%), G3P[4] (9.1%), G1P[6] (4.2%), G9P[8] (4.2%), and G3P[6] (0.7%). A single mixed genotype G1G3P[8] was also detected. The findings of this study provide baseline data, that will help to assess if future vaccination campaigns using currently available RVA vaccine will reduce RVA disease burden and instigate evolutionary changes in the overall RVA biology. The high prevalence of RVA infections in Pakistan require to improve and strengthen the surveillance and monitoring system for RVA. This will provide useful information for health authorities in planning public health care strategies to mitigate the disease burden caused by RVA.
Collapse
Affiliation(s)
- Asma Sadiq
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Jelle Matthijnssens
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Kwe Claude Yinda
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Saqlain Raza
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| | - Tayyab Nawaz
- Department of Biosciences, COMSATS University (CUI), Tarlai Kalan, Chak Shahzad, Islamabad, Pakistan
| |
Collapse
|
16
|
Damanka SA, Agbemabiese CA, Dennis FE, Lartey BL, Adiku TK, Enweronu-Laryea CC, Armah GE. Genetic analysis of Ghanaian G1P[8] and G9P[8] rotavirus A strains reveals the impact of P[8] VP4 gene polymorphism on P-genotyping. PLoS One 2019; 14:e0218790. [PMID: 31242245 PMCID: PMC6594640 DOI: 10.1371/journal.pone.0218790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
The World Health Organisation rotavirus surveillance networks have documented and shown eclectic geographic and temporal diversity in circulating G- and P- genotypes identified in children <5 years of age. To effectively monitor vaccine performance and effectiveness, robust molecular and phylogenetic techniques are essential to detect novel strain variants that might emerge due to vaccine pressure. This study inferred the phylogenetic history of the VP7 and VP4 genes of previously non-typeable strains and provided insight into the diversity of P[8] VP4 sequences which impacted the outcome of our routine VP4 genotyping method. Near-full-length VP7 gene and the VP8* fragment of the VP4 gene were obtained by Sanger sequencing and genotypes were determined using RotaC v2.0 web-based genotyping tool. The genotypes of the 57 rotavirus-positive samples with sufficient stool was determined. Forty-eight of the 57 (84.2%) had the P[8] specificity, of which 43 (89.6%) were characterized as P[8]a subtype and 5 (10.4%) as the rare OP354-like subtype. The VP7 gene of 27 samples were successfully sequenced and their G-genotypes confirmed as G1 (18/27) and G9 (9/27). Phylogenetic analysis of the P[8]a sequences placed them in subcluster IIIc within lineage III together with contemporary G1P[8], G3P[8], G8P[8], and G9P[8] strains detected globally from 2006-2016. The G1 VP7 sequences of the study strains formed a monophyletic cluster with African G1P[8] strains, previously detected in Ghana and Mali during the RotaTeq vaccine trial as well as Togo. The G9 VP7 sequences of the study strains formed a monophyletic cluster with contemporary African G9 sequences from neighbouring Burkina Faso within the major sub-cluster of lineage III. Mutations identified in the primer binding region of the VP8* sequence of the Ghanaian P[8]a strains may have resulted in the genotyping failure since the newly designed primer successfully genotyped the previously non-typeable P[8] strains. In summary, the G1, G9, and P[8]a sequences were highly similar to contemporary African strains at the lineage level. The study also resolved the methodological challenges of the standard genotyping techniques and highlighted the need for regular evaluation of the multiplex PCR-typing method especially in the post-vaccination era. The study further highlights the need for regions to start using sequencing data from local rotavirus strains to design and update genotyping primers.
Collapse
Affiliation(s)
- Susan Afua Damanka
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- * E-mail:
| | - Chantal Ama Agbemabiese
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Francis Ekow Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Belinda Larteley Lartey
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theophilus Korku Adiku
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - George Enyimah Armah
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
17
|
Full-length genome analysis of the first human G8P[14] rotavirus strain from Morocco suggests evidence of zoonotic transmission. Virus Genes 2019; 55:465-478. [PMID: 31197545 DOI: 10.1007/s11262-019-01677-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
An unusual group A rotavirus (RVA) strain MAR/ma31/2011/G8P[14] was detected for the first time in Morocco in a stool sample from hospitalized child aged 18 months suffering from acute gastroenteritis and fever in 2011. Complete genome sequencing of the ma31 strain was done using the capillary sequencing technology. The analysis revealed the G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 constellation and the backbone genes: I2-R2-C2-M2-A11-N2-T6-E2-H3 are commonly found in RVA strains from artiodactyls such as cattle. The constellation was shared with another Italian zoonotic G8P[14] strains (BA01 and BA02), two Hungarian human strains (182-02 and BP1062) and a sheep RVA strain OVR762. Phylogenetic analysis of each genome segment of ma31 revealed a mixed gene configuration originated from animals and human. Comparison of the antigenic regions of VP7 and VP4 amino acid sequences between ma31 strain and selected animal and human strains bearing G8 and or P[14], showed a high level of conservation, while many substitutions was observed in comparison with RotaTeq™ and Rotarix™ vaccine strains. In contrast, alignment analysis of the four antigenic sites of VP6 revealed a high degree of conservation. These findings reveal a typical zoonotic origin of the strain and confirm a high potential for RVA zoonotic transmission between bovine and humans, allowing the generation of novel rotavirus genotypes.
Collapse
|
18
|
Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS One 2019; 14:e0217422. [PMID: 31150425 PMCID: PMC6544246 DOI: 10.1371/journal.pone.0217422] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Recent increase in the detection of unusual G1P[8], G3P[8], G8P[8], and G9P[4] Rotavirus A (RVA) strains bearing the DS-1-like constellation of the non-G, non-P genes (hereafter referred to as the genotype 2 backbone) requires better understanding of their evolutionary relationship. However, within a genotype, there is lack of a consensus lineage designation framework and a set of common sequences that can serve as references. Phylogenetic analyses were carried out on over 8,500 RVA genotype 2 genes systematically retrieved from the rotavirus database within the NCBI Virus Variation Resource. In line with previous designations, using pairwise comparison of cogent nucleotide sequences and stringent bootstrap support, reference lineages were defined. This study proposes a lineage framework and provides a dataset ranging from 34 to 145 sequences for each genotype 2 gene for orderly lineage designation of global genotype 2 genes of RVAs detected in human and animals. The framework identified five to 31 lineages depending on the gene. The least number of lineages (five to seven) were observed in genotypes A2 (NSP1), T2 (NSP3) and H2 (NSP5) which are limited to human RVA whereas the most number of lineages (31) was observed in genotype E2 (NSP4). Sharing of the same lineage constellations of the genotype 2 backbone genes between recently-emerging, unusual G1P[8], G3P[8], G8P[8] and G9P[4] reassortants and many contemporary G2P[4] strains provided strong support to the hypothesis that unusual genotype 2 strains originated primarily from reassortment events in the recent past involving contemporary G2P[4] strains as one parent and ordinary genotype 1 strains or animal RVA strains as the other. The lineage framework with selected reference sequences will help researchers to identify the lineage to which a given genotype 2 strain belongs, and trace the evolutionary history of common and unusual genotype 2 strains in circulation.
Collapse
|
19
|
Abstract
BACKGROUND Rotavirus results in more diarrhoea-related deaths in children under five years than any other single agent in countries with high childhood mortality. It is also a common cause of diarrhoea-related hospital admissions in countries with low childhood mortality. Rotavirus vaccines that have been prequalified by the World Health Organization (WHO) include a monovalent vaccine (RV1; Rotarix, GlaxoSmithKline), a pentavalent vaccine (RV5; RotaTeq, Merck), and, more recently, another monovalent vaccine (Rotavac, Bharat Biotech). OBJECTIVES To evaluate rotavirus vaccines prequalified by the WHO (RV1, RV5, and Rotavac) for their efficacy and safety in children. SEARCH METHODS On 4 April 2018 we searched MEDLINE (via PubMed), the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (published in the Cochrane Library), Embase, LILACS, and BIOSIS. We also searched the WHO ICTRP, ClinicalTrials.gov, clinical trial reports from manufacturers' websites, and reference lists of included studies and relevant systematic reviews. SELECTION CRITERIA We selected randomized controlled trials (RCTs) in children comparing rotavirus vaccines prequalified for use by the WHO versus placebo or no intervention. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility and assessed risks of bias. One review author extracted data and a second author cross-checked them. We combined dichotomous data using the risk ratio (RR) and 95% confidence interval (CI). We stratified the analysis by country mortality rate and used GRADE to evaluate evidence certainty. MAIN RESULTS Fifty-five trials met the inclusion criteria and enrolled a total of 216,480 participants. Thirty-six trials (119,114 participants) assessed RV1, 15 trials (88,934 participants) RV5, and four trials (8432 participants) Rotavac.RV1 Children vaccinated and followed up the first year of life In low-mortality countries, RV1 prevents 84% of severe rotavirus diarrhoea cases (RR 0.16, 95% CI 0.09 to 0.26; 43,779 participants, 7 trials; high-certainty evidence), and probably prevents 41% of cases of severe all-cause diarrhoea (RR 0.59, 95% CI 0.47 to 0.74; 28,051 participants, 3 trials; moderate-certainty evidence). In high-mortality countries, RV1 prevents 63% of severe rotavirus diarrhoea cases (RR 0.37, 95% CI 0.23 to 0.60; 6114 participants, 3 trials; high-certainty evidence), and 27% of severe all-cause diarrhoea cases (RR 0.73, 95% CI 0.56 to 0.95; 5639 participants, 2 trials; high-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV1 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.14 to 0.23; 36,002 participants, 9 trials; high-certainty evidence), and probably prevents 37% of severe all-cause diarrhoea episodes (rate ratio 0.63, 95% CI 0.56 to 0.71; 39,091 participants, 2 trials; moderate-certainty evidence). In high-mortality countries RV1 probably prevents 35% of severe rotavirus diarrhoea cases (RR 0.65, 95% CI 0.51 to 0.83; 13,768 participants, 2 trials; high-certainty evidence), and 17% of severe all-cause diarrhoea cases (RR 0.83, 95% CI 0.72 to 0.96; 2764 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.88 95% CI 0.83 to 0.93; high-certainty evidence). There were 30 cases of intussusception reported in 53,032 children after RV1 vaccination and 28 cases in 44,214 children after placebo or no intervention (RR 0.70, 95% CI 0.46 to 1.05; low-certainty evidence).RV5 Children vaccinated and followed up the first year of life In low-mortality countries, RV5 probably prevents 92% of severe rotavirus diarrhoea cases (RR 0.08, 95% CI 0.03 to 0.22; 4132 participants, 5 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 57% of severe rotavirus diarrhoea (RR 0.43, 95% CI 0.29 to 0.62; 5916 participants, 2 trials; high-certainty evidence), but there is probably little or no difference between vaccine and placebo for severe all-cause diarrhoea (RR 0.80, 95% CI 0.58 to 1.11; 1 trial, 4085 participants; moderate-certainty evidence).Children vaccinated and followed up for two yearsIn low-mortality countries, RV5 prevents 82% of severe rotavirus diarrhoea cases (RR 0.18, 95% CI 0.08 to 0.39; 7318 participants, 4 trials; moderate-certainty evidence). We did not identify studies reporting on severe all-cause diarrhoea in low-mortality countries. In high-mortality countries, RV5 prevents 41% of severe rotavirus diarrhoea cases (RR 0.59, 95% CI 0.43 to 0.82; 5885 participants, 2 trials; high-certainty evidence), and 15% of severe all-cause diarrhoea cases (RR 0.85, 95% CI 0.75 to 0.98; 5977 participants, 2 trials; high-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.86 to 1.01; moderate to high-certainty evidence). There were 16 cases of intussusception in 43,629 children after RV5 vaccination and 20 cases in 41,866 children after placebo (RR 0.77, 95% CI 0.41 to 1.45; low-certainty evidence).Rotavac Children vaccinated and followed up the first year of life Rotavac has not been assessed in any RCT in countries with low child mortality. In India, a high-mortality country, Rotavac probably prevents 57% of severe rotavirus diarrhoea cases (RR 0.43, 95% CI 0.30 to 0.60; 6799 participants, moderate-certainty evidence); the trial did not report on severe all-cause diarrhoea at one-year follow-up.Children vaccinated and followed up for two yearsRotavac probably prevents 54% of severe rotavirus diarrhoea cases in India (RR 0.46, 95% CI 0.35 to 0.60; 6541 participants, 1 trial; moderate-certainty evidence), and 16% of severe all-cause diarrhoea cases (RR 0.84, 95% CI 0.71 to 0.98; 6799 participants, 1 trial; moderate-certainty evidence).No increased risk of serious adverse events (SAE) was detected (RR 0.93 95% CI 0.85 to 1.02; moderate-certainty evidence). There were eight cases of intussusception in 5764 children after Rotavac vaccination and three cases in 2818 children after placebo (RR 1.33, 95% CI 0.35 to 5.02; very low-certainty evidence).There was insufficient evidence of an effect on mortality from any rotavirus vaccine (198,381 participants, 44 trials; low- to very low-certainty evidence), as the trials were not powered to detect an effect at this endpoint. AUTHORS' CONCLUSIONS RV1, RV5, and Rotavac prevent episodes of rotavirus diarrhoea. Whilst the relative effect estimate is smaller in high-mortality than in low-mortality countries, there is a greater number of episodes prevented in these settings as the baseline risk is much higher. We found no increased risk of serious adverse events.
Collapse
Affiliation(s)
- Karla Soares‐Weiser
- CochraneEditorial & Methods DepartmentSt Albans House, 57 ‐ 59 HaymarketLondonUKSW1Y 4QX
| | - Hanna Bergman
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Nicholas Henschke
- CochraneCochrane ResponseSt Albans House57‐59 HaymarketLondonUKSW1Y 4QX
| | - Femi Pitan
- Chevron Corporation2 Chevron DriveLekkiLagosNigeria
| | - Nigel Cunliffe
- University of LiverpoolInstitute of Infection and Global Health, Faculty of Health and Life SciencesLiverpoolUKL69 7BE
| |
Collapse
|
20
|
Wandera EA, Komoto S, Mohammad S, Ide T, Bundi M, Nyangao J, Kathiiko C, Odoyo E, Galata A, Miring'u G, Fukuda S, Hatazawa R, Murata T, Taniguchi K, Ichinose Y. Genomic characterization of uncommon human G3P[6] rotavirus strains that have emerged in Kenya after rotavirus vaccine introduction, and pre-vaccine human G8P[4] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2018; 68:231-248. [PMID: 30543939 DOI: 10.1016/j.meegid.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012-2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored.
Collapse
Affiliation(s)
- Ernest Apondi Wandera
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Shah Mohammad
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Martin Bundi
- National Biosafety Authority, Nairobi 00100, Kenya
| | - James Nyangao
- Center for Virus Research, KEMRI, Nairobi 54840-00200, Kenya
| | - Cyrus Kathiiko
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Amina Galata
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Gabriel Miring'u
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| | - Saori Fukuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Riona Hatazawa
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Kenya Medical Research Institute (KEMRI)/Nagasaki University, Nairobi 19993-00202, Kenya
| |
Collapse
|
21
|
Motayo BO, Faneye AO, Adeniji JA. Epidemiology of Rotavirus A in Nigeria: Molecular Diversity and Current Insights. J Pathog 2018; 2018:6513682. [PMID: 30364038 PMCID: PMC6188771 DOI: 10.1155/2018/6513682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/29/2018] [Indexed: 11/19/2022] Open
Abstract
Rotavirus induced acute gastroenteritis AGE has been a major disease burden in Nigeria, since it was first reported in 1985. Prevalence rates have increased with severe public health consequences particularly among children. The vaccine Rotarix® has been introduced and is commercially available in Nigeria. However routine rotavirus vaccination is yet to be introduced into the National Immunization Program. Molecular epidemiology of rotavirus in Nigeria has shown the presence of various genotypes, with genotype G12P[8] being the most recent introduction. There are however gaps in molecular data on rotavirus in Nigeria. We therefore reviewed molecular data on rotavirus isolated in Nigeria and also analyzed VP4 and VP7 genes of Nigerian rotavirus strains in Genbank. We have shown that there is a distinct trend in rotavirus molecular epidemiology in Nigeria, with new genotype introductions occurring after the year 2010. We also observed from our analysis the emergence of genotype G12 Lineage III as a dominant genotype. This information elucidates rotavirus molecular epidemiology in Nigeria and gives insight to the expanding landscape of rotavirus genotypes. We recommend the institution of molecular surveillance country wide, before considering the inclusion of rotavirus vaccination into the National Immunization Program in Nigeria, in other to monitor evolution of divergent or recombinant strains.
Collapse
Affiliation(s)
- Babatunde Olanrewaju Motayo
- Department of Virology, University of Ibadan, Nigeria
- Pathology Department, Federal Medical Centre, Idi-Aba, Abeokuta, Nigeria
| | | | | |
Collapse
|
22
|
Isabel S, Higgins RR, Peci A, Isabel MR, Deeks SL, Gubbay JB. Rotavirus genotypes circulating in Ontario, Canada, before and after implementation of the rotavirus immunization program. Vaccine 2018. [PMID: 29526372 DOI: 10.1016/j.vaccine.2018.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Ontario introduced a universal publicly-funded group A rotavirus (RVA) immunization program in August 2011, using monovalent vaccine. RVA immunization programs have decreased the incidence of RVA acute gastroenteritis in many countries but it is unclear if it will contribute to the emergence of certain genotypes. We monitored RVA trends and genotypes in Ontario before and after implementation of the publicly-funded immunization program. METHODS RVA detection was conducted at Public Health Ontario Laboratories from January 2009 to December 2011 (pre-program period) and January 2012 to October 2015 (publicly-funded RVA immunization program period) and number of RVA-positive specimens and percent positivity were analysed. A convenience sample of RVA-positive stool specimens, from September 2010 to December 2011 (pre-program period) and January 2012 to June 2013 (program period), were genotyped using heminested PCR. A literature review on the burden of illness from emergent genotype was performed. RESULTS Stool specimens showed a significant decrease in RVA percent positivity from the 36 month pre-program period (14.4%; 1537/10700) to the 46 month program period (6.1%; 548/9019). An increase in the proportion of RVA G10 among genotyped specimens, associated with five different P genotypes, from the pre-program (6.3%; 13/205) to the program (31.5%; 40/127) period was observed. Our literature review identified approximately 200 G10-positive human stool specimens from 16 different countries. CONCLUSIONS This study documented a decrease in the number of RVA-positive specimens and percent positivity after implementation of the immunization program. An unexpected increase in the proportion of RVA G10 was detected following program introduction. Ongoing RVA surveillance is important in evaluating both the long-term impact of immunization and emergence of RVA genotypes.
Collapse
Affiliation(s)
- Sandra Isabel
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Marc R Isabel
- Département de géomatique, Université Laval, Québec, Québec, Canada
| | - Shelley L Deeks
- Public Health Ontario, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B Gubbay
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology and Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Role of rotavirus vaccination on an emerging G8P[8] rotavirus strain causing an outbreak in central Japan. Vaccine 2017; 36:43-49. [PMID: 29183732 DOI: 10.1016/j.vaccine.2017.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND In this study, we examined the effectiveness of RV1 and RV5 vaccines during an outbreak of G8P[8] rotavirus group A strain (G8P[8]-RVA). These vaccines were originally designed to provide protection against severe diseases caused by common circulating strains, whereas G8P[8]-RVA remains emerging strain and partially heterotypic to the vaccines. It is imperative to investigate vaccine effectiveness (VE) against G8P[8]-RVA because this strain appears to be predominant in recent years, particularly, in post-vaccine era. METHODS RVA infection and genotypes were confirmed by polymerase chain reaction (PCR) followed by sequence-based genotyping. VE was determined during an outbreak of G8P[8]-RVA in Shizuoka Prefecture, Japan, in February-July 2017, retrospectively, by comparing vaccination status of children suffering from acute gastroenteritis (AGE) between 'PCR-positive' and 'PCR-negative' cases using conditional logistic regression adjusted for age. RESULTS Among 80 AGE children, RVA was detected in 58 (73%), of which 53 (66%) was G8P[8]-RVA. The clinical characteristics of G8P[8]-RVA and other RVA strains were identically severe. Notably, the attack rates of G8P[8]-RVA in vaccinated (61.1%) and unvaccinated (65.5%) children were almost similar. Indeed, no substantial effectiveness were found against G8P[8]-RVA (VE, 14% [95% CI: -140% to 70%]) or other RVA strains (VE, 58% [95% CI: -20% to 90%]) for mild infections. However, these vaccines remained strongly effective against moderate (VE, 75% [95% CI: 1% to 40%]) and severe (VE, 92% [95% CI: 60% to 98%]) RVA infections. The disease severity including Vesikari score, duration and frequency of diarrhea, and body temperature were significantly lower in vaccinated children. CONCLUSIONS This study demonstrates the effectiveness of current RV vaccines against moderate and severe, but not against the mild infections during an outbreak caused by unusual G8P[8]-RVA, which was virtually not targeted in the vaccines.
Collapse
|
24
|
Jiang X, Liu Y, Tan M. Histo-blood group antigens as receptors for rotavirus, new understanding on rotavirus epidemiology and vaccine strategy. Emerg Microbes Infect 2017; 6:e22. [PMID: 28400594 PMCID: PMC5457676 DOI: 10.1038/emi.2017.30] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
The success of the two rotavirus (RV) vaccines (Rotarix and RotaTeq) in many countries endorses a live attenuated vaccine approach against RVs. However, the lower efficacies of both vaccines in many low- and middle-income countries indicate a need to improve the current RV vaccines. The recent discovery that RVs recognize histo-blood group antigens (HBGAs) as potential receptors has significantly advanced our understanding of RV diversity, evolution and epidemiology, providing important new insights into the performances of current RV vaccines in different populations and emphasizing a P-type-based vaccine approach. New understanding of RV diversity and evolution also raises a fundamental question about the ‘Jennerian' approach, which needs to be addressed for future development of live attenuated RV vaccines. Alternative approaches to develop safer and more cost-effective subunit vaccines against RVs are also discussed.
Collapse
Affiliation(s)
- Xi Jiang
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yang Liu
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ming Tan
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Markkula J, Hemming-Harlo M, Salminen MT, Savolainen-Kopra C, Pirhonen J, Al-Hello H, Vesikari T. Rotavirus epidemiology 5-6 years after universal rotavirus vaccination: persistent rotavirus activity in older children and elderly. Infect Dis (Lond) 2017; 49:388-395. [PMID: 28067093 DOI: 10.1080/23744235.2016.1275773] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Rotavirus (RV) vaccination using RotaTeq® vaccine exclusively was introduced into Finnish National Immunization Program (NIP) in 2009, and soon reached high (≥90%) coverage. Since mid-2013, all stool samples from laboratory diagnosed cases of RV gastroenteritis in the entire country have been typed. METHODS 364 RV positive stool samples collected from clinical laboratories over a 2-year period were G- and P-typed using RT-PCR, and the results were confirmed by sequencing. In addition, the genome segment encoding for VP6 was sequenced to distinguish between wild-type and vaccine origin (bovine) RVs. RESULTS RV winter epidemic seasons 2013-2014 and 2014-2015 lasted until July each. The age distribution of RV cases showed two unusual clusters: one in children 6-16 years of age, too old to have been vaccinated in NIP, and the other in elderly over 70 years of age. In children, diverse genotypes were observed without any obvious predominance. The most common ones were G1P[8] (30.0%), G2P[4] (22.4%), G9P[8] (15.8%), G3P[8] (12.2%) and G4P[8] (11.2%). The genotype distribution was not different among vaccinated and unvaccinated children. Most cases in the elderly were associated with G2P[4]. CONCLUSIONS Even at high vaccine coverage and high effectiveness of RV vaccine, RV activity continues to persist, particularly in unvaccinated older children. RV genotypes show greater diversity than before RV vaccinations. We conclude that RV disease can be controlled but not eliminated by vaccinations. Herd-protection in long-term follow-up may be less than at the start of RV vaccinations.
Collapse
Affiliation(s)
- Jukka Markkula
- a Vaccine Research Center , University of Tampere , Tampere , Finland
| | | | - Marjo T Salminen
- a Vaccine Research Center , University of Tampere , Tampere , Finland
| | | | - Jaana Pirhonen
- b National Institute for Health and Welfare (THL) , Helsinki , Finland
| | - Haider Al-Hello
- b National Institute for Health and Welfare (THL) , Helsinki , Finland
| | - Timo Vesikari
- a Vaccine Research Center , University of Tampere , Tampere , Finland
| |
Collapse
|
26
|
Zeller M, Heylen E, Tamim S, McAllen JK, Kirkness EF, Akopov A, De Coster S, Van Ranst M, Matthijnssens J. Comparative analysis of the Rotarix™ vaccine strain and G1P[8] rotaviruses detected before and after vaccine introduction in Belgium. PeerJ 2017; 5:e2733. [PMID: 28070453 PMCID: PMC5214804 DOI: 10.7717/peerj.2733] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/28/2016] [Indexed: 02/04/2023] Open
Abstract
G1P[8] rotaviruses are responsible for the majority of human rotavirus infections worldwide. The effect of universal mass vaccination with rotavirus vaccines on circulating G1P[8] rotaviruses is still poorly understood. Therefore we analyzed the complete genomes of the Rotarix™ vaccine strain, and 70 G1P[8] rotaviruses, detected between 1999 and 2010 in Belgium (36 before and 34 after vaccine introduction) to investigate the impact of rotavirus vaccine introduction on circulating G1P[8] strains. All rotaviruses possessed a complete Wa-like genotype constellation, but frequent intra-genogroup reassortments were observed as well as multiple different cluster constellations circulating in a single season. In addition, identical cluster constellations were found to circulate persistently over multiple seasons. The Rotarix™ vaccine strain possessed a unique cluster constellation that was not present in currently circulating G1P[8] strains. At the nucleotide level, the VP6, VP2 and NSP2 gene segments of Rotarix™ were relatively distantly related to any Belgian G1P[8] strain, but other gene segments of Rotarix™ were found in clusters also containing circulating Belgian strains. At the amino acid level, the genetic distance between Rotarix™ and circulating Belgian strains was considerably lower, except for NSP1. When we compared the Belgian G1P[8] strains collected before and after vaccine introduction a reduction in the proportion of strains that were found in the same cluster as the Rotarix™ vaccine strain was observed for most gene segments. The reduction in the proportion of strains belonging to the same cluster may be the result of the vaccine introduction, although natural fluctuations cannot be ruled out.
Collapse
Affiliation(s)
- Mark Zeller
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Elisabeth Heylen
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Sana Tamim
- Department of Microbiology, Quaid-i-Azam University , Islamabad , Pakistan
| | | | | | - Asmik Akopov
- The J. Craig Venter Institute , Rockville , MD , USA
| | - Sarah De Coster
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven , Leuven , Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Katholieke Universiteit Leuven , Leuven , Belgium
| |
Collapse
|
27
|
Komoto S, Adah MI, Ide T, Yoshikawa T, Taniguchi K. Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. INFECTION GENETICS AND EVOLUTION 2016; 43:424-33. [DOI: 10.1016/j.meegid.2016.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
28
|
Agbemabiese CA, Nakagomi T, Doan YH, Do LP, Damanka S, Armah GE, Nakagomi O. Genomic constellation and evolution of Ghanaian G2P[4] rotavirus strains from a global perspective. INFECTION GENETICS AND EVOLUTION 2016; 45:122-131. [PMID: 27569866 DOI: 10.1016/j.meegid.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Understanding of the genetic diversity and evolution of Rotavirus A (RVA) strains, a common cause of severe diarrhoea in children, needs to be based on the analysis at the whole genome level in the vaccine era. This study sequenced the whole genomes of six representative G2P[4] strains detected in Ghana from 2008 to 2013, and analysed them phylogenetically with a global collection of G2P[4] strains and African non-G2P[4] DS-1-like strains. The genotype constellation of the study strains was G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Strains from the same season were highly identical across the whole genome while strains from different seasons were more divergent from each other. The VP7, VP4, VP2, NSP1, and NSP5 genes belonged to lineage IVa; the VP6, VP1, NSP2, and NSP3 genes belonged to lineage V, and all these genes evolved in the same fashion as the global strains. In the NSP4 gene, lineages V (2008) and X (2009) were replaced by VI (2012/2013) whereas in the VP3 gene, lineage V (2008/2009) was replaced by VII (2012/2013) and these replacements coincided with the vaccine introduction period (2012). The evolutionary rate of the NSP4 gene was 1.2×10-3 substitutions/site/year and was rather comparable to that of the remaining 10 genes. The multiple NSP4 lineages were explained by intra-genotype reassortment with co-circulating African human DS-1-like strains bearing G2[6], G3P[6], G6[6] and G8. There was no explicit evidence of the contribution of animal RVA strains to the genome of the Ghanaian G2P[4] strains. In summary, this study revealed the dynamic evolution of the G2P[4] strains through intra-genotype reassortment events leading to African specific lineages such IX and X in the NSP4 gene. So far, there was no evidence of a recent direct involvement of animal RVA genes in the genome diversity of African G2P[4] strains.
Collapse
Affiliation(s)
- Chantal Ama Agbemabiese
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Susan Damanka
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Osamu Nakagomi
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Hygiene and Molecular Epidemiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
29
|
Heylen E, Zeller M, Ciarlet M, Lawrence J, Steele D, Van Ranst M, Matthijnssens J. Human P[6] Rotaviruses From Sub-Saharan Africa and Southeast Asia Are Closely Related to Those of Human P[4] and P[8] Rotaviruses Circulating Worldwide. J Infect Dis 2016; 214:1039-49. [PMID: 27471320 DOI: 10.1093/infdis/jiw247] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/06/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND P[6] rotaviruses have been circulating with a high prevalence in African and, to a more limited extent, Asian countries, but they have not been highly prevalent in other parts of the world. METHODS To investigate the genomic relationship between African and Asian human P[6] rotaviruses and P[4] and P[8] rotaviruses circulating worldwide, we sequenced 39 P[6] strains, collected in Ghana, Mali, Kenya and Bangladesh, providing the largest data set of P[6] rotavirus genomes isolated in low-income countries or anywhere else in the world that has been published thus far. RESULTS Overall, the data indicate that the genetic backbone of human P[6] strains from the low-income countries are similar to those of P[4] or P[8] strains circulating worldwide. CONCLUSIONS The observation that gene segment 4 is the main differentiator between human P[6] and non-P[6] strains suggests that the VP4 spike protein is most likely one of the main reasons preventing the rapid spread of P[6] strains to the rest of the world despite multiple introductions. These observations reinforce previous findings about the receptor specificity of P[6] rotavirus strains.
Collapse
Affiliation(s)
- Elisabeth Heylen
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Mark Zeller
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Max Ciarlet
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Jody Lawrence
- Vaccines-Clinical Research Department, Merck, Kenilworth, New Jersey
| | - Duncan Steele
- Vaccines and Immunization, PATH, Seattle, Washington
| | - Marc Van Ranst
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Clinical and Epidemiological Virology, KU Leuven-University of Leuven, Rega Institute for Medical Research, Belgium
| |
Collapse
|
30
|
Delogu R, Ianiro G, Morea A, Chironna M, Fiore L, Ruggeri FM. Molecular characterization of two rare human G8P[14] rotavirus strains, detected in Italy in 2012. INFECTION GENETICS AND EVOLUTION 2016; 44:303-312. [PMID: 27449953 DOI: 10.1016/j.meegid.2016.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Since 2007, the Italian Rotavirus Surveillance Program (RotaNet-Italy) has monitored the diversity and distribution of genotypes identified in children hospitalized with rotavirus acute gastroenteritis. We report the genomic characterization of two rare human G8P[14] rotavirus strains, identified in two children hospitalized with acute gastroenteritis in the southern Italian region of Apulia during rotavirus strain surveillance in 2012. Both strains showed a G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genomic constellation (DS-1-like genomic background). Phylogenetic analysis of each genome segment revealed a mixed configuration of genes of animal and zoonotic human origin, indicating that genetic reassortment events generated these unusual human strains. Eight out of 11 genes (VP1, VP2, VP3, VP6, VP7, NSP3, NSP4 and NSP5) of the Italian G8P[14] strains exhibited close identity with a Spanish sheep strain, whereas the remaining genes (VP4, NSP1 and NSP2) were more closely related to human strains. The amino acid sequences of the antigenic regions of outer capsid proteins VP4 and VP7 were compared with vaccine and field strains, showing high conservation between the amino acid sequences of Apulia G8P[14] strains and human and animal strains bearing G8 and/or P[14] proteins, and revealing many substitutions with respect to the RotaTeq™ and Rotarix™ vaccine strains. Conversely, the amino acid analysis of the four antigenic sites of VP6 revealed a high degree of conservation between the two Apulia strains and the human and animal strains analyzed. These results reinforce the potential role of interspecies transmission and reassortment in generating novel rotavirus strains that might not be fully contrasted by current vaccines.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Morea
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Fiore
- National Center for Immunobiologicals Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Franco M Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
31
|
Arana A, Montes M, Jere KC, Alkorta M, Iturriza-Gómara M, Cilla G. Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. INFECTION GENETICS AND EVOLUTION 2016; 44:137-144. [PMID: 27370571 DOI: 10.1016/j.meegid.2016.06.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 06/25/2016] [Indexed: 11/30/2022]
Abstract
In March 2015, an atypical G3P[8] rotavirus with an equine-like VP7 gene was detected in Gipuzkoa (Basque Country, Spain) and spread contributing significantly to the seasonal epidemic. The strain was identified in fecal samples collected from 68 patients, mainly children from rural and urban settings with acute gastroenteritis, representing 14.9% of the 455 rotavirus strains genotyped between July 2014 and June 2015. Seven patients (10.3%) were hospitalized. Full genome analysis of six of these strains revealed a DS-1-like genotype constellation, G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2, and showed that most genome segments shared the highest nucleotide sequence identity with strains isolated in Japan, Thailand, Australia and the Philippines. The strains of Gipuzkoa were similar to novel G3P[8] reassortant rotaviruses with an equine-like VP7 gene and a DS-1-like genetic backbone that emerged in the Asia-Pacific Region in 2013. The study highlights the circulation of these atypical rotaviruses outside the Asia-Pacific Region of origin, and their emergence in a European Region. Due to their unusual genotype constellation, these strains pose a challenge for the rotavirus strain surveillance, since G-/P-typing, the most commonly used classification system, cannot identify this type of intergenogroup reassortants.
Collapse
Affiliation(s)
- Ainara Arana
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Milagrosa Montes
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain
| | - Khuzwayo C Jere
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Miriam Alkorta
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain
| | - Miren Iturriza-Gómara
- Institute of Infection & Global Health, University of Liverpool, Ronald Ross Building, Liverpool, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Gustavo Cilla
- Microbiology Department, Donostia University Hospital - Biodonostia Health Research Institute, San Sebastián, Spain; Biomedical Research Centre Network for Respiratory Diseases (CIBERES), San Sebastián, Spain.
| |
Collapse
|