1
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
2
|
Tossavainen H, Pitkänen I, Antenucci L, Thapa C, Permi P. Chemical shift assignments of the catalytic domain of Staphylococcus aureus LytM. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:1-5. [PMID: 37914968 PMCID: PMC11082022 DOI: 10.1007/s12104-023-10161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
S. aureus resistance to antibiotics has increased rapidly. MRSA strains can simultaneously be resistant to many different classes of antibiotics, including the so-called "last-resort" drugs. Resistance complicates treatment, increases mortality and substantially increases the cost of treatment. The need for new drugs against (multi)resistant S. aureus is high. M23B family peptidoglycan hydrolases, enzymes that can kill S. aureus by cleaving glycine-glycine peptide bonds in S. aureus cell wall are attractive targets for drug development because of their binding specificity and lytic activity. M23B enzymes lysostaphin, LytU and LytM have closely similar catalytic domain structures. They however differ in their lytic activities, which can arise from non-conserved residues in the catalytic groove and surrounding loops or differences in dynamics. We report here the near complete 1H/13C/15N resonance assignment of the catalytic domain of LytM, residues 185-316. The chemical shift data allow comparative structural and functional studies between the enzymes and is essential for understanding how these hydrolases degrade the cell wall.
Collapse
Affiliation(s)
- Helena Tossavainen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Lina Antenucci
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Chandan Thapa
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland.
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Pöhl S, Osorio-Valeriano M, Cserti E, Harberding J, Hernandez-Tamayo R, Biboy J, Sobetzko P, Vollmer W, Graumann PL, Thanbichler M. A dynamic bactofilin cytoskeleton cooperates with an M23 endopeptidase to control bacterial morphogenesis. eLife 2024; 12:RP86577. [PMID: 38294932 PMCID: PMC10945521 DOI: 10.7554/elife.86577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Bactofilins have emerged as a widespread family of cytoskeletal proteins with important roles in bacterial morphogenesis, but their precise mode of action is still incompletely understood. In this study, we identify the bactofilin cytoskeleton as a key regulator of cell growth in the stalked budding alphaproteobacterium Hyphomonas neptunium. We show that, in this species, bactofilin polymers localize dynamically to the stalk base and the bud neck, with their absence leading to unconstrained growth of the stalk and bud compartments, indicating a central role in the spatial regulation of cell wall biosynthesis. Database searches reveal that bactofilin genes are often clustered with genes for cell wall hydrolases of the M23 peptidase family, suggesting a functional connection between these two types of proteins. In support of this notion, we find that the H. neptunium M23 peptidase homolog LmdC interacts directly with bactofilin in vitro and is required for proper cell shape in vivo. Complementary studies in the spiral-shaped alphaproteobacterium Rhodospirillum rubrum again reveal a close association of its bactofilin and LmdC homologs, which co-localize at the inner curve of the cell, modulating the degree of cell curvature. Collectively, these findings demonstrate that bactofilins and M23 peptidases form a conserved functional module that promotes local changes in the mode of cell wall biosynthesis, thereby driving cell shape determination in morphologically complex bacteria.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Emöke Cserti
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Jannik Harberding
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
| | - Rogelio Hernandez-Tamayo
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | | | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Peter L Graumann
- Department of Chemistry, University of MarburgMarburgGermany
- Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, GermanyMarburgGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| |
Collapse
|
4
|
Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol 2023; 23:311. [PMID: 37884887 PMCID: PMC10601153 DOI: 10.1186/s12866-023-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, China
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Razew A, Laguri C, Vallet A, Bougault C, Kaus-Drobek M, Sabala I, Simorre JP. Staphylococcus aureus sacculus mediates activities of M23 hydrolases. Nat Commun 2023; 14:6706. [PMID: 37872144 PMCID: PMC10593780 DOI: 10.1038/s41467-023-42506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.
Collapse
Affiliation(s)
- Alicja Razew
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Cedric Laguri
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Alicia Vallet
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Catherine Bougault
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Izabela Sabala
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Jean-Pierre Simorre
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France.
| |
Collapse
|
6
|
Charoenjotivadhanakul S, Sakdee S, Imtong C, Li HC, Angsuthanasombat C. Conserved loop residues-Tyr 270 and Asn 372 near the catalytic site of the lysostaphin endopeptidase are essential for staphylolytic activity toward pentaglycine binding and catalysis. Biochem Biophys Res Commun 2023; 668:111-117. [PMID: 37245291 DOI: 10.1016/j.bbrc.2023.05.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.
Collapse
Affiliation(s)
- Sathapat Charoenjotivadhanakul
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Laboratory of Cell Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Shestak NV, Grishin AV, Lyashchuk AM, Lunin VG, Anna SK. The choice of chromatographic resin for the purification of recombinant lysostaphin affects its activity. Protein Expr Purif 2023; 207:106274. [PMID: 37084838 DOI: 10.1016/j.pep.2023.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lysostaphin is a zinc-dependent endopeptidase that is effective against both antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus aureus. Lysostaphin is typically purified on cation-exchange or metal-chelate affinity resins, and there are data indicating potential influence of the chromatographic resin on the lysostaphin activity. In this study, we systematically investigated the impact of the resin used to purify the recombinant lysostaphin on its activity. To this end, recombinant lysostaphin with an additional histidine tag at the C-terminus was purified using a cation-exchange resin, three types of nickel-chelate resins with different strength of metal ion binding, or a zinc-chelate resin. Lysostaphin samples purified on the cation-exchange resin (WorkBeads 40S), the nickel-chelate resin with the strong nickel ion binding (WorkBeads NiMAC), and the zinc-chelate resin (WorkBeads NTA with immobilized zinc ions) had equal activity. On the contrary, the activity of lysostaphin preparations purified on nickel-chelate resins with medium (WorkBeads Ni-NTA) and relatively weak (WorkBeads Ni-IDA) nickel ion binding was significantly reduced. The decrease in activity can be explained by the interaction of lysostaphin with the nickel ions leached from the resin and is caused by either the exchange of the zinc ion in the lysostaphin active center with a nickel ion from the resin, or binding of an additional ion that inhibits the enzymatic activity. Removal of metal ions from the active site of lysostaphin and subsequent incorporation of the native zinc ions lead to complete restoration of the activity of the enzyme.
Collapse
Affiliation(s)
- Nikita V Shestak
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation.
| | - Alexander V Grishin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation.
| | - Alexander M Lyashchuk
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation
| | - Vladimir G Lunin
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation
| | - S Karyagina Anna
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, 123098, Moscow, Gamalei st., 18, Russian Federation; All-Russian Research Institute of Agricultural Biotechnology, 127550, Moscow, Timiryazevskaya st., 42, Russian Federation; A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Leninskiye Gory, 1, Russian Federation
| |
Collapse
|
8
|
Melo RM, de Souza JMF, Williams TCR, Fontes W, de Sousa MV, Ricart CAO, do Vale LHF. Revealing Corynebacterium glutamicum proteoforms through top-down proteomics. Sci Rep 2023; 13:2602. [PMID: 36788287 PMCID: PMC9929327 DOI: 10.1038/s41598-023-29857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.
Collapse
Affiliation(s)
- Reynaldo Magalhães Melo
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaques Miranda Ferreira de Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Luis Henrique Ferreira do Vale
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
9
|
Sabzi S, Shahbazi S, Noori Goodarzi N, Haririzadeh Jouriani F, Habibi M, Bolourchi N, Mirzaie A, Badmasti F. Genome-Wide Subtraction Analysis and Reverse Vaccinology to Detect Novel Drug Targets and Potential Vaccine Candidates Against Ehrlichia chaffeensis. Appl Biochem Biotechnol 2023; 195:107-124. [PMID: 36053401 PMCID: PMC9437403 DOI: 10.1007/s12010-022-04116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/17/2023]
Abstract
Human monocytotropic ehrlichiosis is an emerging tick-borne infection caused by the obligate intracellular pathogen, Ehrlichia chaffeensis. The non-specific symptoms can range from a self-limiting fever to a fatal septic-like syndrome and may be misdiagnosed. The limited treatment choices including doxycycline are effective only in the initiation phase of the infection. It seems that novel therapeutic targets and new vaccine strategies could be effective to control this pathogen. This study is comprised of two major phases. First, the common proteins retrieved through subtractive analysis and potential drug targets were evaluated by subcellular localization, homology prediction, metabolic pathways, druggability, essentiality, protein-protein interaction networks, and protein data bank availability. In the second phase, surface-exposed proteins were assessed based on antigenicity, allergenicity, physiochemical properties, B cell and T cell epitopes, conserved domains, and protein-protein interaction networks. A multi-epitope vaccine was designed and characterized using molecular dockings and immune simulation analysis. Six proteins including WP_011452818.1, WP_011452723.1, WP_006010413.1, WP_006010278.1, WP_011452938.1, and WP_006010644.1 were detected. They belong to unique metabolic pathways of E. chaffeensis that are considered as new essential drug targets. Based on the reverse vaccinology, WP_011452702.1, WP_044193405.1, WP_044170604.1, and WP_006010191.1 proteins were potential vaccine candidates. Finally, four B cell epitopes, including SINNQDRNC, FESVSSYNI, SGKKEISVQSN, and QSSAKRKST, were used to generate the multi-epitope vaccine based on LCL platform. The vaccine showed strong interactions with toll-like receptors and acceptable immune-reactivity by immune simulation analysis. The findings of this study may represent a turning point in developing an effective drug and vaccine against E. chaffeensis. However, further experimental analyses have remained.
Collapse
Affiliation(s)
- Samira Sabzi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Negin Bolourchi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran ,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Structural and Functional Characterization of β-lytic Protease from Lysobacter capsici VKM B-2533 T. Int J Mol Sci 2022; 23:ijms232416100. [PMID: 36555752 PMCID: PMC9783410 DOI: 10.3390/ijms232416100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The crystal structure of the Lysobacter capsici VKM B-2533T β-lytic protease (Blp), a medicinally promising antimicrobial enzyme, was first solved. Blp was established to possess a folding characteristic of the M23 protease family. The groove of the Blp active site, as compared with that of the LasA structural homologue from Pseudomonas aeruginosa, was found to have amino acid differences. Biochemical analysis revealed no differences in the optimal reaction conditions for manifesting Blp and LasA bacteriolytic activities. At the same time, Blp had a broader range of action against living and autoclaved target cells. The results suggest that the distinction in the geometry of the active site and the charge of amino acid residues that form the active site groove can be important for the hydrolysis of different peptidoglycan types in target cells.
Collapse
|
11
|
Razew A, Schwarz JN, Mitkowski P, Sabala I, Kaus-Drobek M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front Microbiol 2022; 13:1036964. [PMID: 36386627 PMCID: PMC9662197 DOI: 10.3389/fmicb.2022.1036964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2023] Open
Abstract
Bacterial cell walls are the guards of cell integrity. They are composed of peptidoglycan that provides rigidity to sustain internal turgor and ensures isolation from the external environment. In addition, they harbor the enzymatic machinery to secure cell wall modulations needed throughout the bacterial lifespan. The main players in this process are peptidoglycan hydrolases, a large group of enzymes with diverse specificities and different mechanisms of action. They are commonly, but not exclusively, found in prokaryotes. Although in most cases, these enzymes share the same molecular function, namely peptidoglycan hydrolysis, they are leveraged to perform a variety of physiological roles. A well-investigated family of peptidoglycan hydrolases is M23 peptidases, which display a very conserved fold, but their spectrum of lytic action is broad and includes both Gram- positive and Gram- negative bacteria. In this review, we summarize the structural, biochemical, and functional studies concerning the M23 family of peptidases based on literature and complement this knowledge by performing large-scale analyses of available protein sequences. This review has led us to gain new insight into the role of surface charge in the activity of this group of enzymes. We present relevant conclusions drawn from the analysis of available structures and indicate the main structural features that play a crucial role in specificity determination and mechanisms of latency. Our work systematizes the knowledge of the M23 family enzymes in the context of their unique antimicrobial potential against drug-resistant pathogens and presents possibilities to modulate and engineer their features to develop perfect antibacterial weapons.
Collapse
Affiliation(s)
| | | | | | - Izabela Sabala
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Influence of NaCl and pH on lysostaphin catalytic activity, cell binding, and bacteriolytic activity. Appl Microbiol Biotechnol 2022; 106:6519-6534. [DOI: 10.1007/s00253-022-12173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
|
13
|
Wysocka A, Łężniak Ł, Jagielska E, Sabała I. Electrostatic Interaction with the Bacterial Cell Envelope Tunes the Lytic Activity of Two Novel Peptidoglycan Hydrolases. Microbiol Spectr 2022; 10:e0045522. [PMID: 35467396 PMCID: PMC9241647 DOI: 10.1128/spectrum.00455-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) hydrolases, due to their crucial role in the metabolism of the bacterial cell wall (CW), are increasingly being considered suitable targets for therapies, and a potent alternative to conventional antibiotics. In the light of contradictory data reported, detailed mechanism of regulation of enzymes activity based on electrostatic interactions between hydrolase molecule and bacterial CW surface remains unknown. Here, we report a comprehensive study on this phenomenon using as a model two novel PG hydrolases, SpM23_A, and SpM23_B, which although share the same bacterial host, similarities in sequence conservation, domain architecture, and structure, display surprisingly distinct net charges (in 2D electrophoresis, pI 6.8, and pI 9.7, respectively). We demonstrate a strong correlation between hydrolases surface net charge and the enzymes activity by modulating the charge of both, enzyme molecule and bacterial cell surface. Teichoic acids, anionic polymers present in the bacterial CW, are shown to be involved in the mechanism of enzymes activity regulation by the electrostatics-based interplay between charged bacterial envelope and PG hydrolases. These data serve as a hint for the future development of chimeric PG hydrolases of desired antimicrobial specificity. IMPORTANCE This study shows direct relationship between the surface charge of two recently described enzymes, SpM23_A and SpM23_B, and bacterial cell walls. We demonstrate that by (i) surface charge probing of bacterial strains collection, (ii) reduction of the net charge of the positively charged enzyme, and (iii) altering the net charge of the bacterial surface by modifying the content and composition of teichoic acids. In all cases, we observed that lytic activity and binding strength of SpM23 enzymes, are regulated by electrostatic interactions with the bacterial cell envelope and that this interaction contributes to the determination of the spectrum of susceptible bacterial species. Moreover, we revealed the regulatory role of charged cell wall components, namely, teichoic and lipoteichoic acids, over the SpM23 enzymes. We believe that our findings make an important contribution to understand the means of hydrolases activity regulation in the complex environment of the bacterial cell wall.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Shahbazi S, Sabzi S, Noori Goodarzi N, Fereshteh S, Bolourchi N, Mirzaie B, Badmasti F. Identification of novel putative immunogenic targets and construction of a multi-epitope vaccine against multidrug-resistant Corynebacterium jeikeium using reverse vaccinology approach. Microb Pathog 2022; 164:105425. [DOI: 10.1016/j.micpath.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
15
|
Wysocka A, Jagielska E, Łężniak Ł, Sabała I. Two New M23 Peptidoglycan Hydrolases With Distinct Net Charge. Front Microbiol 2021; 12:719689. [PMID: 34630350 PMCID: PMC8498115 DOI: 10.3389/fmicb.2021.719689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial peptidoglycan hydrolases play an essential role in cell wall metabolism during bacterial growth, division, and elongation (autolysins) or in the elimination of closely related species from the same ecological niche (bacteriocins). Most studies concerning the peptidoglycan hydrolases present in Gram-positive bacteria have focused on clinically relevant Staphylococcus aureus or the model organism Bacillus subtilis, while knowledge relating to other species remains limited. Here, we report two new peptidoglycan hydrolases from the M23 family of metallopeptidases derived from the same staphylococcal species, Staphylococcus pettenkoferi. They share modular architecture, significant sequence identity (60%), catalytic and binding residue conservation, and similar modes of activation, but differ in gene distribution, putative biological role, and, strikingly, in their isoelectric points (pIs). One of the peptides has a high pI, similar to that reported for all M23 peptidases evaluated to date, whereas the other displays a low pI, a unique feature among M23 peptidases. Consequently, we named them SpM23_B (Staphylococcus pettenkoferi M23 "Basic") and SpM23_A (Staphylococcus pettenkoferi M23 "Acidic"). Using genetic and biochemical approaches, we have characterized these two novel lytic enzymes, both in vitro and in their physiological context. Our study presents a detailed characterization of two novel and clearly distinct peptidoglycan hydrolases to understand their role in bacterial physiology.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Figueroa-Cuilan WM, Randich AM, Dunn CM, Santiago-Collazo G, Yowell A, Brown PJB. Diversification of LytM Protein Functions in Polar Elongation and Cell Division of Agrobacterium tumefaciens. Front Microbiol 2021; 12:729307. [PMID: 34489918 PMCID: PMC8416486 DOI: 10.3389/fmicb.2021.729307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.
Collapse
Affiliation(s)
| | - Amelia M. Randich
- Department of Biology, University of Scranton, Scranton, PA, United States
| | - Caroline M. Dunn
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Gustavo Santiago-Collazo
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Molecular Pathogenesis and Therapeutics Graduate Program, University of Missouri, Columbia, MO, United States
| | - Andrew Yowell
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
17
|
Structural Characterization of EnpA D,L-Endopeptidase from Enterococcus faecalis Prophage Provides Insights into Substrate Specificity of M23 Peptidases. Int J Mol Sci 2021; 22:ijms22137136. [PMID: 34281200 PMCID: PMC8269130 DOI: 10.3390/ijms22137136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023] Open
Abstract
The best-characterized members of the M23 family are glycyl-glycine hydrolases, such as lysostaphin (Lss) from Staphylococcus simulans or LytM from Staphylococcus aureus. Recently, enzymes with broad specificities were reported, such as EnpACD from Enterococcus faecalis, that cleaves D,L peptide bond between the stem peptide and a cross-bridge. Previously, the activity of EnpACD was demonstrated only on isolated peptidoglycan fragments. Herein we report conditions in which EnpACD lyses bacterial cells live with very high efficiency demonstrating great bacteriolytic potential, though limited to a low ionic strength environment. We have solved the structure of the EnpACD H109A inactive variant and analyzed it in the context of related peptidoglycan hydrolases structures to reveal the bases for the specificity determination. All M23 structures share a very conserved β-sheet core which constitutes the rigid bottom of the substrate-binding groove and active site, while variable loops create the walls of the deep and narrow binding cleft. A detailed analysis of the binding groove architecture, specificity of M23 enzymes and D,L peptidases demonstrates that the substrate groove, which is particularly deep and narrow, is accessible preferably for peptides composed of amino acids with short side chains or subsequent L and D-isomers. As a result, the bottom of the groove is involved in interactions with the main chain of the substrate while the side chains are protruding in one plane towards the groove opening. We concluded that the selectivity of the substrates is based on their conformations allowed only for polyglycine chains and alternating chirality of the amino acids.
Collapse
|
18
|
Chen K, Ojha SC, Imtong C, Linn AK, Li HC, Thonabulsombat C, Angsuthanasombat C. Molecular Insights into Zn 2+ Inhibition of the Antibacterial Endopeptidase Lysostaphin from Staphylococcus simulans. Protein Pept Lett 2021; 28:140-148. [PMID: 32533816 DOI: 10.2174/0929866527666200613221359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mature lysostaphin (~28-kDa Lss) from Staphylococcus simulans proves effective in killing methicillin-resistant Staphylococcus aureus (MRSA) which is endemic in hospitals worldwide. Lss is Zn2+-dependent endopeptidase, but its bacteriolytic activity could be affected by exogenously added Zn2+. OBJECTIVE To gain greater insights into structural and functional impacts of Zn2+and Ni2+on Lss-induced bioactivity. METHODS Lss purified via immobilized metal ion-affinity chromatography was assessed for bioactivity using turbidity reduction assays. Conformational change of metal ion-treated Lss was examined by circular dichroism and intrinsic fluorescence spectroscopy. Co-sedimentation assay was performed to study interactions between Zn2+-treated Lss and S. aureus peptidoglycans. Metal ionbinding prediction and intermolecular docking were used to locate an extraneous Zn2+-binding site. RESULTS A drastic decrease in Lss bioactivity against S. aureus and MRSA was revealed only when treated with Zn2+, but not Ni2+, albeit no negative effect of diethyldithiocarbamate-Zn2+-chelator on Lss-induced bioactivity. No severe conformational change was observed for Lss incubated with exogenous Zn2+ or Ni2+. Lss pre-treated with Zn2+ efficiently bound to S. aureus cell-wall peptidoglycans, suggesting non-interfering effect of exogenous metal ions on cell-wall targeting (CWT) activity. In silico analysis revealed that exogenous Zn2+, but not Ni2+, preferably interacted with a potential extraneous Zn2+-binding site (His253, Glu318 and His323) placed near the Zn2+-coordinating Lssactive site within the catalytic (CAT) domain. CONCLUSION Our present data signify the adverse influence of exogenous Zn2+ ions on Lss-induced staphylolytic activity through the exclusive presence within the CAT domain of an extraneous inhibitory Zn2+-binding site, without affecting the CWT activity.
Collapse
Affiliation(s)
- Ke Chen
- Department of Anatomy, Faculty of Science, Mahidol University, Payatai Campus, Bangkok, Thailand
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affliliated Hospital of Southwest Medical University, Luzhou, China
| | - Chompounoot Imtong
- Division of Biology, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, Thailand
| | - Aung Khine Linn
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Chanan Angsuthanasombat
- Laboratory of Synthetic Biophysics and Chemical Biology, Biophysics Institute for Research and Development (BIRD), Chiang Mai, Thailand
| |
Collapse
|
19
|
Mueller EA, Iken AG, Ali Öztürk M, Winkle M, Schmitz M, Vollmer W, Di Ventura B, Levin PA. The active repertoire of Escherichia coli peptidoglycan amidases varies with physiochemical environment. Mol Microbiol 2021; 116:311-328. [PMID: 33666292 DOI: 10.1111/mmi.14711] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Nearly all bacteria are encased in peptidoglycan, an extracytoplasmic matrix of polysaccharide strands crosslinked through short peptide stems. In the Gram-negative model organism Escherichia coli, more than 40 synthases and autolysins coordinate the growth and division of the peptidoglycan sacculus in the periplasm. The precise contribution of many of these enzymes to peptidoglycan metabolism remains unclear due to significant apparent redundancy, particularly among the autolysins. E. coli produces three major LytC-type-N-acetylmuramoyl-L-alanine amidases, which share a role in separating the newly formed daughter cells during cytokinesis. Here, we reveal two of the three amidases that exhibit growth medium-dependent changes in activity. Specifically, we report acidic growth conditions stimulate AmiB-and to a lesser extent, AmiC-amidase activity. Combining genetic, biochemical, and computational analyses, we demonstrate that low pH-dependent stimulation of AmiB is mediated through the periplasmic amidase activators NlpD, EnvC, and ActS (formerly known as YgeR). Although NlpD and EnvC promote amidase activity across pH environments, ActS preferentially stimulates AmiB activity in acidic conditions. Altogether, our findings support partially overlapping roles for E. coli amidases and their regulators in cell separation and illuminate the physiochemical environment as an important mediator of cell wall enzyme activity.
Collapse
Affiliation(s)
- Elizabeth A Mueller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abbygail G Iken
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mehmet Ali Öztürk
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Winkle
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mirko Schmitz
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Barbara Di Ventura
- Signalling Research Centers BIOSS and CIBSS, McKelvey School of Engineering, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.,Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Kharadi RR, Sundin GW. Cyclic-di-GMP Regulates Autoaggregation Through the Putative Peptidoglycan Hydrolase, EagA, and Regulates Transcription of the znuABC Zinc Uptake Gene Cluster in Erwinia amylovora. Front Microbiol 2020; 11:605265. [PMID: 33281804 PMCID: PMC7705223 DOI: 10.3389/fmicb.2020.605265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight, an economically impactful disease that affects apple and pear production worldwide. E. amylovora pathogenesis is comprised of distinct type III secretion-dependent and biofilm-dependent stages. Alterations in the intracellular levels of cyclic-di-GMP (c-di-GMP) regulate the transition between the different stages of infection in E. amylovora. We previously reported that hyper-elevation of c-di-GMP levels in E. amylovora Ea1189, resulting from the deletion of all three c-di-GMP specific phosphodiesterase genes (Ea1189ΔpdeABC), resulted in an autoaggregation phenotype. The two major exopolysaccharides, amylovoran and cellulose, were also shown to partially contribute to autoaggregation. In this study, we aimed to identify the c-di-GMP dependent factor(s) that contributes to autoaggregation. We conducted a transposon mutant screen in Ea1189ΔpdeABC and selected for loss of autoaggregation. Our search identified a peptidoglycan hydrolase, specifically, a D, D-endopeptidase of the metallopeptidase class, EagA (Erwiniaaggregation factor A), that was found to physiologically contribute to autoaggregation in a c-di-GMP dependent manner. The production of amylovoran was also positively affected by EagA levels. An eagA deletion mutant (Ea1189ΔeagA) was significantly reduced in virulence compared to the wild type E. amylovora Ea1189. eagA is part of the znuABC zinc uptake gene cluster and is located within an operon downstream of znuA. The znuAeagA/znuCB gene cluster was transcriptionally regulated by elevated levels of c-di-GMP as well as by the zinc-dependent transcriptional repressor Zur. We also observed that with an influx of Zn2+ in the environment, the transcription of the znuAeagA/znuBC gene cluster is regulated by both Zur and a yet to be characterized c-di-GMP dependent pathway.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Newman J, Nebl T, Van H, Peat TS. The X-ray crystal structure of the N-terminal domain of Ssr4, a Schizosaccharomyces pombe chromatin-remodelling protein. Acta Crystallogr F Struct Biol Commun 2020; 76:583-589. [PMID: 33263569 PMCID: PMC7716260 DOI: 10.1107/s2053230x20015216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Ssr4 is a yeast protein from Schizosaccharomyces pombe and is an essential part of the chromatin-remodelling [SWI/SNF and RSC (remodelling the structure of chromatin)] complexes found in S. pombe. These complexes (or their homologues) regulate gene expression in eukaryotic organisms, affecting a large number of genes both positively and negatively. The downstream effects are seen in development, and in humans have implications for disease such as cancer. The chromatin structure is altered by modifying the DNA-histone contacts, thus opening up or closing down sections of DNA to specific transcription factors that regulate the transcription of genes. The Ssr4 sequence has little homology to other sequences in the Protein Data Bank, so the structure was solved using an iodine derivative with SAD phasing. The structure of the N-terminal domain is an antiparallel β-sheet of seven strands with α-helices on one side and random coil on the other. The structure is significantly different to deposited structures and was used as a target in the most recent Critical Assessment of Techniques for Protein Structure Prediction (CASP; https://predictioncenter.org/) competition.
Collapse
Affiliation(s)
- Janet Newman
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Tom Nebl
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Huy Van
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas S. Peat
- Biomedical Program, CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
22
|
Wang F, Xiong Y, Xiao Y, Han J, Deng X, Lin L. MMPphg from the thermophilic Meiothermus bacteriophage MMP17 as a potential antimicrobial agent against both Gram-negative and Gram-positive bacteria. Virol J 2020; 17:130. [PMID: 32843096 PMCID: PMC7448439 DOI: 10.1186/s12985-020-01403-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/16/2020] [Indexed: 01/21/2023] Open
Abstract
Background New strategies are urgently needed to deal with the growing problem of multidrug-resistant bacterial pathogens. As the natural viruses against bacteria, recently, bacteriophages have received particular attention. Here, we identified and characterized a novel peptidoglycan hydrolase named MMPphg by decoding the complete genome sequence of Meiothermus bacteriophage MMP17, which was isolated in Tengchong hot spring in China and contains a circular genome of 33,172 bp in size and a GC content of 63.4%. Findings We cloned the MMPphg gene, overproduced and purified the phage lytic protein, which contains a highly conserved M23 metallopeptidase domain and can be activated by Mg2+ and Zn2+. MMPphg is capable of withstanding temperatures up to 70 °C, and preserved more than 80% of its activity after a 30 min treatment between 35 and 65 °C. More interestingly, by disrupting bacterial cells, MMPphg exhibits surprising antimicrobial activity against both Gram-negative and Gram-positive pathogenic bacteria, especially antibiotic-resistant strains such as Escherichia coli O157, Staphylococcus aureus and Klebsiella pneumonia. Conclusions In the current age of mounting antibiotic resistance, these results suggest the great potential of MMPphg, the gene product of bacteriophage MMP17, in combating bacterial infections and shed light on bacteriophage-based strategies to develop alternatives to conventional antibiotics for human or veterinary applications.
Collapse
Affiliation(s)
- Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China
| | - Yan Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China
| | - Yao Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China
| | - Jian Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China
| | - Xianyu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China. .,Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, 727 South Jingming Road, Kunming, 650500, Yunnan Province, China.
| |
Collapse
|
23
|
Sexton DL, Herlihey FA, Brott AS, Crisante DA, Shepherdson E, Clarke AJ, Elliot MA. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J Biol Chem 2020; 295:9171-9182. [PMID: 32434927 PMCID: PMC7335776 DOI: 10.1074/jbc.ra120.013994] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
Bacterial dormancy can take many forms, including formation of Bacillus endospores, Streptomyces exospores, and metabolically latent Mycobacterium cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate. Here, to address this question, we used mutagenesis and peptidoglycan binding and cleavage assays to first gain broader insight into the biochemical function of diverse Rpf enzymes. We show that their LysM and LytM domains enhance Rpf enzyme activity; their LytM domain and, in some cases their LysM domain, also promoted peptidoglycan binding. We further demonstrate that the Rpfs function as endo-acting lytic transglycosylases, cleaving within the peptidoglycan backbone. We also found that unlike in other systems, Rpf activity in the streptomycetes is not correlated with peptidoglycan-responsive Ser/Thr kinases for cell signaling, and the germination of rpf mutant strains could not be stimulated by the addition of known germinants. Collectively, these results suggest that in Streptomyces, Rpfs have a structural rather than signaling function during spore germination, and that in the actinobacteria, any signaling function associated with spore resuscitation requires the activity of additional yet to be identified enzymes.
Collapse
Affiliation(s)
- Danielle L Sexton
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Ashley S Brott
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - David A Crisante
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Evan Shepherdson
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Marie A Elliot
- Michael G. DeGroote Institute for Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
24
|
Shin JH, Sulpizio AG, Kelley A, Alvarez L, Murphy SG, Fan L, Cava F, Mao Y, Saper MA, Dörr T. Structural basis of peptidoglycan endopeptidase regulation. Proc Natl Acad Sci U S A 2020; 117:11692-11702. [PMID: 32393643 PMCID: PMC7261138 DOI: 10.1073/pnas.2001661117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over; the latter process is mediated by PG cleavage enzymes, for example, the endopeptidases (EPs). EPs themselves are essential for growth but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases (e.g., β-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo, depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogen Vibrio cholerae Our data suggest that ShyA assumes two drastically different conformations: a more open form that allows for substrate binding and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo, and these results were recapitulated in EPs from the divergent pathogens Neisseria gonorrheae and Escherichia coli Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain 1 from the M23 active site, likely through conformational rearrangement in vivo.
Collapse
Affiliation(s)
- Jung-Ho Shin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Alan G Sulpizio
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Aaron Kelley
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-5606
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Shannon G Murphy
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD 21702
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Mark A Saper
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-5606
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853;
- Department of Microbiology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
25
|
Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 2019; 9:5965. [PMID: 30979923 PMCID: PMC6461655 DOI: 10.1038/s41598-019-42435-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus simulans lysostaphin cleaves pentaglycine cross-bridges between stem peptides in the peptidoglycan of susceptible staphylococci, including S. aureus. This enzyme consists of an N-terminal catalytic domain and a cell wall binding domain (SH3b), which anchors the protein to peptidoglycan. Although structures of SH3bs from lysostaphin are available, the binding modes of peptidoglycan to these domains are still unclear. We have solved the crystal structure of the lysostaphin SH3b domain in complex with a pentaglycine peptide representing the peptidoglycan cross-bridge. The structure identifies a groove between β1 and β2 strands as the pentaglycine binding site. The structure suggests that pentaglycine specificity of the SH3b arises partially directly by steric exclusion of Cβ atoms in the ligand and partially indirectly due to the selection of main chain conformations that are easily accessible for glycine, but not other amino acid residues. We have revealed further interactions of SH3b with the stem peptides with the support of bioinformatics tools. Based on the structural data we have attempted engineering of the domain specificity and have investigated the relevance of the introduced substitutions on the domain binding and specificity, also in the contexts of the mature lysostaphin and of its bacteriolytic activity.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Filip Stefaniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dorota Niedziałek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
26
|
Filatova L, Donovan D, Swift S, Pugachev V, Emelianov G, Chubar T, Klaychko N. Kinetics of inactivation of staphylolytic enzymes: Qualitative and quantitative description. Biochimie 2019; 162:77-87. [PMID: 30965078 DOI: 10.1016/j.biochi.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/04/2019] [Indexed: 01/07/2023]
Abstract
Lysin 2638aR and chimeric Ply187AN-KSH3b fusion protein are capable of lysing antibiotic-resistant strains of Staphylococcus aureus and are promising alternatives to antibiotics. Studies on the stability and structure of lysins 2638aR and Ply187AN-KSH3b are important for assessing the feasibility of their practical use. Both lysins are highly active at physiological pH (7.5) and at low salt content (the concentration of NaCl in the reaction medium is not more than 250 mM). Lysins are inactivated by a monomolecular mechanism and have high stability at 4 °C (storage temperature). The maximum value of the half-inactivation time for lysin 2638aR is 190-200 days (500-1000 mM NaCl, pH 6.0-7.5), for lysin Ply187AN-KSH3b is 320-340 days (10-1000 mM NaCl, pH 6.0). The lysins are pretty stable in human blood serum (the half-inactivation time is 0.5-2 h) at 37 °C. The lysins undergo denaturation in large part due to the destruction of the α-helices at temperatures above 40 °C.
Collapse
Affiliation(s)
- Lyubov Filatova
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - David Donovan
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, ARS, USDA, Beltsville, MD, USA
| | - Steven Swift
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, NEA, ARS, USDA, Beltsville, MD, USA
| | - Vladimir Pugachev
- Federal Budget Institution of Science, State Research Center of Virology & Bioengineering "Vector", Novosibirsk, Russia
| | - Georgy Emelianov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Chubar
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Klaychko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia; Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
27
|
Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol 2019; 10:331. [PMID: 30873139 PMCID: PMC6403190 DOI: 10.3389/fmicb.2019.00331] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The cell wall (CW) of bacteria is an intricate arrangement of macromolecules, at least constituted of peptidoglycan (PG) but also of (lipo)teichoic acids, various polysaccharides, polyglutamate and/or proteins. During bacterial growth and division, there is a constant balance between CW degradation and biosynthesis. The CW is remodeled by bacterial hydrolases, whose activities are carefully regulated to maintain cell integrity or lead to bacterial death. Each cell wall hydrolase (CWH) has a specific role regarding the PG: (i) cell wall amidase (CWA) cleaves the amide bond between N-acetylmuramic acid and L-alanine residue at the N-terminal of the stem peptide, (ii) cell wall glycosidase (CWG) catalyses the hydrolysis of the glycosidic linkages, whereas (iii) cell wall peptidase (CWP) cleaves amide bonds between amino acids within the PG chain. After an exhaustive overview of all known conserved catalytic domains responsible for CWA, CWG, and CWP activities, this review stresses that the CWHs frequently display a modular architecture combining multiple and/or different catalytic domains, including some lytic transglycosylases as well as CW binding domains. From there, direct physiological and collateral roles of CWHs in bacterial cells are further discussed.
Collapse
Affiliation(s)
- Aurore Vermassen
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Sabine Leroy
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | - Régine Talon
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| | | | - Magdalena Popowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDiS, Clermont-Ferrand, France
| |
Collapse
|
28
|
Chandra Ojha S, Imtong C, Meetum K, Sakdee S, Katzenmeier G, Angsuthanasombat C. Purification and characterization of the antibacterial peptidase lysostaphin from Staphylococcus simulans : Adverse influence of Zn 2+ on bacteriolytic activity. Protein Expr Purif 2018; 151:106-112. [DOI: 10.1016/j.pep.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
|
29
|
Sharma A, Sharma D, Verma SK. In silico Study of Iron, Zinc and Copper Binding Proteins of Pseudomonas syringae pv. lapsa: Emphasis on Secreted Metalloproteins. Front Microbiol 2018; 9:1838. [PMID: 30186242 PMCID: PMC6110883 DOI: 10.3389/fmicb.2018.01838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 11/17/2022] Open
Abstract
The phytopathogenic bacteria, Pseudomonas syringae pv. lapsa (P. syringae pv. lapsa) infects the staple food crop wheat. Metalloproteins play important roles in plant-pathogen interactions. Hence, the present work is aimed to predict and analyze the iron (Fe), zinc (Zn), and copper (Cu) binding proteins of P. syringae pv. lapsa which help in its growth, adaptation, survival and pathogenicity. A total of 232 Fe, 307 Zn, and 38 Cu-binding proteins have been identified. The functional annotation, subcellular localization and gene ontology enriched network analysis revealed their role in wide range of biological activities of the phytopathogen. Among the identified metalloproteins, a total of 29 Fe-binding, 31 Zn-binding, and 5 Cu-binding proteins were found to be secreted in nature. These putative secreted metalloproteins may perform diverse cellular and biological functions ranging from transport, response to oxidative stress, proteolysis, antimicrobial resistance, metabolic processes, protein folding and DNA repair. The observations obtained here may provide initial information required to draft new schemes to control microbial infections of staple food crops and will further help in developing sustainable agriculture.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| | - Shailender K Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, India
| |
Collapse
|
30
|
da Costa WLO, Araújo CLDA, Dias LM, Pereira LCDS, Alves JTC, Araújo FA, Folador EL, Henriques I, Silva A, Folador ARC. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance. PLoS One 2018; 13:e0198965. [PMID: 29940001 PMCID: PMC6016940 DOI: 10.1371/journal.pone.0198965] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Exiguobacterium antarcticum strain B7 is a psychrophilic Gram-positive bacterium that possesses enzymes that can be used for several biotechnological applications. However, many proteins from its genome are considered hypothetical proteins (HPs). These functionally unknown proteins may indicate important functions regarding the biological role of this bacterium, and the use of bioinformatics tools can assist in the biological understanding of this organism through functional annotation analysis. Thus, our study aimed to assign functions to proteins previously described as HPs, present in the genome of E. antarcticum B7. We used an extensive in silico workflow combining several bioinformatics tools for function annotation, sub-cellular localization and physicochemical characterization, three-dimensional structure determination, and protein-protein interactions. This genome contains 2772 genes, of which 765 CDS were annotated as HPs. The amino acid sequences of all HPs were submitted to our workflow and we successfully attributed function to 132 HPs. We identified 11 proteins that play important roles in the mechanisms of adaptation to adverse environments, such as flagellar biosynthesis, biofilm formation, carotenoids biosynthesis, and others. In addition, three predicted HPs are possibly related to arsenic tolerance. Through an in vitro assay, we verified that E. antarcticum B7 can grow at high concentrations of this metal. The approach used was important to precisely assign function to proteins from diverse classes and to infer relationships with proteins with functions already described in the literature. This approach aims to produce a better understanding of the mechanism by which this bacterium adapts to extreme environments and to the finding of targets with biotechnological interest.
Collapse
Affiliation(s)
- Wana Lailan Oliveira da Costa
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Carlos Leonardo de Aragão Araújo
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Larissa Maranhão Dias
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Lino César de Sousa Pereira
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Jorianne Thyeska Castro Alves
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Fabrício Almeida Araújo
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Edson Luiz Folador
- Biotechnology Center, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Isabel Henriques
- Biology Department & CESAM, University of Aveiro, Aveiro, Portugal
| | - Artur Silva
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
| | - Adriana Ribeiro Carneiro Folador
- Laboratory of Genomic and Bioinformatics, Center of Genomics and System Biology, Institute of Biological Science, Federal University of Para, Belém, Pará, Brazil
- * E-mail: ,
| |
Collapse
|
31
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
32
|
Bornikoel J, Staiger J, Madlung J, Forchhammer K, Maldener I. LytM factor Alr3353 affects filament morphology and cell-cell communication in the multicellular cyanobacteriumAnabaenasp. PCC 7120. Mol Microbiol 2018; 108:187-203. [DOI: 10.1111/mmi.13929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Julia Staiger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Johannes Madlung
- Proteome Center Tübingen; University of Tübingen, Auf der Morgenstelle 15; 72076 Tübingen Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| |
Collapse
|
33
|
Raulinaitis V, Tossavainen H, Aitio O, Juuti JT, Hiramatsu K, Kontinen V, Permi P. Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep 2017; 7:6020. [PMID: 28729697 PMCID: PMC5519744 DOI: 10.1038/s41598-017-06135-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
We introduce LytU, a short member of the lysostaphin family of zinc-dependent pentaglycine endopeptidases. It is a potential antimicrobial agent for S. aureus infections and its gene transcription is highly upregulated upon antibiotic treatments along with other genes involved in cell wall synthesis. We found this enzyme to be responsible for the opening of the cell wall peptidoglycan layer during cell divisions in S. aureus. LytU is anchored in the plasma membrane with the active part residing in the periplasmic space. It has a unique Ile/Lys insertion at position 151 that resides in the catalytic site-neighbouring loop and is vital for the enzymatic activity but not affecting the overall structure common to the lysostaphin family. Purified LytU lyses S. aureus cells and cleaves pentaglycine, a reaction conveniently monitored by NMR spectroscopy. Substituting the cofactor zinc ion with a copper or cobalt ion remarkably increases the rate of pentaglycine cleavage. NMR and isothermal titration calorimetry further reveal that, uniquely for its family, LytU is able to bind a second zinc ion which is coordinated by catalytic histidines and is therefore inhibitory. The pH-dependence and high affinity of binding carry further physiological implications.
Collapse
Affiliation(s)
- Vytas Raulinaitis
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Olli Aitio
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Jarmo T Juuti
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Keiichi Hiramatsu
- Research Centre for Infection Control Science, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Vesa Kontinen
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland.,Research Centre for Infection Control Science, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland. .,Department of Biological and Environmental Science, and Department of Chemistry, Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland.
| |
Collapse
|
34
|
Baraúna RA, Ramos RTJ, Veras AAO, Pinheiro KC, Benevides LJ, Viana MVC, Guimarães LC, Edman JM, Spier SJ, Azevedo V, Silva A. Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics. PLoS One 2017; 12:e0170676. [PMID: 28125655 PMCID: PMC5268413 DOI: 10.1371/journal.pone.0170676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as "pigeon fever" which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at California compared to the other strains. Additionally, high variability of resistance islands suggests gene acquisition through several events of horizontal gene transfer.
Collapse
Affiliation(s)
- Rafael A. Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel T. J. Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Adonney A. O. Veras
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Kenny C. Pinheiro
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus V. C. Viana
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís C. Guimarães
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Judy M. Edman
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Sharon J. Spier
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
35
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
36
|
Xing M, Simmonds RS, Timkovich R. Solution structure of the Cys74 to Ala74 mutant of the recombinant catalytic domain of Zoocin A. Proteins 2016; 85:177-181. [PMID: 27699884 DOI: 10.1002/prot.25178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/30/2016] [Accepted: 09/24/2016] [Indexed: 11/05/2022]
Abstract
Zoocin A is a Zn-metallopeptidase secreted by Streptococcus zooepidemicus strain 4881. Its catalytic domain is responsible for cleaving the D-alanyl-L-alanine peptide bond in streptococcal peptidoglycan. The solution NMR structure of the Cys74 to Ala74 mutant of the recombinant catalytic domain (rCAT C74A) has been determined. With a previous structure determination for the recombinant target recognition domain (rTRD), this completes the 3D structure of zoocin A. While the structure of rCAT C74A resembles those of the catalytic domains of lysostaphin and LytM, the substrate binding groove is wider and no tyrosine residue was observed in the active site. Proteins 2016; 85:177-181. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minli Xing
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, 35487
| | - Robin S Simmonds
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Russell Timkovich
- Department of Chemistry, University of Alabama, Tuscaloosa, Alabama, 35487
| |
Collapse
|
37
|
An DR, Im HN, Jang JY, Kim HS, Kim J, Yoon HJ, Hesek D, Lee M, Mobashery S, Kim SJ, Suh SW. Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori. PLoS One 2016; 11:e0164243. [PMID: 27711177 PMCID: PMC5053510 DOI: 10.1371/journal.pone.0164243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022] Open
Abstract
Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides. H. pylori Csd1, Csd2, and Csd3/HdpA are M23B metallopeptidase family members and may act as d,d-endopeptidases to cleave the d-Ala4-mDAP3 peptide bond of cross-linked dimer muropeptides. Csd3 functions also as the d,d-carboxypeptidase to cleave the d-Ala4-d-Ala5 bond of the muramyl pentapeptide. To provide a basis for understanding molecular functions of Csd1 and Csd2, we have carried out their structural characterizations. We have discovered that (i) Csd2 exists in monomer-dimer equilibrium and (ii) Csd1 and Csd2 form a heterodimer. We have determined crystal structures of the Csd2121-308 homodimer and the heterodimer between Csd1125-312 and Csd2121-308. Overall structures of Csd1125-312 and Csd2121-308 monomers are similar to each other, consisting of a helical domain and a LytM domain. The helical domains of both Csd1 and Csd2 play a key role in the formation of homodimers or heterodimers. The Csd1 LytM domain contains a catalytic site with a Zn2+ ion, which is coordinated by three conserved ligands and two water molecules, whereas the Csd2 LytM domain has incomplete metal ligands and no metal ion is bound. Structural knowledge of these proteins sheds light on the events that regulate the cell wall in H. pylori.
Collapse
Affiliation(s)
- Doo Ri An
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Ha Na Im
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Jun Young Jang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Hyoun Sook Kim
- Biomolecular Function Research Branch, Division of Precision Medicine and Cancer Informatics, Research Institute, National Cancer Center, Gyeonggi, Korea
| | - Jieun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam, Korea
| | - Se Won Suh
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul, Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
38
|
Díaz-Balzac CA, Rahman M, Lázaro-Peña MI, Martin Hernandez LA, Salzberg Y, Aguirre-Chen C, Kaprielian Z, Bülow HE. Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites. Curr Biol 2016; 26:2379-87. [PMID: 27451901 PMCID: PMC5021591 DOI: 10.1016/j.cub.2016.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023]
Abstract
Sensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9]. Here we describe a role for the diffusible C. elegans protein LECT-2, which is homologous to vertebrate leukocyte cell-derived chemotaxin 2 (LECT2)/Chondromodulin II. LECT2/Chondromodulin II has been implicated in a variety of pathological conditions [10-13], but the developmental functions of LECT2 have remained elusive. We find that LECT-2/Chondromodulin II is required for development of PVD and FLP dendritic arbors and can act as a diffusible cue from a distance to shape dendritic arbors. Expressed in body-wall muscles, LECT-2 decorates neuronal processes and hypodermal cells in a pattern similar to the cell adhesion molecule SAX-7/L1CAM. LECT-2 functions genetically downstream of the MNR-1/Menorin-SAX-7/L1CAM adhesion complex and upstream of the DMA-1 receptor. LECT-2 localization is dependent on SAX-7/L1CAM, but not on MNR-1/Menorin or DMA-1/LRR-TM, suggesting that LECT-2 functions as part of the skin-derived MNR-1/Menorin-SAX-7/L1CAM adhesion complex. Collectively, our findings suggest that LECT-2/Chondromodulin II acts as a muscle-derived, diffusible cofactor together with a skin-derived cell adhesion complex to orchestrate the molecular interactions of three tissues during patterning of somatosensory dendrites.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cristina Aguirre-Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
39
|
Jagielska E, Chojnacka O, Sabała I. LytM Fusion with SH3b-Like Domain Expands Its Activity to Physiological Conditions. Microb Drug Resist 2016; 22:461-9. [PMID: 27351490 PMCID: PMC5036312 DOI: 10.1089/mdr.2016.0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus remains one of the most common and at the same time the most dangerous bacteria. The spreading antibiotic resistance calls for intensification of research on staphylococcal physiology and development of new strategies for combating this threatening pathogen. We have engineered new chimeric enzymes comprising the enzymatically active domain (EAD) of autolysin LytM from S. aureus and the cell wall binding domain (CBD) from bacteriocin lysostaphin. They display potent activity in extended environmental conditions. Our results exemplify the possibility of exploring autolytic enzymes in engineering lysins with desired features. Moreover, they suggest a possible mechanism of autolysin physiological activity regulation by local ionic environments in the cell wall.
Collapse
Affiliation(s)
- Elzbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| | - Olga Chojnacka
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw , Warsaw, Poland
| |
Collapse
|