1
|
Seemann K, Silas U, Bosworth Smith A, Münch T, Saunders SJ, Veloz A, Saunders R. The burden of venous thromboembolism in ten countries: a cost-of-illness Markov model on surgical and ICU patients. J Med Econ 2025; 28:1-12. [PMID: 39611872 DOI: 10.1080/13696998.2024.2436797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
AIM The objective of this study was to assess the burden of hospital-acquired venous thromboembolism (VTE) on healthcare systems and patients across ten countries. METHODS A multi-methodological approach was taken to estimate the burden of hospital-acquired VTE across five key clinical specialties and ten countries (Australia, Brazil, China, France, Mexico, South Korea, Spain, Taiwan, Thailand, and the United Kingdom). Surveys with healthcare professionals (surgeons, hematologists, and hospital management) were conducted to identify clinical specialties of interest. A systematic literature review and interviews were conducted to identify data for incidences and costs. A health-economic model was developed, using a decision tree and Markov model to estimate 1-year costs. Costs are presented in 2022 USD. RESULTS Orthopedics, oncology, long-term ICU, cardiology, and obstetrics and gynecology were identified as the clinical specialties of interest. The total cost burden of hospital-acquired VTE was estimated to be $41,280 million, which equals $503 per patient at risk. Expressed as a share of 2022 GDP, an average spending per country of 0.05% to 0.18% was observed. The VTE-associated mortality was substantial, accounting for 150,081 deaths in a 74.2 million population, translating into an average mortality rate of 2.02 (0.64-3.05) per 1,000 patients at risk. LIMITATIONS There were limited data available concerning VTE incidences in some countries and clinical specialties. Where data were available, there was heterogeneity of incidence definitions across the identified studies. Generalizations, imputations, and the country-agnostic structure of the model might have contributed to biases. CONCLUSIONS The burden of hospital-acquired VTE is substantial both from an economic and from a patient perspective in all countries evaluated.
Collapse
Affiliation(s)
- Kim Seemann
- Health Economics, Coreva Scientific, Koenigswinter, Germany
| | - Ubong Silas
- Health Economics, Coreva Scientific, Koenigswinter, Germany
| | | | - Tobias Münch
- Health Economics, Coreva Scientific, Koenigswinter, Germany
| | | | | | | |
Collapse
|
2
|
Daugaard ND, Tholstrup R, Tornby JR, Bendixen SM, Larsen FT, De Zio D, Barnkob MB, Ravnskjaer K, Brewer JR. Characterization of human melanoma skin cancer models: A step towards model-based melanoma research. Acta Biomater 2025; 191:308-324. [PMID: 39549863 DOI: 10.1016/j.actbio.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Advancing 3D in vitro human tissue models is crucial for biomedical research and drug development to address the ethical and biological limitations of animal testing. Recently, 3D skin models have proven to be effective for studying serious skin conditions, such as melanoma. For these advanced models to be applicable in preclinical studies, thorough characterization is essential to understand their applicability and limitations. In this study, we used bioimaging and RNA sequencing to assess the architecture and transcriptomic profiles of skin models, including models with melanoma. Our results indicated that these models closely mimicked skin morphology and gene expression patterns. The full-thickness (FT) model shows a superior resemblance to the human skin, particularly in basement membrane formation and cellular interactions. The integrity of the skin-like properties and gene expression signatures of both skin and melanoma cells were preserved upon the integration of melanoma cells, establishing these models as robust platforms for cancer research. The responsiveness of the FT melanoma models to vemurafenib treatment was successfully monitored, demonstrating their validity as a reliable, reproducible, and humane tool for pharmacological testing and drug development. Furthermore, the transcriptomic data showed that skin models with cancer spheroids had upregulated genes linked to aggressive and resilient cancer behavior compared to spheroids alone. This emphasizes the importance of the microenvironment in cancer progression and suggests that 3D skin models can serve to uncover mechanisms and therapeutic targets that are not detectable in simpler systems. STATEMENT OF SIGNIFICANCE: This study introduces advanced, ethically sound skin and melanoma models as alternatives to animal testing in drug discovery. By thoroughly characterizing these models using bioimaging and RNA sequencing, we demonstrate their close resemblance to human skin, particularly in full-thickness models. These models not only replicate the complex cellular interactions and gene expression patterns of human tissue but also maintain robustness after melanoma integration. Our findings highlight the potential of these models in revealing cancer mechanisms and therapeutic targets, offering a significant impact on melanoma research and preclinical testing.
Collapse
Affiliation(s)
- Nicoline Dorothea Daugaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Rikke Tholstrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jakob Rask Tornby
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sofie Marchsteiner Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Frederik Tibert Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Waldschitz D, Neudert MR, Kitzmüller J, Bong JH, Bus Y, Karner EM, Sinner P, Spadiut O. Antimicrobial peptide production with Corynebacterium glutamicum on lignocellulosic side streams. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:147. [PMID: 39696653 DOI: 10.1186/s13068-024-02587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Biorefineries usually focus on the production of low-value commodities, such as bioethanol, platform chemicals or single cell protein. Shifting production to bioactive compounds, such as antimicrobial peptides, could provide an opportunity to increase the economic viability of biorefineries. RESULTS Recombinant production of the antimicrobial peptide pediocin PA-1 in Corynebacterium glutamicum was transferred from yeast extract-based media to minimal media based on lignocellulosic spent sulfite liquor. Induced batch, fed batch, and extended batch process modes were compared for highest pediocin PA-1 production. CONCLUSION For pediocin PA-1 production on lignocellulosic residues, extended batch cultivation was identified as the optimal process mode, producing up to ≃ 104 mg/L active pediocin PA-1. Moreover, the production of pediocin PA-1 on this sustainable second generation resource exceeded its state-of-the-art production on yeast extract-based media ≃ 1.5-fold.
Collapse
Affiliation(s)
- Daniel Waldschitz
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Mark-Richard Neudert
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Jakob Kitzmüller
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Jae Hwi Bong
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Yannick Bus
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Eva Maria Karner
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Peter Sinner
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria
| | - Oliver Spadiut
- Research Group Bioprocess Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1A, Vienna, A-1060, Austria.
| |
Collapse
|
4
|
Moreira MP, Franco EP, Barros BAF, Anjos BRD, Almada DDG, Barbosa INT, Braga LDC, Cassali GD, Silva LM. Standard chemotherapy impacts on in vitro cellular heterogeneity in spheroids enriched with cancer stem cells (CSCs) derived from triple-negative breast cancer cell line. Biochem Biophys Res Commun 2024; 734:150765. [PMID: 39357337 DOI: 10.1016/j.bbrc.2024.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Triple-negative breast cancer is a heterogeneous disease with high recurrence and mortality, linked to cancer stem cells (CSCs). Our study characterized distinct cell subpopulations and signaling pathways to explore chemoresistance. We observed cellular heterogeneity among and within the cells regarding phenotyping and drug response. In untreated BT-549 cells, we noted plasticity properties in both CD44+/CD24+/CD146+ hybrid cells and CD44-/CD24+/CD146+ epithelial cells, enabling phenotypic conversion into CD44+/CD24-/CD146- epithelial-mesenchymal transition (EMT)-like like breast CSCs (BCSCs). Additionally, non-BCSCs may give rise to ALDH+ epithelial-like BCSCs. Enriched BCSCs demonstrated the potential to differentiation into CD44-/CD24-/CD146- cells and exhibited self-renewal capabilities. Similar phenotypic plasticity was not observed in untreated Hs 578T and HMT-3522 S1 cells. BT-549 cells were more resistant to paclitaxel/PTX than to doxorubicin/DOX, a phenomenon potentially linked to the presence of CD24+ cells prior to treatment. Under the CSCs-enriched spheroids model, BT-549 demonstrated extreme resistance to DOX, likely due to the enrichment of BCSCs CD44+/CD24-/CD146- and the tumor cells CD44-/CD24-/CD146-. Additionally, DOX treatment induced the enrichment of plastic and chemoresistant cells, further exacerbating resistance mechanisms. BT-549 exhibited high heterogeneity, leading to significant alterations in cell subpopulations under BCSCs enrichment, demonstrating increased phenotypic plasticity during EMT. This phenomenon appears to play a major role in DOX resistance, as indicated by the presence of the refractory cells CD44+/CD24-/CD146- BCSCs EMT-like, CD44-/CD24-/CD146- tumor cells, and elevated STAT3 expression. Gene expression data from BT-549 CSCs-enriched spheroids suggests that ferroptosis may be occurring via autophagic regulation triggered by RAB7A, highlighting this gene as a potential therapeutic target.
Collapse
Affiliation(s)
- Milene Pereira Moreira
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil.
| | - Eliza Pereira Franco
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Bárbara Avelar Ferreira Barros
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bianca Rocha Dos Anjos
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil; Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Daniela de Gouvêa Almada
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Isabela Nery Tavares Barbosa
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Letícia da Conceição Braga
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| | - Geovanni Dantas Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Luciana Maria Silva
- Serviço de Biologia Celular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias - Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, Minas Gerais, 30510-010, Brazil
| |
Collapse
|
5
|
Basak P, Dastidar DG, Ghosh D, Chakraborty T, Sau S, Chakrabarti G. Staphylococcus aureus major cell division protein FtsZ assembly is inhibited by silibinin, a natural flavonolignan that also blocked bacterial growth and biofilm formation. Int J Biol Macromol 2024; 279:135252. [PMID: 39222779 DOI: 10.1016/j.ijbiomac.2024.135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 μM and 200 μM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 μM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 μM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.
Collapse
Affiliation(s)
- Prithvi Basak
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, 157/F Nilgunj Road, Panihati, Kolkata 700114, West Bengal, India
| | - Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India
| | - Tushar Chakraborty
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Subrata Sau
- Department of Biological Sciences, Bose Institute, Kolkata 700091, West Bengal, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
| |
Collapse
|
6
|
Enzlein T, Geisel A, Hopf C, Schmidt S. M2ara: unraveling metabolomic drug responses in whole-cell MALDI mass spectrometry bioassays. Bioinformatics 2024; 40:btae694. [PMID: 39558590 PMCID: PMC11601156 DOI: 10.1093/bioinformatics/btae694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
SUMMARY Fast computational evaluation and classification of concentration responses for hundreds of metabolites represented by their mass-to-charge (m/z) ratios is indispensable for unraveling complex metabolomic drug actions in label-free, whole-cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) bioassays. In particular, the identification of novel pharmacodynamic biomarkers to determine target engagement, potency, and potential polypharmacology of drug-like compounds in high-throughput applications requires robust data interpretation pipelines. Given the large number of mass features in cell-based MALDI MS bioassays, reliable identification of true biological response patterns and their differentiation from any measurement artefacts that may be present is critical. To facilitate the exploration of metabolomic responses in complex MALDI MS datasets, we present a novel software tool, M2ara. Implemented as a user-friendly R-based shiny application, it enables rapid evaluation of Molecular High Content Screening (MHCS) assay data. Furthermore, we introduce the concept of Curve Response Score (CRS) and CRS fingerprints to enable rapid visual inspection and ranking of mass features. In addition, these CRS fingerprints allow direct comparison of cellular effects among different compounds. Beyond cellular assays, our computational framework can also be applied to MALDI MS-based (cell-free) biochemical assays in general. AVAILABILITY AND IMPLEMENTATION The software tool, code, and examples are available at https://github.com/CeMOS-Mannheim/M2ara and https://dx.doi.org/10.6084/m9.figshare.25736541.
Collapse
Affiliation(s)
- Thomas Enzlein
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim 68165, Germany
| | - Alexander Geisel
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim 68165, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim 68165, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69117, Germany
- Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Stefan Schmidt
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim 68165, Germany
| |
Collapse
|
7
|
Gonçales NG, Gonçalves BÔP, Silva LM, da Silva Filho AL, da Conceição Braga L. TNFRSF10D expression as a potential biomarker for cisplatin-induced damage and ovarian tumor relapse prediction. Pathol Res Pract 2024; 263:155592. [PMID: 39255671 DOI: 10.1016/j.prp.2024.155592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Among gynecological malignancies, ovarian cancer (OC) presents the most challenging diagnostic scenario. Despite exhaustive efforts, up to 90 % of patients treated with taxane/platinum-based chemotherapy experience relapse, leading to poor survival rates. Identifying new molecular markers that can characterize disease aggressiveness, chemoresistance, recurrence risk, and metastasis is crucial. This study aimed to assess the susceptibility of three ovarian tumor cell lines (TOV-21G, SKOV-3, and OV-90) to cisplatin and paclitaxel, and to investigate the influence of these treatments on the mRNA expression of TANK, RIPK1, NFKB1, TNFRSF10D, and TRAF2. Among the cell lines, SKOV-3 ovarian adenocarcinoma cells demonstrated the highest resistance to cisplatin treatment (0.125 mg/mL), followed by TOV-21G (0.076 mg/mL) and OV-90 cells (0.028 mg/mL). Regarding paclitaxel treatment, the SKOV-3 cell line exhibited the highest resistance (1.4 µg/mL), followed by OV-90 (1.3 µg/mL) and TOV-21G cells (0.9 µg/mL). Gene expression analysis after paclitaxel treatment remained unchanged; however, after cisplatin treatment, TNFRSF10D was observed to be upregulated nearly 100-fold in SKOV-3 compared to all other cell lines studied. SKOV-3 is described as cisplatin and tumor necrosis factor-resistant. Despite the defective signaling of the TNFRSF10D receptor for apoptosis, it can activate the NFKB transcription factor through non-canonical TRAIL signaling, contributing to a pro-inflammatory immune response. In light of this, damage associated with cisplatin increases TNFRSF10D expression and may promote cell survival through non-canonical NFKB pathway activation. This suggests that resistance to TRAIL-induced apoptosis in these cells could serve as a promising chemoresistance biomarker in OC.
Collapse
Affiliation(s)
- Nikole Gontijo Gonçales
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Bryan Ôrtero Perez Gonçalves
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Translational Research Laboratory in Oncology, Mário Penna Institute, Belo Horizonte, MG, Brazil
| | - Luciana Maria Silva
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Agnaldo Lopes da Silva Filho
- Department of Gynecology and Obstetrics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia da Conceição Braga
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Translational Research Laboratory in Oncology, Mário Penna Institute, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Gronwald T, Horn L, Schaffarczyk M, Hoos O. Correlation properties of heart rate variability for exercise prescription during prolonged running at constant speeds: A randomized cross-over trial. Eur J Sport Sci 2024; 24:1539-1551. [PMID: 39300759 PMCID: PMC11534628 DOI: 10.1002/ejsc.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024]
Abstract
The study explores the validity of the nonlinear index alpha 1 of detrended fluctuation analysis (DFAa1) of heart rate (HR) variability for exercise prescription in prolonged constant load running bouts of different intensities. 21 trained endurance athletes (9 w and 12 m) performed a ramp test for ventilatory threshold (vVT1 and vVT2) and DFAa1-based (vDFAa1-1 at 0.75 and vDFAa1-2 at 0.5) running speed detection as well as two 20-min running bouts at vDFAa1-1 and vDFAa1-2 (20-vDFAa1-1 and 20-vDFAa1-2), in which HR, oxygen consumption (VO2), respiratory frequency (RF), DFAa1, and blood lactate concentration [La-] were assessed. 20-vDFAa1-2 could not be finished by all participants (finisher group (FG), n = 15 versus exhaustion group (EG), n = 6). Despite similar mean external loads of vDFAa1-1 (10.6 ± 1.9 km/h) and vDFAa1-2 (13.1 ± 2.4 km/h) for all participants compared to vVT1 (10.8 ± 1.7 km/h) and vVT2 (13.2 ± 1.9 km/h), considerable differences were present for 20-vDFAa1-2 in EG (15.2 ± 2.4 km/h). 20-vDFAa1-1 and 20-DFAa1-2 yielded significant differences in FG for HR (76.2 ± 5.7 vs. 86.4 ± 5.9 %HRPEAK), VO2 (62.1 ± 5.0 vs. 77.5 ± 8.6 %VO2PEAK), RF (40.6 ± 11.3 vs. 46.1 ± 9.8 bpm), DFA-a1 (0.86 ± 0.23 vs. 0.60 ± 0.15), and [La-] (1.41 ± 0.45 vs. 3.34 ± 2.24 mmol/L). Regarding alterations during 20-vDFAa1-1, all parameters showed small changes for all participants, while during 20-vDFAa1-2 RF and DFAa1 showed substantial alterations in FG (RF: 15.6% and DFAa1: -12.8%) and more pronounced in EG (RF: 20.1% and DFAa1: -35.9%). DFAa1-based exercise prescription from incremental testing could be useful for most participants in prolonged running bouts, at least in the moderate to heavy intensity domain. In addition, an individually different increased risk of overloading may occur in the heavy to severe exercise domains and should be further elucidated in the light of durability and decoupling assessment.
Collapse
Affiliation(s)
- Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
- G-Lab, Faculty of Applied Sport Sciences and Personality, BSP Business and Law School, Berlin, Germany
| | - Leonie Horn
- Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Marcelle Schaffarczyk
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Olaf Hoos
- Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Srinivasan B, Lloyd MD. Dose-Response Curves and the Determination of IC 50 and EC 50 Values. J Med Chem 2024; 67:17931-17934. [PMID: 39356832 DOI: 10.1021/acs.jmedchem.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Affiliation(s)
- Bharath Srinivasan
- Assays and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
10
|
Ramos TI, Villacis-Aguirre CA, Sandoval FS, Martin-Solano S, Manrique-Suárez V, Rodríguez H, Santiago-Padilla L, Debut A, Gómez-Gaete C, Arias MT, Montesino R, Lamazares E, Cabezas I, Hugues F, Parra NC, Altamirano C, Ramos OS, Santiago-Vispo N, Toledo JR. Multilayer Nanocarrier for the Codelivery of Interferons: A Promising Strategy for Biocompatible and Long-Acting Antiviral Treatment. Pharmaceutics 2024; 16:1349. [PMID: 39598474 PMCID: PMC11597830 DOI: 10.3390/pharmaceutics16111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics. We are working on new drug delivery systems that provide adequate therapeutic concentrations for these cytokines and prolong their half-life in the circulation, such as nanoformulations. Methods: Through nanoencapsulation using electrospray technology and biocompatible and biodegradable polymers, we are developing a controlled release system based on nanoparticles for viral infections of the respiratory tract. Results: We developed a controlled release system for viral respiratory tract infections. A prototype nanoparticle with a core was created, which hydrolyzed the polyvinylpyrrolidone (PVP) shell , releasing the active ingredients interferon-alpha (IFN-α) and interferon-gamma (IFN-γ). The chitosan (QS) core degraded slowly, with a controlled release of IFN-α. The primary and rapid effect of the interferon combination ensured an antiviral and immunoregulatory response from day one, induced by IFN-α and enhanced by IFN-γ. The multilayer design demonstrated an optimal toxicity profile. Conclusions: This formulation is an inhaled dry powder intended for the non-invasive intranasal route. The product does not require a cold chain and has the potential for self-administration in the face of emerging viral infections. This novel drug has applications in multiple infectious, oncological, and autoimmune conditions, and further development is proposed for its therapeutic potential. This prototype would ensure greater bioavailability, controlled release, fewer adverse effects, and robust biological action through the simultaneous action of both molecules.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Carlos A. Villacis-Aguirre
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Felipe Sandoval Sandoval
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Hortensia Rodríguez
- Yachay Tech Medicinal Chemistry Research Group (MedChem-YT), School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador;
| | | | - Alexis Debut
- Laboratory of Characterization of Nanomaterials, Center of Nanoscience and Nanotecnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Carolina Gómez-Gaete
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile;
| | - Marbel Torres Arias
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Ignacio Cabezas
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Florence Hugues
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez Ramos
- Laboratory of Recombinant Biopharmaceuticals, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile;
| | | | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| |
Collapse
|
11
|
Rangam N, Sudagar A, Koronkiewicz R, Borowicz P, Tóth J, Kövér L, Michałowska D, Roszko M, Pilz M, Kwapiszewska K, Lesiak-Orłowska B. Surface and composition effects on the biphasic cytotoxicity of nanocomposites synthesized using leaf extracts. Int J Biol Macromol 2024; 276:133723. [PMID: 38981556 DOI: 10.1016/j.ijbiomac.2024.133723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
The Malus sylvestris L. (LE1), Pinus sylvestris L. (LE2), and Sorbus aucuparia L. (LE3) leaves` extracts were used for the synthesis of silver (Ag) nanocomposites containing different amounts of silver chloride (AgCl), silver metal (Agmet), and silver phosphate (Ag3PO4). These nanocomposites were capped with the organic functional groups in the leaf extract. Notably, the nanocomposites caused biphasic cytotoxic response on cells; first attributed to the inhibition of cell growth and second to cell death. The nanocomposites were biocompatible with normal embryonic kidney (HEK293) cells in the cytotoxic range for cancer cells. [25(±1) °C synthesis] nanocomposites exhibited the highest cytotoxicity towards HeLa (lethal concentration- LC50 value of 11.4 μg mL-1) and A549 (LC50 value of 14.7 μg mL-1) after 24-h incubation and its efficiency was shown also for the more resistant MCF-7 and MDA-MB-231, however, their respective LC50 values were larger. For the HeLa cell line, this designed nanocomposite exhibited an LC50 value similar to the effective concentration (EC50) value of Cisplatin and about 3 times larger than Doxorubicin. nanocomposite contained Ag3PO4 in the composite and P on the surface, higher AgCl content, smaller crystallite size of all nanoparticle phases, and carbon-rich oxygen-deficient surface compared to all other nanocomposites.
Collapse
Affiliation(s)
- Neha Rangam
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Alcina Sudagar
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, USA.
| | - Roksana Koronkiewicz
- The Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Paweł Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - József Tóth
- HUN-REN Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - László Kövér
- HUN-REN Institute for Nuclear Research, BemTér 18/c, H-4026 Debrecen, Hungary
| | - Dorota Michałowska
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Marek Roszko
- Institute of Agriculture and Food Biotechnology-State Research Institute, ul. Rakowiecka 36, 02-532 Warsaw, Poland
| | - Marta Pilz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Beata Lesiak-Orłowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
van der Most MA, Rietjens IMCM, van den Brink NW. Evaluating non-monotonic dose-response relationships in ecotoxicological risk assessment: A case study based on a systematic review of data on fluoxetine. CHEMOSPHERE 2024; 363:142819. [PMID: 38986776 DOI: 10.1016/j.chemosphere.2024.142819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The environmental presence of pharmaceuticals, including the antidepressant fluoxetine, has become a subject of concern. Numerous studies have revealed effects of fluoxetine at environmental concentrations. Some of these studies have reported non-monotonic dose-response curves (NMDRs), leading to discussion because of the inconsistent detection of subtle effects and lack of mechanistic understanding. Nevertheless, investigating NMDRs in risk assessment is important, because neglecting them could underestimate potential risks of chemicals at low levels of exposure. Identification and quantification of NMDRs in risk assessment remains challenging, particularly given the prevalence of single outliers and the lack of sound statistical analyses. In response, the European Food Safety Authority (Beausoleil et al., 2016) presented a framework delineating six checkpoints for the evaluation of NMDR datasets, offering a systematic method for their assessment. The present study applies this framework to the case study of fluoxetine, aiming to assess the weight-of-evidence for the reported NMDR relationships. Through a systematic literature search, 53 datasets were selected for analysis against the six checkpoints. The results reveal that while a minority of these datasets meet all checkpoints, a significant proportion (27%) fulfilled at least five. Notably, many studies did not meet checkpoint 3, which requires NMDRs to be based on more than a single outlier. Overall, the current study points out a number of studies with considerable evidence supporting the presence of NMDRs for fluoxetine, while the majority of studies lacks strong evidence. The suggested framework proved useful for analysing NMDRs in ecotoxicological studies, but it is still imperative to develop further understanding of their biological plausibility.
Collapse
|
13
|
Dogra P, Shinglot V, Ruiz-Ramírez J, Cave J, Butner JD, Schiavone C, Duda DG, Kaseb AO, Chung C, Koay EJ, Cristini V, Ozpolat B, Calin GA, Wang Z. Translational modeling-based evidence for enhanced efficacy of standard-of-care drugs in combination with anti-microRNA-155 in non-small-cell lung cancer. Mol Cancer 2024; 23:156. [PMID: 39095771 PMCID: PMC11295620 DOI: 10.1186/s12943-024-02060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. Therapeutic targeting of miR-155 through its antagonist, anti-miR-155, has proven challenging due to its dual molecular effects. METHODS We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. RESULTS Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimens to prevent antagonistic effects. CONCLUSIONS This work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
| | - Vrushaly Shinglot
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Joseph Cave
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Joseph D Butner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmine Schiavone
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Dan G Duda
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
14
|
Chittavanich P, Saengwimol D, Roytrakul S, Rojanaporn D, Chaitankar V, Srimongkol A, Anurathapan U, Hongeng S, Kaewkhaw R. Ceftriaxone exerts antitumor effects in MYCN-driven retinoblastoma and neuroblastoma by targeting DDX3X for translation repression. Mol Oncol 2024; 18:918-938. [PMID: 37975412 PMCID: PMC10994227 DOI: 10.1002/1878-0261.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023] Open
Abstract
MYCN proto-oncogene, bHLH transcription factor (MYCN) amplification is associated with aggressive retinoblastoma (RB) and neuroblastoma (NB) cancer recurrence that is resistant to chemotherapies. Therefore, there is an urgent need to identify new therapeutic tools. This study aimed to evaluate the potential repurposing of ceftriaxone for the treatment of MYCN-amplified RB and NB, based on the clinical observations that the drug was serendipitously found to decrease the volume of the MYCN-driven RB subtype. Using patient-derived tumor organoids and tumor cell lines, we demonstrated that ceftriaxone is a potent and selective growth inhibitor targeting MYCN-driven RB and NB cells. Profiling of drug-induced transcriptomic changes, cell-cycle progression, and apoptotic death indicated cell-cycle arrest and death of drug-treated MYCN-amplified tumor cells. Drug target identification, using an affinity-based proteomic and molecular docking approach, and functional studies of the target proteins revealed that ceftriaxone targeted DEAD-box helicase 3 X-linked (DDX3X), thereby inhibiting translation in MYCN-amplified tumors but not in MYCN-nonamplified cells. The data suggest the feasibility of repurposing ceftriaxone as an anticancer drug and provide insights into the mechanism of drug action, highlighting DDX3X as a potential target for treating MYCN-driven tumors.
Collapse
Affiliation(s)
- Pamorn Chittavanich
- Program in Translational Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Duangporn Saengwimol
- Research Center, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Duangnate Rojanaporn
- Department of Ophthalmology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Vijender Chaitankar
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Atthapol Srimongkol
- Research Center, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Rossukon Kaewkhaw
- Program in Translational Medicine, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
| |
Collapse
|
15
|
Joshi AS, Bapat MV, Singh P, Mijakovic I. Viridibacillus culture derived silver nanoparticles exert potent anticancer action in 2D and 3D models of lung cancer via mitochondrial depolarization-mediated apoptosis. Mater Today Bio 2024; 25:100997. [PMID: 38379934 PMCID: PMC10876681 DOI: 10.1016/j.mtbio.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Lung cancer is one of the most commonly occurring cancer types that accounts for almost 2 million cases per year. Its resistance to anticancer drugs, failure of new molecules in clinical trials, severe side-effects of current treatments, and its recurrence limit the success of anticancer therapies. Nanotherapeutic agents offer several advantages over conventional anticancer therapies, including improved retention in tumors, specificity, and anticancer effects at lower concentrations, hence reducing the side-effects. Here, we have explored the anticancer activity of silver nanoparticles synthesized in Viridibacillus sp. enriched culture medium for the first time. Such green nanoparticles, synthesized by biological systems, are superior to chemically synthesized ones in terms of their environmental footprint and production cost, and have one crucial advantage of excellent stability owing to their biological corona. To assess anticancer activity of these nanoparticles, we used conventional 2D cultured A549 cells as well as 3D spheroids of A549 cells. In both models of lung cancer, our silver nanoparticles diminished cell proliferation, arrested DNA synthesis, and showed a dose dependent cytotoxic effect. The nanoparticles damaged the DNA and mitochondrial structures in both A549 cells and A549 spheroids, leading to mitochondrial depolarization and increased cell permeability. Low lethal median doses (LD50) for 2D cultured A549 cells (1 μg/ml) and for A549 spheroids (13 μg/ml) suggest that our nanoparticles are potent anticancer agents. We also developed in vitro tumor progression model and in vitro tumor size model using 3D spheroids to test anticancer potential of our nanoparticles which otherwise would require longer experimental duration along with large number of animals and trained personnel. In these models, our nanoparticles showed strong dose dependent anticancer activity. In case of in vitro tumor progression model, the A549 cells failed to form tight spheroidal mass and showed increased dead cell fraction since day 1 as compared to control. On the other hand, in case of in vitro tumor size model, the 4 and 8 μg/ml nanoparticle treatment led to reduction in spheroid size from 615 ± 53 μm to 440 ± 45 μm and 612 ± 44 μm to 368 ± 62 μm respectively, within the time span of 3 days post treatment. We believe that use of such novel experimental models offers excellent and fast alternative to in vivo studies, and to the best of our knowledge, this is the first report that gives proof-of-concept for use of such novel in vitro cancer models to test anticancer agents such as Viridibacilli culture derived silver nanoparticles. Based on our results, we propose that these nanoparticles offer an interesting alternative for anticancer therapies, especially if they can be combined with classical anticancer drugs.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mugdha V. Bapat
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Sweden
| |
Collapse
|
16
|
Dogra P, Shinglot V, Ruiz-Ramírez J, Cave J, Butner JD, Schiavone C, Duda DG, Kaseb AO, Chung C, Koay EJ, Cristini V, Ozpolat B, Calin GA, Wang Z. Translational modeling-based evidence for enhanced efficacy of standard-of-care drugs in combination with anti-microRNA-155 in non-small-cell lung cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.14.24304306. [PMID: 38559070 PMCID: PMC10980136 DOI: 10.1101/2024.03.14.24304306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimen to prevent antagonistic effects. Thus, this work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Vrushaly Shinglot
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Joseph Cave
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Joseph D. Butner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmine Schiavone
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Dan G. Duda
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene J. Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Physiology, Biophysics, and Systems Biology Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Imaging Physics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
- Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
17
|
Colas S, Le Faucheur S. How do biomarkers dance? Specific moves of defense and damage biomarkers for biological interpretation of dose-response model trends. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133180. [PMID: 38104522 DOI: 10.1016/j.jhazmat.2023.133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Omics studies are currently increasingly used in ecotoxicology to highlight the induction of known or novel biomarkers when organisms are exposed to contaminants. Although it is virtually impossible to identify all biomarkers from all organisms, biomarkers can be grouped as defense or damage biomarkers, exhibiting a limited number of response trends. Our working hypothesis is that defense and damage biomarkers follow different dose-response patterns. A meta-analysis of 156 articles and 2595 observations of dose-response curves of defense and damage biomarkers was carried out in order to characterize the response trends of these biological parameters in a large panel of living organisms (18 phyla) exposed to inorganic or organic contaminants (176 in total). Using multinomial logistic regression models, defense biomarkers were found to describe biphasic responses (bell- and U-shaped) to a greater extent (2.5 times) than damage biomarkers. In contrast, damage biomarkers varied mainly monotonically (decreasing or increasing), representing 85% of the observations. Neither the nature of the contaminant nor the type of organisms belonging to 4 kingdoms, influence these specific responses. This result suggests that cellular defense and damage mechanisms are not specific to stressors and are conserved throughout life. Trend analysis of dose-response models as a biological interpretation of biomarkers could thus be a valuable way to exploit large omics datasets.
Collapse
Affiliation(s)
- Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | | |
Collapse
|
18
|
Figueroa-Navedo AM, Ivanov AR. Experimental and data analysis advances in thermal proteome profiling. CELL REPORTS METHODS 2024; 4:100717. [PMID: 38412830 PMCID: PMC10921035 DOI: 10.1016/j.crmeth.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Method development for mass spectrometry (MS)-based thermal shift proteomic assays have advanced to probe small molecules with known and unknown protein-ligand interaction mechanisms and specificity, which is predominantly used in characterization of drug-protein interactions. In the discovery of target and off-target protein-ligand interactions, a thorough investigation of method development and their impact on the sensitivity and accuracy of protein-small molecule and protein-protein interactions is warranted. In this review, we discuss areas of improvement at each stage of thermal proteome profiling data analysis that includes processing of MS-based data, method development, and their effect on the overall quality of thermal proteome profiles. We also overview the optimization of experimental strategies and prioritization of an increased number of independent biological replicates over the number of evaluated temperatures.
Collapse
Affiliation(s)
- Amanda M Figueroa-Navedo
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
van der Most MA, Bakker W, Wesseling S, van den Brink NW. Toxicokinetics of the Antidepressant Fluoxetine and Its Active Metabolite Norfluoxetine in Caenorhabditis elegans and Their Comparative Potency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38343161 PMCID: PMC10882974 DOI: 10.1021/acs.est.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The nematode Caenorhabditis elegans is a valuable model for ecotoxicological research, yet limited attention has been given to understanding how it absorbs, distributes, metabolizes, and excretes chemicals. This is crucial for C. elegans because the organism is known to have strong uptake barriers that are known to be susceptible to potential confounding effects of the presence of Escherichia coli as a food source. One frequently studied compound in C. elegans is the antidepressant fluoxetine, which has an active metabolite norfluoxetine. In this study, we evaluated the toxicokinetics and relative potency of norfluoxetine and fluoxetine in chemotaxis and activity tests. Toxicokinetics experiments were conducted with varying times, concentrations of fluoxetine, and in the absence or presence of E. coli, simulated with a one-compartment model. Our findings demonstrate that C. elegans can take up fluoxetine and convert it into norfluoxetine. Norfluoxetine proved slightly more potent and had a longer elimination half-life. The bioconcentration factor, uptake, and elimination rate constants depended on exposure levels, duration, and the presence of E. coli in the exposure medium. These findings expand our understanding of toxicokinetic modeling in C. elegans for different exposure scenarios, underlining the importance of considering norfluoxetine formation in exposure and bioactivity assessments of fluoxetine.
Collapse
Affiliation(s)
- Merel A van der Most
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
20
|
Mattson MP, Leak RK. The hormesis principle of neuroplasticity and neuroprotection. Cell Metab 2024; 36:315-337. [PMID: 38211591 DOI: 10.1016/j.cmet.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Animals live in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems have evolved stress-responsive signaling pathways that enable them to not only withstand environmental challenges but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle, in which single or repeated exposures to low levels of environmental challenges improve cellular and organismal fitness and raise the probability of survival. Hormetic principles have been most intensively studied in physical exercise but apply to numerous other challenges known to improve human health (e.g., intermittent fasting, cognitive stimulation, and dietary phytochemicals). Here we review the physiological mechanisms underlying hormesis-based neuroplasticity and neuroprotection. Approaching natural resilience from the lens of hormesis may reveal novel methods for optimizing brain function and lowering the burden of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
22
|
Wu S, Zhang Q, Li Y, Liang H. Assessment of nonlinear dose-response relationships via nonparametric regression. J Biopharm Stat 2024; 34:136-145. [PMID: 36861953 DOI: 10.1080/10543406.2023.2183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/20/2023] [Indexed: 03/03/2023]
Abstract
We propose a simple approach to assess whether a nonlinear parametric model is appropriate to depict the dose-response relationships and whether two parametric models can be applied to fit a dataset via nonparametric regression. The proposed approach can compensate for the ANOVA, which is sometimes conservative, and is very easy to implement. We illustrate the performance by analyzing experimental examples and a small simulation study.
Collapse
Affiliation(s)
- Shunyao Wu
- Department of Computer Science and Technology, Qingdao University, Shandong, Qingdao, China
| | - Qi Zhang
- Department of Computer Science and Technology, Qingdao University, Shandong, Qingdao, China
| | - Yuanzhang Li
- Department of Statistics, George Washington University, DC, Washington, USA
| | - Hua Liang
- Department of Statistics, George Washington University, DC, Washington, USA
| |
Collapse
|
23
|
Izac JR, Kwee EJ, Gaigalas A, Wang L. Quantitative and Standardized Pseudovirus Neutralization Assay for COVID-19. Methods Mol Biol 2024; 2779:259-271. [PMID: 38526789 DOI: 10.1007/978-1-0716-3738-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
COVID-19 is a global pandemic caused by the highly infectious SARS-CoV-2 virus. Efforts to combat SARS-CoV-2 infection include mass vaccination and development of monoclonal and convalescent plasma therapeutics that require precise measurements of correlative, functional neutralizing antibodies that prevent virus infection. Developing rapid, safe, easy-to-use, and high-quality neutralization assays are essential for the success of the massive effort. Here, we developed a vesicular stomatitis virus-based neutralization assay that was capable of quantifying varying degrees of neutralization in patient serum samples. This assay has two detection readouts, flow cytometry and live cell imaging. The two readout methods produced consistent values of all 50% neutralization titers, further enhancing measurement confidence on the assay. Moreover, the use of available reference standards such as the World Health Organization International Standard (NIBSC code 20/136) enables quantification and standardization of the pseudovirus neutralization assay with neutralizing antibody titers measured in International Units/mL. Quantitative and standardized neutralization assays are critical for reliable efficacy evaluation and comparison of numerous vaccines and therapeutics.
Collapse
Affiliation(s)
- Jerilyn R Izac
- Biosystem and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Edward J Kwee
- Biosystem and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Adolfas Gaigalas
- Biosystem and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Lili Wang
- Biosystem and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| |
Collapse
|
24
|
Sevilla-Sánchez MJ, Montoya-Gómez A, Osorno-Valencia D, Montealegre-Sánchez L, Mosquera-Escudero M, Jiménez-Charris E. Exploring the Safety of Pllans-II and Antitumoral Potential of Its Recombinant Isoform in Cervical Cancer Therapy. Cells 2023; 12:2812. [PMID: 38132131 PMCID: PMC10741390 DOI: 10.3390/cells12242812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The antitumor potential of proteins from snake venoms has been studied in recent decades, and evidence has emerged that phospholipases A2 can selectively attack cells of various types of tumors. Previous results have shown that phospholipase A2 "Pllans-II," isolated from Porthidium lansbergii lansbergii snake venom, displayed antitumoral activity on cervical cancer and did not alter the viability of non-tumorigenic cells. However, until now, there was no evidence of its safety at the local and systemic levels, nor had experiments been developed to demonstrate that its production using recombinant technology allows us to obtain a molecule with effects similar to those generated by native phospholipase. Thus, we evaluated the impact caused by Pllans-II on murine biomodels, determining whether it induced local hemorrhage or increased pro-inflammatory and liver damage markers and histological alterations in the liver and kidneys. Additionally, the protein was produced using recombinant technology using a pET28a expression vector and the BL21 (DE3) Escherichia coli strain. Equally, its enzymatic activity and anticancer effect were evaluated on cervical cancer lines such as HeLa and Ca Ski. The results demonstrated that Pllans-II did not generate hemorrhagic activity, nor did it increase the pro-inflammatory cytokines IL-6, IL-1B, or TNF-α at doses of 3.28, 1.64, and 0.82 mg/kg. There was also no evidence of organ damage, and only ALT and AST increased in mild levels at the two highest concentrations. Additionally, the recombinant version of Pllans-II showed conservation in its catalytic activity and the ability to generate death in HeLa and Ca Ski cells (42% and 23%, respectively). These results demonstrate the innocuity of Pllans-II at the lowest dose and constitute an advance in considering a molecule produced using recombinant technology a drug candidate for selective attacks against cervical cancer.
Collapse
Affiliation(s)
- María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Daniel Osorno-Valencia
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
- Grupo de investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| |
Collapse
|
25
|
Gu L, Yang Y, Chen X, Liu Q, Sun Y, Zhang L, Yang Z. Delicate plasticity: Maladaptive responses to fish predation risk in Daphnia magna caused by sertraline pollution. CHEMOSPHERE 2023; 344:140393. [PMID: 37820873 DOI: 10.1016/j.chemosphere.2023.140393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
An emerging environmental pollutant may have a greater impact on phenotypic plasticity than its direct toxicity, causing maladaptive responses of organisms to their current environment. To better understand such ecological risks, we proposed a delicate plasticity hypothesis: if an emerging stressor acts on the fundamental processes underlying a specific adaptive plastic response, it is more likely to pose high risks to the phenotypic plasticity. Endocrine regulation is one of the critical processes of plasticity and is becoming a target for emerging pollutants. To test this hypothesis, we measured individual traits and the expression of endocrine-related genes in Daphnia magna in response to fish predation risk under exponentially increasing concentrations of the antidepressant sertraline, a selective serotonin reuptake inhibitor. The results showed that sertraline impaired most of the defense responses of D. magna at concentrations lower than the effective concentrations of its direct toxicity. The high risks of sertraline on inducible defenses were also visually reflected in the relationships between toxicity and plasticity strength, that is, most of the defense responses exponentially decayed with an increase in sertraline toxicity. In addition, the expression of genes involved in serotonin synthesis was significantly correlated with the expression of other endocrine-related genes and with changes in morphological traits. These results revealed that environmental sertraline pollution could disturb endocrine regulation and cause high risks to inducible defenses of D. magna, providing evidence supporting the delicate plasticity hypothesis.
Collapse
Affiliation(s)
- Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Ya Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xihua Chen
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Liu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
26
|
Bayer FP, Gander M, Kuster B, The M. CurveCurator: a recalibrated F-statistic to assess, classify, and explore significance of dose-response curves. Nat Commun 2023; 14:7902. [PMID: 38036588 PMCID: PMC10689459 DOI: 10.1038/s41467-023-43696-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Dose-response curves are key metrics in pharmacology and biology to assess phenotypic or molecular actions of bioactive compounds in a quantitative fashion. Yet, it is often unclear whether or not a measured response significantly differs from a curve without regulation, particularly in high-throughput applications or unstable assays. Treating potency and effect size estimates from random and true curves with the same level of confidence can lead to incorrect hypotheses and issues in training machine learning models. Here, we present CurveCurator, an open-source software that provides reliable dose-response characteristics by computing p-values and false discovery rates based on a recalibrated F-statistic and a target-decoy procedure that considers dataset-specific effect size distributions. The application of CurveCurator to three large-scale datasets enables a systematic drug mode of action analysis and demonstrates its scalable utility across several application areas, facilitated by a performant, interactive dashboard for fast data exploration.
Collapse
Affiliation(s)
- Florian P Bayer
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Manuel Gander
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 80336, Munich, Germany
| | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
27
|
Montoya-Gómez A, Tonello F, Spolaore B, Massimino ML, Montealegre-Sánchez L, Castillo A, Rivera Franco N, Sevilla-Sánchez MJ, Solano-Redondo LM, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II: Unveiling the Action Mechanism of a Promising Chemotherapeutic Agent Targeting Cervical Cancer Cell Adhesion and Survival Pathways. Cells 2023; 12:2715. [PMID: 38067143 PMCID: PMC10705806 DOI: 10.3390/cells12232715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5β1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Maria Lina Massimino
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
- Grupo de Investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Luis Manuel Solano-Redondo
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| |
Collapse
|
28
|
Wang L, Patrone PN, Kearsley AJ, Izac JR, Gaigalas AK, Prostko JC, Kwon HJ, Tang W, Kosikova M, Xie H, Tian L, Elsheikh EB, Kwee EJ, Kemp T, Jochum S, Thornburg N, McDonald LC, Gundlapalli AV, Lin-Gibson S. Monoclonal Antibodies as SARS-CoV-2 Serology Standards: Experimental Validation and Broader Implications for Correlates of Protection. Int J Mol Sci 2023; 24:15705. [PMID: 37958688 PMCID: PMC10650176 DOI: 10.3390/ijms242115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
COVID-19 has highlighted challenges in the measurement quality and comparability of serological binding and neutralization assays. Due to many different assay formats and reagents, these measurements are known to be highly variable with large uncertainties. The development of the WHO international standard (WHO IS) and other pool standards have facilitated assay comparability through normalization to a common material but does not provide assay harmonization nor uncertainty quantification. In this paper, we present the results from an interlaboratory study that led to the development of (1) a novel hierarchy of data analyses based on the thermodynamics of antibody binding and (2) a modeling framework that quantifies the probability of neutralization potential for a given binding measurement. Importantly, we introduced a precise, mathematical definition of harmonization that separates the sources of quantitative uncertainties, some of which can be corrected to enable, for the first time, assay comparability. Both the theory and experimental data confirmed that mAbs and WHO IS performed identically as a primary standard for establishing traceability and bridging across different assay platforms. The metrological anchoring of complex serological binding and neuralization assays and fast turn-around production of an mAb reference control can enable the unprecedented comparability and traceability of serological binding assay results for new variants of SARS-CoV-2 and immune responses to other viruses.
Collapse
Affiliation(s)
- Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Paul N. Patrone
- Applied and Computational Mathematics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Anthony J. Kearsley
- Applied and Computational Mathematics Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (P.N.P.); (A.J.K.)
| | - Jerilyn R. Izac
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Adolfas K. Gaigalas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | | | - Hyung Joon Kwon
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Weichun Tang
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Martina Kosikova
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Viral Diseases, Office of Vaccines Research and Review, Center for Biologics Evaluation, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (H.J.K.); (W.T.); (M.K.); (H.X.)
| | - Linhua Tian
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Elzafir B. Elsheikh
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Edward J. Kwee
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| | - Troy Kemp
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA;
| | - Simon Jochum
- Roche Diagnostics GmbH, 82377 Penzberg, Germany;
| | - Natalie Thornburg
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - L. Clifford McDonald
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - Adi V. Gundlapalli
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA; (N.T.); (L.C.M.); (A.V.G.)
| | - Sheng Lin-Gibson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA; (J.R.I.); (A.K.G.); (L.T.); (E.B.E.); (E.J.K.)
| |
Collapse
|
29
|
Shubina VS, Kozina VI, Shatalin YV. A Comparative Study of the Inhibitory Effect of Some Flavonoids and a Conjugate of Taxifolin with Glyoxylic Acid on the Oxidative Burst of Neutrophils. Int J Mol Sci 2023; 24:15068. [PMID: 37894747 PMCID: PMC10606308 DOI: 10.3390/ijms242015068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
During the storage, processing, and digestion of flavonoid-rich foods and beverages, a condensation of flavonoids with toxic carbonyl compounds occurs. The effect of the resulting products on cells remains largely unknown. The aim of the present study was to evaluate the effects of quercetin, taxifolin, catechin, eriodictyol, hesperetin, naringenin, and a condensation product of taxifolin with glyoxylic acid on the oxidative burst of neutrophils. It was found that the flavonoids and the condensation product inhibited the total production of ROS. Flavonoids decreased both the intra and extracellular ROS production. The condensation product had no effect on intracellular ROS production but effectively inhibited the extracellular production of ROS. Thus, the condensation of flavonoids with toxic carbonyl compounds may lead to the formation of compounds exhibiting potent inhibitory effects on the oxidative burst of neutrophils. The data also suggest that, during these reactions, the influence of a fraction of flavonoids and their polyphenolic derivatives on cellular functions may change. On the whole, the results of the study provide a better understanding of the effects of polyphenols on human health. In addition, these results reveal the structure-activity relationship of these polyphenols and may be useful in a search for new therapeutic agents against diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | | | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
30
|
La VN, Nicholson S, Haneef A, Kang L, Minh DDL. Inclusion of Control Data in Fits to Concentration-Response Curves Improves Estimates of Half-Maximal Concentrations. J Med Chem 2023; 66:12751-12761. [PMID: 37697621 PMCID: PMC10544339 DOI: 10.1021/acs.jmedchem.3c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 09/13/2023]
Abstract
Concentration-response curves, in which the effect of varying the concentration on the response of an assay is measured, are widely used to evaluate biological effects of chemical compounds. While National Center for Advancing Translational Sciences guidelines specify that readouts should be normalized by the controls, recommended statistical analyses do not explicitly fit to the control data. Here, we introduce a nonlinear regression procedure based on maximum likelihood estimation that determines parameters for the classical Hill equation by fitting the model to both the curve and the control data. Simulations show that the proposed procedure provides more precise parameters compared with previously prescribed practices. Analysis of enzymatic inhibition data from the COVID Moonshot demonstrates that the proposed procedure yields a lower asymptotic standard error for estimated parameters. Benefits are most evident in the analysis of the incomplete curves. We also find that Lenth's outlier detection method appears to determine parameters more precisely.
Collapse
Affiliation(s)
- Van Ngoc
Thuy La
- Department
of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Stanley Nicholson
- Department
of Applied Mathematics, Illinois Institute
of Technology, Chicago, Illinois 60616, United States
| | - Amna Haneef
- Department
of Biology, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Lulu Kang
- Department
of Applied Mathematics, Illinois Institute
of Technology, Chicago, Illinois 60616, United States
| | - David D. L. Minh
- Department
of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
31
|
Chumachenko V, Virych P, Nie G, Virych P, Yeshchenko O, Khort P, Tkachenko A, Prokopiuk V, Lukianova N, Zadvornyi T, Rawiso M, Ding L, Kutsevol N. Combined Dextran-Graft-Polyacrylamide/Zinc Oxide Nanocarrier for Effective Anticancer Therapy in vitro. Int J Nanomedicine 2023; 18:4821-4838. [PMID: 37662686 PMCID: PMC10473965 DOI: 10.2147/ijn.s416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Cancer chemotherapy faces two major challenges - high toxicity of active substances and tumor resistance to drugs. Low toxic nanocarriers in combination with anticancer agents can significantly increase the effectiveness of therapy. Modern advances in nanotechnology make it easy to create materials with the necessary physical and chemical properties. Methods Two hybrid nanosystems of dextran-polyacrylamide/ zinc oxide nanoparticles (D-PAA/ZnO NPs) were synthesized in aqueous solution with zinc sulphate (D-PAA/ZnO NPs (SO42-)) and zinc acetate (D-PAA/ZnO NPs (-OAc)). The light absorption, fluorescence, dynamic light scattering and transmission electron microscopy for nanocomposite characterization were used. MTT, neutral red uptake and scratch assays were selected as fibroblasts cytotoxicity assays. Cytotoxicity was tested in vitro for normal fibroblasts, MAEC, prostate (LNCaP, PC-3, DU-145) and breast (MDA-MB-231, MCF-7) cancer cells lines. Immunocytochemical methods were used for detection of Ki-67, p53, Bcl-2, Bax, e-cadherin, N-cadherin and CD44 expression. Acridine orange was used to detect morphological changes in cells. Results The radius of ZnO NPs (SO42-) was 1.5 nm and ZnO NPs (-OAc) was 2 nm. The nanosystems were low-toxic to fibroblasts, MAEC. Cells in the last stages of apoptosis with the formation of apoptotic bodies were detected for all investigated cancer cell lines. Proapoptotic proteins expression in cancer cells indicates an apoptotic death. Increased expression of E-cadherin and N-cadherin was registered for cancer cells line LNCaP, PC-3, DU-145 and MCF-7 after 48 h incubation with D-PAA/ZnO NPs (SO42-). Conclusion The nanosystems were low-toxic to fibroblasts, MAEC. The D-PAA/ZnO NPs nanosystem synthesized using zinc sulphate demonstrates high cytotoxicity due to destruction of various types of cancer cells in vitro and potentially increases adhesion between cells. Thus, our findings indicate the selective cytotoxicity of D-PAA/ZnO NPs against cancer cells and can be potentially used for cancer treatment.
Collapse
Affiliation(s)
- Vasyl Chumachenko
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Virych
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Guochao Nie
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Oleg Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pavlo Khort
- Physics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliia Lukianova
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Taras Zadvornyi
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | | | - Liyao Ding
- Guangxi Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, People’s Republic of China
| | - Nataliya Kutsevol
- Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Institut Charles Sadron, Strasbourg, France
| |
Collapse
|
32
|
Uchida Y, Kan H, Furukawa G, Onda K, Sakurai K, Takada K, Matsukawa N, Oishi K. Relationship between brain iron dynamics and blood-brain barrier function during childhood: a quantitative magnetic resonance imaging study. Fluids Barriers CNS 2023; 20:60. [PMID: 37592310 PMCID: PMC10433620 DOI: 10.1186/s12987-023-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Mounting evidence suggests that the blood-brain barrier (BBB) plays an important role in the regulation of brain iron homeostasis in normal brain development, but these imaging profiles remain to be elucidated. We aimed to establish a relationship between brain iron dynamics and BBB function during childhood using a combined quantitative magnetic resonance imaging (MRI) to depict both physiological systems along developmental trajectories. METHODS In this single-center prospective study, consecutive outpatients, 2-180 months of age, who underwent brain MRI (3.0-T scanner; Ingenia; Philips) between January 2020 and January 2021, were included. Children with histories of preterm birth or birth defects, abnormalities on MRI, and diagnoses that included neurological diseases during follow-up examinations through December 2022 were excluded. In addition to clinical MRI, quantitative susceptibility mapping (QSM; iron deposition measure) and diffusion-prepared pseudo-continuous arterial spin labeling (DP-pCASL; BBB function measure) were acquired. Atlas-based analyses for QSM and DP-pCASL were performed to investigate developmental trajectories of regional brain iron deposition and BBB function and their relationships. RESULTS A total of 78 children (mean age, 73.8 months ± 61.5 [SD]; 43 boys) were evaluated. Rapid magnetic susceptibility progression in the brain (Δsusceptibility value) was observed during the first two years (globus pallidus, 1.26 ± 0.18 [× 10- 3 ppm/month]; substantia nigra, 0.68 ± 0.16; thalamus, 0.15 ± 0.04). The scattergram between the Δsusceptibility value and the water exchange rate across the BBB (kw) divided by the cerebral blood flow was well fitted to the sigmoidal curve model, whose inflection point differed among each deep gray-matter nucleus (globus pallidus, 2.96-3.03 [mL/100 g]-1; substantia nigra, 3.12-3.15; thalamus, 3.64-3.67) in accordance with the regional heterogeneity of brain iron accumulation. CONCLUSIONS The combined quantitative MRI study of QSM and DP-pCASL for pediatric brains demonstrated the relationship between brain iron dynamics and BBB function during childhood. TRIAL REGISTRATION UMIN Clinical Trials Registry identifier: UMIN000039047, registered January 6, 2020.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan.
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1- 1-20, Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Aichi, Japan
| | - Gen Furukawa
- Department of Pediatrics, Fujita Health University School of Medicine, 1-98, Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Aichi, Japan
| | - Kengo Onda
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, 474-8511, Aichi, Japan
| | - Koji Takada
- Department of Neurology, Toyokawa City Hospital, 23, Noji, Yawata-cho, Toyokawa, 442-0857, Aichi, Japan
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Aichi, Japan
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Avenue, Baltimore, MD, 21205, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, MD, 21224, USA
| |
Collapse
|
33
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
34
|
Errico S, Lucchesi G, Odino D, Osman EY, Cascella R, Neri L, Capitini C, Calamai M, Bemporad F, Cecchi C, Kinney WA, Barbut D, Relini A, Canale C, Caminati G, Limbocker R, Vendruscolo M, Zasloff M, Chiti F. Quantitative Attribution of the Protective Effects of Aminosterols against Protein Aggregates to Their Chemical Structures and Ability to Modulate Biological Membranes. J Med Chem 2023. [PMID: 37433124 PMCID: PMC10388293 DOI: 10.1021/acs.jmedchem.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-β oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Giacomo Lucchesi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Davide Odino
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Enass Youssef Osman
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, The Arab Republic of Egypt
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Lorenzo Neri
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Claudia Capitini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - William A Kinney
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Gabriella Caminati
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20007, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
35
|
Zhang Y, Paul T, Brehm J, Völkl M, Jérôme V, Freitag R, Laforsch C, Greiner A. Role of Residual Monomers in the Manifestation of (Cyto)toxicity by Polystyrene Microplastic Model Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9925-9933. [PMID: 37364870 PMCID: PMC10340104 DOI: 10.1021/acs.est.3c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Polystyrene (PS) is an important model polymer for the investigation of effects of microplastic (MP) and nanoplastic (NP) particles on living systems. Aqueous dispersions of PS MP or NP contain residual monomers of styrene. In consequence, it is not clear if the effects observed in standard (cyto)toxicity studies are evoked by the polymer (MP/NP) particle or by residual monomers. We addressed that question by comparing standard PS model particle dispersions with in-house synthesized PS particle dispersions. We proposed a rapid purification method of PS particle dispersions by dialysis against mixed solvents and developed a simple method of UV-vis spectrometry to detect residual styrene in the dispersions. We found that standard PS model particle dispersions, which contain residual monomers, exerted a low but significant cytotoxicity on mammalian cells, while the in-house synthesized PS, after rigorous purification to reduce the styrene content, did not. However, the PS particles per se but not the residual styrene in both PS particle dispersions resulted in immobilization of Daphnia. Only by using freshly monomer-depleted particles, will it be possible in the future to assess the (cyto)toxicities of PS particles, avoiding an otherwise not controllable bias effect of the monomer.
Collapse
Affiliation(s)
- Yuanhu Zhang
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tasmai Paul
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Julian Brehm
- Animal
Ecology I and BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Matthias Völkl
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Valérie Jérôme
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Ruth Freitag
- Process
Biotechnology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Christian Laforsch
- Animal
Ecology I and BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular
Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
36
|
Sara BV, Ulrike F, Bettina B, Yvonne W, Teresa P, Clara SB, Giovanna AS, Rocío CS, María T, Rocío L, Rosa MC, Joan B, Waltraud S, Mariona P. Improving In Vitro Detection of Sensitization to Lipid Transfer Proteins: A New Molecular Multiplex IgE Assay. Mol Nutr Food Res 2023; 67:e2200906. [PMID: 37195823 DOI: 10.1002/mnfr.202200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/11/2023] [Indexed: 05/19/2023]
Abstract
SCOPE LTP-syndrome is characterized by sensitization (IgE) to multiple non-specific lipid transfer proteins (nsLTPs) with a variable clinical outcome. The treatment is primarily based on offending food avoidance. However, the determination of Pru p 3-specific IgE is currently the main diagnostic tool to assess sensitization to nsLTPs. Herein, the study evaluates improvement of LTP-syndrome diagnosis and clinical management using a new IgE multiplex-immunoblot assay with a high diversity of food nsLTPs. METHODS AND RESULTS An EUROLINE-LTP strip with 28 recombinant nsLTPs from 18 allergenic sources is designed. In total the study investigates 38 patients with LTP-syndrome and compares results from the nsLTPs (LTP-strip) with the respective food extracts of Prick-by-prick (PbP) testing. The agreement exceeds 70% for most nsLTPs, e.g., Pru p 3 (100%), Mal d 3 (97%), Pru av 3 (89%), Pha v 3 isoforms (87%/84%), Ara h 9 (82%), Cor a 8 (82%), and Jug r 3 (82%). The functionality and allergenic relevance of nine recombinant nsLTPs are proven by Basophil activation testing (BAT). CONCLUSIONS The new IgE multiplex-immunoblot nsLTP assay shows a good diagnostic performance allowing culprit food assessment. Negative results from LTP-strip may indicate potentially tolerable foods, improving diet intervention and patients' quality of life.
Collapse
Affiliation(s)
- Balsells-Vives Sara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
| | - Flügge Ulrike
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Brix Bettina
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Weimann Yvonne
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Peralta Teresa
- Department of Clinical Immunology and Rheumatology, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - San Bartolomé Clara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Araujo-Sánchez Giovanna
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Casas-Saucedo Rocío
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Torradeflot María
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Lara Rocío
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
| | - Munoz-Cano Rosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Bartra Joan
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Allergy Department, Institut Clinic Respiratori (ICR), Hospital Clinic, Universitat de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Campus Clínic, Universitat de Barcelona (UB), c. Casanova, 143, Barcelona, 08036, Spain
| | - Suer Waltraud
- EUROIMMUN AG A PerkinElmer Company, 23560, Lübeck, Germany
| | - Pascal Mariona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, 08036, Spain
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, 08036, Spain
- RETIC Asma, Reacciones Adversas a Fármacos y Alergia (ARADyAL) and RICORS Red de Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Campus Clínic, Universitat de Barcelona (UB), c. Casanova, 143, Barcelona, 08036, Spain
| |
Collapse
|
37
|
Wang Y, Zhao D, Zhang W, Wang S, Wu Y, Wang S, Yang Y, Guo B. Four PQQ-Dependent Alcohol Dehydrogenases Responsible for the Oxidative Detoxification of Deoxynivalenol in a Novel Bacterium Ketogulonicigenium vulgare D3_3 Originated from the Feces of Tenebrio molitor Larvae. Toxins (Basel) 2023; 15:367. [PMID: 37368668 PMCID: PMC10301637 DOI: 10.3390/toxins15060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Deoxynivalenol (DON) is frequently detected in cereals and cereal-based products and has a negative impact on human and animal health. In this study, an unprecedented DON-degrading bacterial isolate D3_3 was isolated from a sample of Tenebrio molitor larva feces. A 16S rRNA-based phylogenetic analysis and genome-based average nucleotide identity comparison clearly revealed that strain D3_3 belonged to the species Ketogulonicigenium vulgare. This isolate D3_3 could efficiently degrade 50 mg/L of DON under a broad range of conditions, such as pHs of 7.0-9.0 and temperatures of 18-30 °C, as well as during aerobic or anaerobic cultivation. 3-keto-DON was identified as the sole and finished DON metabolite using mass spectrometry. In vitro toxicity tests revealed that 3-keto-DON had lower cytotoxicity to human gastric epithelial cells and higher phytotoxicity to Lemna minor than its parent mycotoxin DON. Additionally, four genes encoding pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases in the genome of isolate D3_3 were identified as being responsible for the DON oxidation reaction. Overall, as a highly potent DON-degrading microbe, a member of the genus Ketogulonicigenium is reported for the first time in this study. The discovery of this DON-degrading isolate D3_3 and its four dehydrogenases will allow microbial strains and enzyme resources to become available for the future development of DON-detoxifying agents for food and animal feed.
Collapse
Affiliation(s)
- Yang Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Donglei Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songshan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yu Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Yongtan Yang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| | - Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Y.W.)
| |
Collapse
|
38
|
Yasuhiko O, Takeuchi K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:101. [PMID: 37105955 PMCID: PMC10140380 DOI: 10.1038/s41377-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive understanding of the architecture and time-course morphological changes of thick multicellular specimens.
Collapse
Affiliation(s)
- Osamu Yasuhiko
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| | - Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K, 5000 Hirakuchi, Hamakita-ku, Hamamatsu, 434-8601, Shizuoka, Japan.
| |
Collapse
|
39
|
Glaubitz C, Haeni L, Sušnik E, Rothen-Rutishauser B, Balog S, Petri-Fink A. The Influence of Liquid Menisci on Nanoparticle Dosimetry in Submerged Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206903. [PMID: 37021587 DOI: 10.1002/smll.202206903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Understanding the interaction between cells and nanoparticles (NPs) is vital to understand the hazard associated with nanoparticles. This requires quantifying and interpreting dose-response relationships. Experiments with cells cultured in vitro and exposed to particle dispersions mainly rely on mathematical models that estimate the received nanoparticle dose. However, models need to consider that aqueous cell culture media wets the inner surface of hydrophilic open wells, which results in a curved liquid-air interface called the meniscus. Here the impact of the meniscus on nanoparticle dosimetry is addressed in detail. Experiments and build an advanced mathematical model, to demonstrate that the presence of the meniscus may bring about systematic errors that must be considered to advance reproducibility and harmonization is presented. The script of the model is co-published and can be adapted to any experimental setup. Finally, simple and practical solutions to this problem, such as covering the air-liquid interface with a permeable lid or soft rocking of the cell culture well plate is proposed.
Collapse
Affiliation(s)
- Christina Glaubitz
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Eva Sušnik
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | | | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
- Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
40
|
Köhn-Luque A, Myklebust EM, Tadele DS, Giliberto M, Schmiester L, Noory J, Harivel E, Arsenteva P, Mumenthaler SM, Schjesvold F, Taskén K, Enserink JM, Leder K, Frigessi A, Foo J. Phenotypic deconvolution in heterogeneous cancer cell populations using drug-screening data. CELL REPORTS METHODS 2023; 3:100417. [PMID: 37056380 PMCID: PMC10088094 DOI: 10.1016/j.crmeth.2023.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Tumor heterogeneity is an important driver of treatment failure in cancer since therapies often select for drug-tolerant or drug-resistant cellular subpopulations that drive tumor growth and recurrence. Profiling the drug-response heterogeneity of tumor samples using traditional genomic deconvolution methods has yielded limited results, due in part to the imperfect mapping between genomic variation and functional characteristics. Here, we leverage mechanistic population modeling to develop a statistical framework for profiling phenotypic heterogeneity from standard drug-screen data on bulk tumor samples. This method, called PhenoPop, reliably identifies tumor subpopulations exhibiting differential drug responses and estimates their drug sensitivities and frequencies within the bulk population. We apply PhenoPop to synthetically generated cell populations, mixed cell-line experiments, and multiple myeloma patient samples and demonstrate how it can provide individualized predictions of tumor growth under candidate therapies. This methodology can also be applied to deconvolution problems in a variety of biological settings beyond cancer drug response.
Collapse
Affiliation(s)
- Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Even Moa Myklebust
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Dagim Shiferaw Tadele
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44131, USA
| | - Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- KG Jebsen Center for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Leonard Schmiester
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Jasmine Noory
- Institute for Mathematics and its Applications, School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elise Harivel
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- ENSTA, Institut Polytechnique de Paris, Palaiseau, 91120 Paris, France
| | - Polina Arsenteva
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Institut de Matématiques de Bourgogne, Universite de Bourgogne, Dijon Cedex, 21078 Dijon, France
| | - Shannon M. Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA 90064, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fredrik Schjesvold
- KG Jebsen Center for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, 0450 Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
- KG Jebsen Center for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jorrit M. Enserink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Section for Biochemistry and Molecular Biology, Faculty of Mathematics and Natural Sciences, University of Oslo, 0037 Oslo, Norway
| | - Kevin Leder
- College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Jasmine Foo
- Institute for Mathematics and its Applications, School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Khan M, Diop A, Gbodossou E, Xiao P, Coleman M, De Barros K, Duong H, Bond VC, Floyd V, Kondwani K, Rice VM, Harris-Hooker S, Villinger F, Powell MD. Anti-human immunodeficiency virus-1 activity of MoMo30 protein isolated from the traditional African medicinal plant Momordica balsamina. Virol J 2023; 20:50. [PMID: 36949470 PMCID: PMC10035133 DOI: 10.1186/s12985-023-02010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity. METHODS We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina. RESULTS Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels. CONCLUSIONS CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.
Collapse
Affiliation(s)
- Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Amad Diop
- Malango Traditional Healers Association, Fatick, Senegal
| | | | - Peng Xiao
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Morgan Coleman
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kenya De Barros
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Hao Duong
- Department of Pharmacology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Virginia Floyd
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Kofi Kondwani
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Valerie Montgomery Rice
- Office of the President, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Sandra Harris-Hooker
- Department of Pathology Senior Vice President for External Affairs and Innovation, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA
| | - Francois Villinger
- Department of Biology Director, New Iberia Research Center, University of Louisiana at Lafayette, 4401 W Admiral Doyle Drive, New Iberia, LA, 70560, USA
| | - Michael D Powell
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
42
|
Páscoa I, Biltes R, Sousa J, Preto MAC, Vasconcelos V, Castro LF, Ruivo R, Cunha I. A Multiplex Molecular Cell-Based Sensor to Detect Ligands of PPARs: An Optimized Tool for Drug Discovery in Cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031338. [PMID: 36772378 PMCID: PMC9919141 DOI: 10.3390/s23031338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
Cyanobacteria produce a wealth of secondary metabolites. Since these organisms attach fatty acids into molecules in unprecedented ways, cyanobacteria can serve as a novel source for bioactive compounds acting as ligands for Peroxisome Proliferator-Activated Receptors (PPAR). PPARs (PPARα, PPARβ/δ and PPARγ) are ligand-activated nuclear receptors, involved in the regulation of various metabolic and cellular processes, thus serving as potential drug targets for a variety of pathologies. Yet, given that PPARs' agonists can have pan-, dual- or isoform-specific action, some controversy has been raised over currently approved drugs and their side effects, highlighting the need for novel molecules. Here, we expand and validate a cell-based PPAR transactivation activity biosensor, and test it in a screening campaign to guide drug discovery. Biosensor upgrades included the use of different reporter genes to increase signal intensity and stability, a different promoter to modulate reporter gene expression, and multiplexing to improve efficiency. Sensor's limit of detection (LOD) ranged from 0.36-0.89 nM in uniplex and 0.89-1.35 nM in multiplex mode. In triplex mode, the sensor's feature screening, a total of 848 fractions of 96 cyanobacteria extracts were screened. Hits were confirmed in multiplex mode and in uniplex mode, yielding one strain detected to have action on PPARα and three strains to have dual action on PPARα and -β.
Collapse
Affiliation(s)
- Inês Páscoa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Rita Biltes
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - João Sousa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Marco Aurélio Correia Preto
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Luís Filipe Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Isabel Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
43
|
van der Most MA, Estruch IM, van den Brink NW. Contrasting dose response relationships of neuroactive antidepressants on the behavior of C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114493. [PMID: 36608562 DOI: 10.1016/j.ecoenv.2022.114493] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Antidepressant prescriptions are on a rise worldwide and this increases the concerns for the impacts of these pharmaceuticals on nontarget organisms. Antidepressants are neuroactive compounds that can affect organism's behavior. Behavior is a sensitive endpoint that may also propagate effects at a population level. Another interesting aspect of antidepressants is that they have shown to induce non-monotonic dose-response (NMDR) curves. While such NMDR relationships may have clear implications for the environmental risk, the resolution of current studies is often too coarse to be able to detect relevant NMDR. Therefore, the current study was performed into the behavioral effects (activity, feeding and chemotaxis) in Caenorhabditis elegans as the model organism of the selective serotonin reuptake inhibitors fluoxetine and sertraline and the acetylcholinesterase inhibiting pesticide chlorpyrifos, using a wide range of concentrations (ng/l to mg/l). In order to statistically examine the non-monotonicity, nonlinear regression models were applied to the results. The results showed a triphasic dose-response relationship for activity and chemotaxis after exposure to fluoxetine, but not to sertraline or chlorpyrifos. Effects of fluoxetine already occurred at low concentrations in the range of ng/l while sertraline only showed effects at concentrations in the μg/l range, similar to chlorpyrifos. The different responses between fluoxetine and sertraline, both SSRIs, indicate that response patterns may not always be extrapolated from chemicals with the same primary mode of action. The effects of fluoxetine at low concentrations, in a non-monotonic manner, confirm the relevance of examining such responses at low concentrations.
Collapse
Affiliation(s)
- Merel A van der Most
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands.
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, the Netherlands
| |
Collapse
|
44
|
Agathokleous E. On the meta-analysis of hormetic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158273. [PMID: 36028035 DOI: 10.1016/j.scitotenv.2022.158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The evidence for hormetic responses with chemical effects at doses lower than the no-observed-adverse-effect-level (sub-NOAEL) is increasing, creating a need for meta-analyses of sub-NOAEL effects across studies. However, the distinct features of hormetic responses complicate the procedures of meta-analyses aiming to study sub-NOAEL, hormetic effects, and there is no standardized methodology to serve as a guideline. In this piece, a protocol is proposed, which covers the selection of more holistic keywords to be integrated into the literature search queries, the designation of control, and the identification of NOAEL (and thus sub-NOAEL dose responses). It also considers the selection of the response indicators and the incorporation of time and dose as sources of variation. This protocol can serve as a reference point for a harmonized and more robust methodology to meta-analyze sub-NOAEL effects of chemicals on living organisms.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Agathokleous E. Environmental pollution impacts: Are p values over-valued? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157807. [PMID: 35934042 DOI: 10.1016/j.scitotenv.2022.157807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An examination revealed the dominance of the published literature of environmental science by p values. Meanwhile, the use of effect size has been neglected in publications reporting primary data, yet the size of effect is often more informative than p values inference in assessing the effects of pollution on living organisms, comparing susceptibility/resistance among organisms, and ranking pollutants according to their potency, among others. Statistical significance does not necessarily mean biological, practical, or scientific significance, and its use based on (often misinterpreted) p values reflects the average response or effect at average conditions based on an assumed linear model fit to the entire sample. However, pollution impacts and organismal responses are rarely characterized by linear and symmetric features, and dichotomous 'statistical significance' based on p values is inadequate to fully describe data and findings. Considering 'the fallacy of the average', variance, and differential response of different population percentiles in new studies would provide otherwise wasted biologically, practically, or scientifically significant information. Since p values often inform as to whether some findings warrant further examination, journals should consider mandating the reporting of effect sizes and confidence intervals, together with p values (should they be used), to provide more integrated information regarding pollution impacts. Moreover, replacing 'statistical significance' with language of evidence, especially in key components of publications, such as abstracts and conclusions, could help preventing potential misleading of the public and decision and policy makers.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| |
Collapse
|
46
|
Bessadok-Jemai A, Al-Rabiah AA. Predictive approach of COVID-19 propagation via multiple-terms sigmoidal transition model. Infect Dis Model 2022; 7:387-399. [PMID: 35791371 PMCID: PMC9247138 DOI: 10.1016/j.idm.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/03/2022] Open
Abstract
The COVID-19 pandemic with its new variants has severely affected the whole world socially and economically. This study presents a novel data analysis approach to predict the spread of COVID-19. SIR and logistic models are commonly used to determine the duration at the end of the pandemic. Results show that these well-known models may provide unrealistic predictions for countries that have pandemics spread with multiple peaks and waves. A new prediction approach based on the sigmoidal transition (ST) model provided better estimates than the traditional models. In this study, a multiple-term sigmoidal transition (MTST) model was developed and validated for several countries with multiple peaks and waves. This approach proved to fit the actual data better and allowed the spread of the pandemic to be accurately tracked. The UK, Italy, Saudi Arabia, and Tunisia, which experienced several peaks of COVID-19, were used as case studies. The MTST model was validated for these countries for the data of more than 500 days. The results show that the correlating model provided good fits with regression coefficients (R2) > 0.999. The estimated model parameters were obtained with narrow 95% confidence interval bounds. It has been found that the optimum number of terms to be used in the MTST model corresponds to the highest R2, the least RMSE, and the narrowest 95% confidence interval having positive bounds.
Collapse
Affiliation(s)
- Abdelbasset Bessadok-Jemai
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Abdulrahman A. Al-Rabiah
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
47
|
Mahaye N, Musee N. Effects of Two Antiretroviral Drugs on the Crustacean Daphnia magna in River Water. TOXICS 2022; 10:toxics10080423. [PMID: 36006102 PMCID: PMC9416331 DOI: 10.3390/toxics10080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Antiretroviral (ARVs) drugs are used to manage the human immunodeficiency virus (HIV) disease and are increasingly being detected in the aquatic environment. However, little is known about their effects on non-target aquatic organisms. Here, Daphnia magna neonates were exposed to Efavirenz (EFV) and Tenofovir (TFV) ARVs at 62.5–1000 µg/L for 48 h in river water. The endpoints assessed were mortality, immobilization, and biochemical biomarkers (catalase (CAT), glutathione S-transferase (GST), and malondialdehyde (MDA)). No mortality was observed over 48 h. Concentration- and time-dependent immobilization was observed for both ARVs only at 250–1000 µg/L after 48 h, with significant immobilization observed for EFV compared to TFV. Results for biochemical responses demonstrated that both ARVs induced significant changes in CAT and GST activities, and MDA levels, with effects higher for EFV compared to TFV. Biochemical responses were indicative of oxidative stress alterations. Hence, both ARVs could potentially be toxic to D. magna.
Collapse
|
48
|
Myles WE, McFadden SA. Analytical methods for assessing retinal cell coupling using cut-loading. PLoS One 2022; 17:e0271744. [PMID: 35853039 PMCID: PMC9295955 DOI: 10.1371/journal.pone.0271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis methods impede direct comparison with gold standard direct dye injection techniques. In the current study, we both improved an existing method and developed two new approaches to address observed limitations. Each method of analysis was applied to cut-loaded dark-adapted Guinea pig retinae (n = 29) to assess coupling strength in the axonless horizontal cell type (‘a-type’, aHCs). Method 1 was an improved version of the standard protocol and described the distance of dye-diffusion (space constant). Method 2 adjusted for the geometric path of dye-transfer through cut-loaded cells and extracted the rate of dye-transfer across gap-junctions in terms of the coupling coefficient (kj). Method 3 measured the diffusion coefficient (De) perpendicular to the cut-axis. Dye transfer was measured after one of five diffusion times (1–20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500μM after 20 mins diffusion). The standard protocol fits an exponential decay function to the fluorescence profile of a specified retina layer but includes non-specific background fluorescence. This was improved by measuring the fluorescence of individual cell soma and excluding from the fit non-horizontal cells located at the cut-edge (p<0.001) (Method 1). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p = 0.54) and 3 (p = 0.63) produced consistent results across all diffusion times. Adjusting distance by the mean cell-cell spacing within each tissue reduced the incidence of outliers across all three methods. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Although the standard protocol was easily improved (Method 1), Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the tracer kinetics between different populations of gap-junction linked cell networks and direct comparison to dye-injection techniques.
Collapse
Affiliation(s)
- William E. Myles
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Sally A. McFadden
- College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
49
|
α-Hydroxylactams as Efficient Entries to Diversely Functionalized Ferrociphenols: Synthesis and Antiproliferative Activity Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144549. [PMID: 35889422 PMCID: PMC9324693 DOI: 10.3390/molecules27144549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The [ferrocene-ene-phenol] motif has been identified as the pharmacophore responsible for the anticancer activity of the family of ferrocene-based molecules coined ferrocifens, owing to its unique redox properties. The addition of imide entities to the historical ferrociphenol scaffold tremendously enhanced the cytotoxic activity of a large panel of cancer cell cultures and preliminary studies showed that the reduction of one of the carbonyl groups of the imide groups to the corresponding α-hydroxylactams only slightly affected the antiproliferative activity. As a continuation to these studies, we took advantage of the facile conversion of α-hydroxylactams to highly electrophilic N-acyliminium ions to graft various substituents to the imide motif of phthalimido ferrocidiphenol. Cell viability studies showed that the newly synthesized compounds showed diverse cytotoxic activities on two breast cancer cell lines, while only one compound was significantly less active on the non-tumorigenic cell line hTERT-RPE1.
Collapse
|
50
|
Li P, Zhang J, Sun X, Agathokleous E, Zheng G. Atmospheric Pb induced hormesis in the accumulator plant Tillandsia usneoides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152384. [PMID: 34923012 DOI: 10.1016/j.scitotenv.2021.152384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/21/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While numerous studies reported hormesis in plants exposed to heavy metals, metals were commonly added in the growth substrate (e.g. soil or solution). The potential of heavy metals in the atmosphere to induce hormesis in plants, however, remains unknown. In this study, we exposed the widely-used accumulator plant Tillandsia usneoides to 10 atmospheric Pb concentrations (0-25.6 μg·m-3) for 6 or 12 h. Three types of dose-response relationships between different response endpoints (biomarkers) and Pb concentrations were found for T. usneoides. The first was a monophasic dose response, in which the response increased linearly with increasing Pb concentrations, as seen for metallothionein (MT) content after a 6-h exposure. The second and dominating type was a biphasic-hormetic dose response, exhibited by malondialdehyde (MDA), superoxide anion radical (O2-), and superoxide dismutase (SOD) after 6 or 12 h of exposure and by glutathione (GSH) and MT content after 12 h of treatment. The third type was a triphasic dose response, as seen for leaf electric conductivity after 6 or 12 h of exposure and GSH after 6 h of exposure. This finding suggests that Pb inhibited the response of T. usneoides at very low concentrations, stimulated it at low-to-moderate concentrations, and inhibited it at higher concentrations. Our results demonstrate diverse adaptation mechanisms of plants to stress, in the framework of which alternating between up- and down-regulation of biomarkers is at play when responding to different levels of toxicants. The emergence of the triphasic dose response will further enhance the understanding of time-dependent hormesis.
Collapse
Affiliation(s)
- Peng Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jingyi Zhang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xingyue Sun
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Nanjing, Jiangsu 21044, China
| | - Guiling Zheng
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|