1
|
Wen J, Ye Q, Wu H, Zhang Y, Ai S, Li R, Xu Q, Zhou Q, Fu Y, Peng G, Tang W. Development and Prospective Validation of a Novel Risk Score for Predicting the Risk of Poor Surgical Site Healing in Patients Following Surgical Procedure for Spinal Tuberculosis: A Multi-Center Cohort Study. Surg Infect (Larchmt) 2025. [PMID: 39834182 DOI: 10.1089/sur.2024.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background: The risk of poor surgical site healing in patients with spinal tuberculosis due to M. tuberculosis infection is known to be higher than in other surgical patients. Early identification and diagnosis are critical if we are to reduce the disability and mortality associated with spinal tuberculosis. We aimed to develop and validate a novel predictive score for predicting the risk of poor surgical site healing in patients following surgical procedure for spinal tuberculosis. Patients and Methods: We retrospectively analyzed the clinical data of patients with spinal tuberculosis who were hospitalized in the orthopedic ward of four regional medical centers in Guizhou Province between January 2015 and October 2022. Univariate and LASSO analysis was used to identify risk factors, construct and evaluate predictive models and novel predictive score for poor surgical site healing following the surgical procedure. Subsequently, 110 patients, admitted to four regional medical centers in Guizhou Province between January 2023 and February 2024, were used as an external prospective validation cohort to test the predictive efficacy of the prediction model. Results: Seven predictors were identified as risk factors for poor surgical site healing in patients undergoing surgical procedure for spinal tuberculosis. The areas under the receiver operating characteristic curve for a risk prediction model constructed based on the significant risk factors were 0.753 (95% CI: 0.693-0.813) and 0.779 (95% CI: 0.696-0.863) for the training and validation sets, respectively. Decision curve analysis demonstrated that the model yielded good clinical benefit. Finally, we applied the newly developed poor surgical site healing risk assessment score for the external prospective validation set; the area under the receiver operating characteristic curve for the poor surgical site healing risk assessment score was 0.846 (95% CI: 0.769-0.923) demonstrated that the model yielded better predictive effectiveness. Conclusion: The novel poor surgical site healing risk assessment score exhibits good discriminatory power and represents a beneficial predictive tool for facilitating suitable postoperative clinical management.
Collapse
Affiliation(s)
- Jinglian Wen
- School of Nursing, Guizhou Medical University, Guiyang, China
- Anesthesia Operating Room, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qing Ye
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyi Wu
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Sisi Ai
- School of Nursing, Guizhou Medical University, Guiyang, China
| | - Run Li
- Anesthesia Operating Room, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qian Xu
- Anesthesia Operating Room, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhou
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yingjie Fu
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tang
- Department of Nursing, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Nayak SPRR, Boopathi S, Chandrasekar M, Panda SP, Manikandan K, Chitra V, Almutairi BO, Arokiyaraj S, Guru A, Arockiaraj J. Indole-3-acetic acid exposure leads to cardiovascular inflammation and fibrosis in chronic kidney disease rat model. Food Chem Toxicol 2024; 192:114917. [PMID: 39128690 DOI: 10.1016/j.fct.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Indole-3-acetic acid (IAA), a protein-bound uremic toxin, has been linked to cardiovascular morbidity and mortality in chronic kidney disease (CKD) patients. This study explores the influence of IAA (125 mg/kg) on cardiovascular changes in adenine sulfate-induced CKD rats. HPLC analysis revealed that IAA-exposed CKD rats had lower excretion and increased circulation of IAA compared to both CKD and IAA control groups. Moreover, echocardiography indicated that CKD rats exposed to IAA exhibited heart enlargement, thickening of the myocardium, and cardiac hypertrophy in contrast to CKD or IAA control group. Biochemical analyses supported the finding that IAA-induced CKD rats had elevated serum levels of c-Tn-I, CK-MB, and LDH; there was also evidence of oxidative stress in cardiac tissues, with a significant decrease in SOD and CAT levels, as well as an increase in MDA levels. The gene expression analysis found significant increases in ANP, BNP, β-MHC, TNF-α, IL-1β, and NF-κB levels in IAA-exposed CKD groups in contrast to the CKD or IAA control group. In addition, higher cardiac fibrosis markers, including Col-I and Col-III. The findings of this study indicate that IAA could trigger cardiovascular inflammation and fibrosis in CKD conditions.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Resident Veterinary Services Section, Madras Veterinary College, Chennai, 600007, Tamil Nadu, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Kim AH, Son DH, Moon ME, Jeon S, Lee HS, Lee YJ. Sex differences in the relationship between serum total bilirubin and risk of incident metabolic syndrome in community-dwelling adults: Propensity score analysis using longitudinal cohort data over 16 years. Cardiovasc Diabetol 2024; 23:92. [PMID: 38468265 PMCID: PMC10926637 DOI: 10.1186/s12933-024-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Research on identifiable risks for metabolic syndrome (MetS) is ongoing, and growing evidence suggests that bilirubin is a potent antioxidant and cytoprotective agent against MetS. However, there have been conflicting results on the association between bilirubin and MetS. Our study aimed to validate the association by separately stratifying data for men and women in a longitudinal prospective study. METHODS Data were derived from the Korean Genome Epidemiology Study provided by the Korea Centers for Disease Control and Prevention. Data from 5,185 adults aged 40-69 years (3,089 men and 2,096 women) without MetS were analyzed. The participants were divided according to sex-specific quartiles of serum total bilirubin levels and followed up biennially for 16 years (until 2018). The log-rank test was used for obtaining the Kaplan-Meier curves of cumulative incidence of MetS according to sex-specific serum total bilirubin quartiles, and the hazard ratios (HRs) with 95% confidence intervals (CIs) for incident metabolic syndrome were analyzed with a multiple Cox proportional hazard regression analysis model, after propensity score matching for removing differences at baseline. RESULTS With increasing serum total bilirubin quartiles, the incidence rate per 1000 person-years proportionally decreased in both men and women. After propensity score matching and adjusting for confounding variables, the HRs (95% CIs) for MetS of the highest quartile in reference to the lowest quartile were 1.00 (0.80-1.24) for men and 0.80 (0.65-0.99) for women. Higher quartiles of serum total bilirubin showed significantly lower cumulative incidence of MetS in women (log-rank test p = 0.009), but not in men (log-rank test p = 0.285). CONCLUSION Serum total bilirubin levels were significantly inversely associated with MetS in women, but there was no significant association observed in men. Sex differences in the effects of serum total bilirubin should be noted when predicting incident MetS by sex in clinical settings.
Collapse
Affiliation(s)
- Ae Hee Kim
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Da-Hye Son
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Mid-Eum Moon
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soyoung Jeon
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
- Department of Family Medicine, Yonsei University College of Medicine Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Korea.
| |
Collapse
|
4
|
Vitek L, Hinds TD, Stec DE, Tiribelli C. The physiology of bilirubin: health and disease equilibrium. Trends Mol Med 2023; 29:315-328. [PMID: 36828710 PMCID: PMC10023336 DOI: 10.1016/j.molmed.2023.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Bilirubin has several physiological functions, both beneficial and harmful. In addition to reactive oxygen species-scavenging activities, bilirubin has potent immunosuppressive effects associated with long-term pathophysiological sequelae. It has been recently recognized as a hormone with endocrine actions and interconnected effects on various cellular signaling pathways. Current studies show that bilirubin also decreases adiposity and prevents metabolic and cardiovascular diseases. All in all, the physiological importance of bilirubin is only now coming to light, and strategies for increasing plasma bilirubin levels to combat chronic diseases are starting to be considered. This review discusses the beneficial effects of increasing plasma bilirubin, incorporates emerging areas of bilirubin biology, and provides key concepts to advance the field.
Collapse
Affiliation(s)
- Libor Vitek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 120 00 Prague, Czech Republic
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
5
|
Ji R, Jia F, Chen X, Gao Y, Yang J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/HO-1 activation. Phytother Res 2023; 37:1405-1421. [PMID: 36786429 DOI: 10.1002/ptr.7749] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/15/2023]
Abstract
Excessive oxidative stress and apoptosis of ovarian granulosa cells lead to abnormal follicular development and ovulation disorders in polycystic ovary syndrome (PCOS). Carnosol is a plant-derived polyphenol that has been proven to exhibit several cell protective effects. In this study, we established hyperandrogenic PCOS models both in vitro and in vivo. In the human ovarian granulosa cell line, KGN cells, decreased viability and mitochondrial membrane potential, and upregulated reactive oxygen species (ROS) level and apoptosis induced by DHT were partly reversed by carnosol. Western blotting results showed that carnosol treatment inhibited the DHT-activated mitochondrial apoptotic pathway by activating nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1). Knockdown of Nrf2 by transfecting with siRNA or inhibiting HO-1 by zinc protoporphyrin (ZnPP) blocked the protective effects of carnosol. Computational modeling and pull-down assay results confirmed the direct binding of carnosol to kelch-like ECH-associated protein 1 (Keap1). In vivo results showed that the intraperitoneal administration of carnosol (50 and 100 mg/kg) improved estrous cycle disorders, polycystic ovary, and decreased elevated androgen in the PCOS mice. In summary, Carnosol has an effective role in inhibiting oxidative stress and apoptosis in DHT-treated KGN cells and protecting against mouse PCOS phenotypes through the Keap1-mediated activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fangyuan Jia
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan, China.,Department of Aortic Surgery, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
6
|
Zeng J, Huang H, Zhang Y, Lv X, Cheng J, Zou SJ, Han Y, Wang S, Gong L, Peng Z. Dapagliflozin alleviates renal fibrosis in a mouse model of adenine-induced renal injury by inhibiting TGF-β1/MAPK mediated mitochondrial damage. Front Pharmacol 2023; 14:1095487. [PMID: 36959860 PMCID: PMC10028454 DOI: 10.3389/fphar.2023.1095487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Renal fibrosis is a common pathological outcome of various chronic kidney diseases, and as yet, there is no specific treatment. Dapagliflozin has shown renal protection in some clinical trials as a glucose-lowering drug, but its role and mechanism on renal fibrosis remain unclear. In this study, we used a 0.2% adenine diet-induced renal fibrosis mouse model to investigate whether dapagliflozin could protect renal function and alleviate renal fibrosis in this animal model. In vivo, we found that dapagliflozin's protective effect on renal fibrosis was associated with 1) sustaining mitochondrial integrity and respiratory chain complex expression, maintained the amount of mitochondria; 2) improving fatty acid oxidation level with increased expression of CPT1-α, PPAR-α, ACOX1, and ACOX2; 3) reducing inflammation and oxidative stress, likely via regulation of IL-1β, IL-6, TNF-α, MCP-1, cxcl-1 expression, and glutathione (GSH) activity, superoxide dismutase (SOD) and malondialdehyde (MDA) levels; and 4) inhibiting the activation of the TGF-β1/MAPK pathway. In HK2 cells treated with TGF-β1, dapagliflozin reduced the expression of FN and α-SMA, improved mitochondrial respiratory chain complex expression, and inhibited activation of the TGF-β1/MAPK pathway.
Collapse
Affiliation(s)
- Jianhua Zeng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Cheng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si Jue Zou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Songkai Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Gong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhangzhe Peng,
| |
Collapse
|
7
|
Stec DE, Tiribelli C, Badmus OO, Hinds TD. Novel Function for Bilirubin as a Metabolic Signaling Molecule: Implications for Kidney Diseases. KIDNEY360 2022; 3:945-953. [PMID: 36128497 PMCID: PMC9438427 DOI: 10.34067/kid.0000062022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/24/2022] [Indexed: 01/30/2023]
Abstract
Bilirubin is the end product of the catabolism of heme via the heme oxygenase pathway. Heme oxygenase generates carbon monoxide (CO) and biliverdin from the breakdown of heme, and biliverdin is rapidly reduced to bilirubin by the enzyme biliverdin reductase (BVR). Bilirubin has long been thought of as a toxic product that is only relevant to health when blood levels are severely elevated, such as in clinical jaundice. The physiologic functions of bilirubin correlate with the growing body of evidence demonstrating the protective effects of serum bilirubin against cardiovascular and metabolic diseases. Although the correlative evidence suggests a protective effect of serum bilirubin against many diseases, the mechanism by which bilirubin offers protection against cardiovascular and metabolic diseases remains unanswered. We recently discovered a novel function for bilirubin as a signaling molecule capable of activating the peroxisome proliferator-activated receptor α (PPARα) transcription factor. This review summarizes the new finding of bilirubin as a signaling molecule and proposes several mechanisms by which this novel action of bilirubin may protect against cardiovascular and kidney diseases.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Olufunto O. Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
8
|
Bianco A, Tiribelli C, Bellarosa C. Translational Approach to the Protective Effect of Bilirubin in Diabetic Kidney Disease. Biomedicines 2022; 10:biomedicines10030696. [PMID: 35327498 PMCID: PMC8945513 DOI: 10.3390/biomedicines10030696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Bilirubin has been regarded as a powerful endogenous antioxidant and anti-inflammatory molecule, able to act on cellular pathways as a hormone. Diabetic kidney disease (DKD) is a common chronic complication of diabetes, and it is the leading cause of end-stage renal disease. Here, we will review the clinical and molecular features of mild hyperbilirubinemia in DKD. The pathogenesis of DKD involves oxidative stress, inflammation, fibrosis, and apoptosis. Serum bilirubin levels are positively correlated with the levels of the antioxidative enzymes as superoxide dismutase, catalase, and glutathione peroxidase, while it is inversely correlated with C-reactive protein, TNF-α, interleukin (IL)-2, IL-6, and IL-10 release in diabetic kidney disease. Bilirubin downregulates NADPH oxidase, reduces the induction of pro-fibrotic factor HIF-1α expression, cleaved caspase-3, and cleaved PARP induction showing lower DNA fragmentation. Recent experimental and clinical studies have demonstrated its effects in the development and progression of renal diseases, pointing out that only very mild elevations of bilirubin concentrations result in real clinical benefits. Future controlled studies are needed to explore the precise role of bilirubin in the pathogenesis of DKD and to understand if the use of serum bilirubin levels as a marker of progression or therapeutic target in DKD is feasible and realistic.
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
| | - Cristina Bellarosa
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- Correspondence:
| |
Collapse
|
9
|
High-Protein Bar as a Meal Replacement in Elite Sports Nutrition: A Pilot Study. Foods 2021; 10:foods10112628. [PMID: 34828911 PMCID: PMC8617883 DOI: 10.3390/foods10112628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023] Open
Abstract
This study was focused on the creation of high-protein bars formulated using whey protein isolate (24%) and soy protein isolate (6%) as the sources of proteins; oat flakes and inulin, both abundant in dietary fibres, and creatine monohydrate and other minor ingredients (vitamin and mineral mixture, potassium sorbate) to achieve the requirements for a meal replacement formula for physically active people. The nutritional profile of the high-protein bar was examined (energy 1215 kJ/288 kcal; protein 34.1 ± 0.20 g, fat 6.01 ± 0.13 g of which was saturated 3.12 ± 0.08 g, fibre 3.10 ± 0.17 g carbohydrate 23.0 ± 0.16 g of which sugars 1.50 ± 0.19 g and starch 21.5 ± 0.11 g in 100 g), and sensory properties with instrumental parameters (texture and colour) were determined and compared with bars commercially available on the market. The created high-protein bar was sensorily acceptable in comparison to other commercially available bars. The dietary intervention study was conducted on elite athletes (professional handball players) to evaluate effects of created versus control bar consumption on their metabolic parameters. The baseline characteristics (mean age, body mass index (BMI), fat mass, muscle mass, lean mass and fat percentage) of the athletes (8) were determined at the start of the study. The cross-over intervention study was organized in two successive phases (5 days each) with a seven-day long washout period between phases. Bars were consumed after the afternoon training unit. Blood samples were collected at the start and the end of the intervention study to analyse the metabolic profiles of the athletes. Serum levels of high-density cholesterol (HDL), low-density cholesterol (LDL) and total cholesterol (HOL), glucose, triacylglycerides (TAG), total and direct bilirubin, creatine kinase (CK), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured. The results showed that bar consumption significantly decreased serum aspartate transaminase (AST) and lactate dehydrogenase (LDH) and increased total and direct bilirubin levels, suggesting lower exercise-induced muscle damage and increased antioxidative response, respectively. Therefore, it can be concluded that the consumption of the created high-protein bar was able to improve physiological adaptation after training.
Collapse
|
10
|
Ho Y, Chen TW, Huang TP, Chen YH, Tarng DC. Bilirubin Links HO-1 and UGT1A1*28 Gene Polymorphisms to Predict Cardiovascular Outcome in Patients Receiving Maintenance Hemodialysis. Antioxidants (Basel) 2021; 10:antiox10091403. [PMID: 34573035 PMCID: PMC8470468 DOI: 10.3390/antiox10091403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Serum bilirubin levels, which are determined by a complex interplay of various enzymes, including heme oxygenase-1 (HO-1) and uridine diphosphate–glucuronosyl transferase (UGT1A1), may be protective against progression of cardiovascular disease (CVD) in hemodialysis patients. However, the combined effect of HO-1 and UGT1A1*28 gene polymorphisms on CVD outcomes among hemodialysis patients is still unknown. This retrospective study enrolled 1080 prevalent hemodialysis patients and the combined genetic polymorphisms of HO-1 and UGT1A1 on serum bilirubin were analyzed. Endpoints were CVD events and all-cause mortality. Mean serum bilirubin was highest in patients with S/S + S/L of the HO-1 promoter and UGT1A1 7/7 genotypes (Group 1), intermediate in those with S/S + S/L of the HO-1 promoter and UGT1A1 7/6 + 6/6 genotypes (Group 2), and lowest in the carriers with the L/L HO-1 promoter and UGT1A1 7/6 + 6/6 genotypes (Group 3) (p < 0.001). During a median follow-up of 50 months, 433 patients developed CVD. Compared with patients in Group 3, individuals among Groups 1 and 2 had significantly lower risks for CVD events (adjusted hazard ratios (aHRs) of 0.35 for Group 1 and 0.63 for Group 2), respectively. Compared with the lower bilirubin tertile, the aHRs were 0.72 for the middle tertile and 0.40 for the upper tertile for CVD events. We summarized that serum bilirubin as well as HO-1 and UGT1A1 gene polymorphisms were associated with CVD among patients receiving chronic hemodialysis.
Collapse
Affiliation(s)
- Yang Ho
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzen-Wen Chen
- Division of Nephrology, Wei Gong Memorial Hospital, Miaoli 35159, Taiwan; (T.-W.C.); (T.-P.H.)
| | - Tung-Po Huang
- Division of Nephrology, Wei Gong Memorial Hospital, Miaoli 35159, Taiwan; (T.-W.C.); (T.-P.H.)
| | - Ying-Hwa Chen
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.-H.C.); (D.-C.T.); Tel.: +886-2-2875-7500 (D.-C.T.); Fax: +886-2-2875-7841 (D.-C.T.)
| | - Der-Cherng Tarng
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.-H.C.); (D.-C.T.); Tel.: +886-2-2875-7500 (D.-C.T.); Fax: +886-2-2875-7841 (D.-C.T.)
| |
Collapse
|
11
|
Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B. Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther 2021; 12:409. [PMID: 34271976 PMCID: PMC8283866 DOI: 10.1186/s13287-021-02429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics. METHODS TIF model was induced by adenine gavage. Bone marrow-derived MSCs was injected by tail vein after modeling. Renal function and fibrosis related parameters were assessed by Masson, Sirius red, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry. Further possible mechanism was explored by transfected galectin-3 gene for knockdown (Gal-3 KD) and overexpression (Gal-3 OE) in HK-2 cells with lentiviral vector. RESULTS MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, Kim-1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. Proteomics showed that only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Galectin-3 was downregulated significantly in renal tissues and TGF-β1-induced rat tubular epithelial cells and interstitial fibroblasts, consistent with the iTRAQ results. Gal-3 KD notably inhibited the expression of p-Akt, p-GSK3β and snail in TGF-β1-induced HK-2 cells fibrosis. On the contrary, Gal-3 OE obviously increased the expression of p-Akt, p-GSK3β and snail. CONCLUSION The mechanism of MSCs anti-renal fibrosis was probably mediated by galectin-3/Akt/GSK3β/Snail signaling pathway. Galectin-3 may be a valuable target for treating renal fibrosis.
Collapse
Affiliation(s)
- Huajun Tang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Peiyue Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Lianlin Zeng
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Yu Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Libo Xie
- Department of Urology, Sichuan Clinical Research Center for Nephropathy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000.
| |
Collapse
|
12
|
Vidimce J, Pennell EN, Foo M, Shiels RG, Shibeeb S, Watson M, Bulmer AC. Effect of Silymarin Treatment on Circulating Bilirubin and Cardiovascular Disease Risk Factors in Healthy Men: A Single-Blind, Randomized Crossover Trial. Clin Pharmacol Drug Dev 2021; 10:1156-1165. [PMID: 34242497 DOI: 10.1002/cpdd.962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 01/24/2023]
Abstract
This clinical trial (ACTRN12619001296123) investigated the impact of silymarin (Legalon®) on circulating bilirubin concentration, lipid status, systemic inflammation, and antioxidant status. The study design was a randomized, placebo-controlled, single-blind crossover trial of healthy men (18-65 years), conducted at Griffith University, Gold Coast, Australia. Participants were recruited from Griffith University and were randomized to silymarin (140 mg silymarin capsules thrice daily) or placebo (3 capsules containing mannitol taken daily) for 14 days followed by a ≥4-week washout and crossover to the other arm. The main outcomes were whether silymarin treatment would increase serum bilirubin concentration by >0.29 mg/dL, change serum lipid status (cholesterol and triglycerides), inflammation (c-reactive protein), and antioxidant capacity (ferric reducing ability of plasma) compared with baseline. Silymarin consumption (n = 17) did not affect serum concentrations of unconjugated bilirubin (0.73 versus 0.67 mg/dL, P = .79), cholesterol (185 versus 189 mg/dL, P = .19), triglycerides (94.2 versus 92.3 mg/dL, P = .79), c-reactive protein (0.17 versus 0.09 mg/dL, P = .23), or antioxidant status (6.61 versus 6.67 mg Fe2+ /dL, P = .40). These findings challenge previous reports and manufacturer claims of hyperbilirubinemia following silymarin treatment and are critical to guiding researchers toward an effective means to mildly elevate bilirubin, which evidence suggests could protect from cardiovascular disease.
Collapse
Affiliation(s)
- Josif Vidimce
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Evan Noel Pennell
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Maxmilian Foo
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Ryan Graeme Shiels
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Sapha Shibeeb
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia.,Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Michael Watson
- Institute of Health & Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew Cameron Bulmer
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Allegretti AS, Belcher JM. Bile Acids Are Important Contributors to AKI Associated with Liver Disease: CON. KIDNEY360 2021; 3:21-24. [PMID: 35378020 PMCID: PMC8967622 DOI: 10.34067/kid.0006512020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Justin M. Belcher
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut,Divison of Nephrology, Department of Medicine, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
14
|
Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 2021; 11:biom11040589. [PMID: 33923744 PMCID: PMC8072688 DOI: 10.3390/biom11040589] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Heme-oxygenase is the enzyme responsible for degradation of endogenous iron protoporphyirin heme; it catalyzes the reaction’s rate-limiting step, resulting in the release of carbon monoxide (CO), ferrous ions, and biliverdin (BV), which is successively reduced in bilirubin (BR) by biliverdin reductase. Several studies have drawn attention to the controversial role of HO-1, the enzyme inducible isoform, pointing out its implications in cancer and other diseases development, but also underlining the importance of its antioxidant activity. The contribution of HO-1 in redox homeostasis leads to a relevant decrease in cells oxidative damage, which can be reconducted to its cytoprotective effects explicated alongside other endogenous mechanisms involving genes like TIGAR (TP53-induced glycolysis and apoptosis regulator), but also to the therapeutic functions of heme main transformation products, especially carbon monoxide (CO), which has been shown to be effective on GSH levels implementation sustaining body’s antioxidant response to oxidative stress. The aim of this review was to collect most of the knowledge on HO-1 from literature, analyzing different perspectives to try and put forward a hypothesis on revealing yet unknown HO-1-involved pathways that could be useful to promote development of new therapeutical strategies, and lay the foundation for further investigation to fully understand this important antioxidant system.
Collapse
|
15
|
Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants (Basel) 2021; 10:antiox10020177. [PMID: 33530574 PMCID: PMC7911872 DOI: 10.3390/antiox10020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.
Collapse
|
16
|
Pawlik-Sobecka L, Sołkiewicz K, Kokot I, Kiraga A, Płaczkowska S, Schlichtinger AM, Kratz EM. The Influence of Serum Sample Storage Conditions on Selected Laboratory Parameters Related to Oxidative Stress: A Preliminary Study. Diagnostics (Basel) 2020; 10:diagnostics10010051. [PMID: 31963920 PMCID: PMC7168228 DOI: 10.3390/diagnostics10010051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/25/2023] Open
Abstract
The present work aims at accessing the stability of biological material stored for diagnostic and scientific purposes. The influence of the temperature, storage time, and cyclic thawing on concentration stability of selected oxidative stress parameters in human serum was investigated. The study group consisted of 20 serum samples collected from healthy volunteers aged 18–52. The parameters whose reference ranges were not determined and to which validated determination methods did not correspond were examined by manual methods (FRAP and AOPP). Automatic methods were used to determine routine laboratory tests (albumin, total protein, bilirubin, uric acid) using the Konelab 20i® analyzer. The samples were stored at various temperatures (room temperature, 4 °C, −20 °C, −80 °C) for max 6 months and were subjected to cyclic thawing at 1 month intervals. In order to check whether any differences between the concentrations of the studied parameters existed when the samples were stored in various conditions, the paired Student t-test or Wilcoxon test and comparison to desirable bias were applied. Based on the obtained results, it was found that the temperature and time of serum sample storage significantly affected the stability of the analyzed parameters and determined different shelf lives of serum samples for oxidative stress examination. Therefore, continuing the investigation concerning the impact of storage conditions on various serum parameters seems justified due to the discrepancy between the individual results obtained by different researchers and the inconsistencies between the results of scientific research and the applicable recommendations.
Collapse
Affiliation(s)
- Lilla Pawlik-Sobecka
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, 51-618 Wroclaw, Poland;
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211a, 50-556 Wroclaw, Poland; (I.K.); (A.K.); (E.M.K.)
- Correspondence: ; Tel.: +48-71-784-0160; Fax: +48-71-784-0154
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211a, 50-556 Wroclaw, Poland; (I.K.); (A.K.); (E.M.K.)
| | - Aleksandra Kiraga
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211a, 50-556 Wroclaw, Poland; (I.K.); (A.K.); (E.M.K.)
| | - Sylwia Płaczkowska
- Diagnostics Laboratory for Teaching and Research, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211a, 50-556 Wroclaw, Poland;
| | - Agnieszka Matylda Schlichtinger
- Faculty of Physics and Astronomy, Institute of Theoretical Physics, University of Wroclaw pl. M. Borna 9, 50-204 Wroclaw, Poland;
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211a, 50-556 Wroclaw, Poland; (I.K.); (A.K.); (E.M.K.)
| |
Collapse
|
17
|
Why some organ allografts are tolerated better than others: new insights for an old question. Curr Opin Organ Transplant 2020; 24:49-57. [PMID: 30516578 DOI: 10.1097/mot.0000000000000594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.
Collapse
|
18
|
On the Role of Illness Duration and Nutrient Restriction in Cholestatic Alterations that Occur During Critical Illness. Shock 2019; 50:187-198. [PMID: 29076974 PMCID: PMC6039378 DOI: 10.1097/shk.0000000000001001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text Background and Aims: Elevated markers of cholestasis are common in response to critical illness, and associated with adverse outcome. The role of illness duration and of nutrient restriction on underlying molecular pathways of such cholestatic responses have not been thoroughly investigated. Methods: In a mouse model of surgery- and sepsis-induced critical illness, molecular pathways of cholestasis were investigated up to 7 days. To assess which changes are explained by illness-induced lack of feeding, nutrient-restricted healthy mice were studied and compared with ad libitum fed healthy mice. Furthermore, serum bile acid (BA) concentrations were quantified in 1,114 human patients with either short or long intensive care unit (ICU) stay, matched for type and severity of illness, up to ICU-day-7. Results: In critically ill mice, either evoked by surgery or sepsis, circulating and hepatic BA-levels progressively increased with time from day-3 onward, preceded by unsuppressed or upregulated CYP7A1 and CYP27A1 protein expression. From 30 h onward, nuclear farnesoid-X-receptor-retinoid-X-receptor staining was significantly suppressed in both critically ill groups, followed from day-3 onward by decreased gene expression of the apical exporter BA-specific export pump and increased expression of basolateral exporters multidrug resistance-associated protein 3 (MRP3) and MRP4. Nutrient restriction in healthy mice only partly mirrored illness-induced alterations in circulating BA and BA-transporters, without changing nuclear receptors or synthesis markers expression. Also in human critically ill patients, serum BA increased with time in long-stay patients only, similarly for patients with or without sepsis. Conclusions: Circulating BA concentrations rose days after onset of sepsis- and surgery-induced, critical illness, only partially explained by lack of feeding, preceded by suppressed nuclear feedback-sensors and ongoing BA synthesis. Expression of transporters suggested ongoing reversed BA-flow toward the blood.
Collapse
|
19
|
Affiliation(s)
- Terry D Hinds
- From the Department of Physiology and Pharmacology, University of Toledo College of Medicine, OH (T.D.H.)
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson (D.E.S.)
| |
Collapse
|
20
|
Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat. Clin Sci (Lond) 2019; 133:117-134. [PMID: 30538149 DOI: 10.1042/cs20180675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.
Collapse
|
21
|
Er Shen Wan extract alleviates polyuria and regulates AQP 2 and AVPR 2 in a rat model of spleen-kidney Yang deficiency-induced diarrhea. Biomed Pharmacother 2018; 110:302-311. [PMID: 30522016 DOI: 10.1016/j.biopha.2018.11.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Er Shen Wan (ESW), has been empirically used for treating spleen-kidney Yang deficiency (SKYD) syndrome in Traditional Chinese medicine (TCM) for centuries and shows a variety of activities. The medicinal formula is a mixture of two component herbs, Psoraleae Fructus (PF, Bu-Gu-Zhi in Chinese) and Myristicae Semen (MS, Rou-Dou-Kou in Chinese). The current study was designed to evaluate ESWP antidiuretic treatment of polyuria and to explore potential mechanisms of renal water metabolism in the rat model of SKYD-induced diarrhea. MATERIALS AND METHODS An animal model of 'SKYD-induced diarrhea syndrome' has been established to evaluate the therapeutic effect and action mechanism according to the clinical syndrome and symptoms. The optimal dose (3.5 g/kg) of ESWP was given to rats by gavage for two weeks. Urinary volumes after 24 h were recorded. After the end of the trial, macroscopic morphological and histological examination of the kidney were conducted. Serum levels of Arginine vasopressin (AVP) and aldosterone (ALD) were also measured. Additionally, quantitative real-time RT-PCR (RT-qPCR) and immunohistochemistry (IHC) analyses were performed to clarify the regulation of aquaporin 2 (AQP 2) and arginine vasopressin type 2 receptor (AVPR 2) in the kidney at the gene and tissue expression levels respectively. RESULTS After the administration of ESWP, urinary output volume after 24 h was found to be significantly decreased in rats. Elevated plasma levels of AVP and ALD were detected. Histological kidney damage appeared to be impeded, and histological disease scores were reduced. In addition, the expression levels of AQP 2 and AVPR 2 were significantly increased. CONCLUSION This study suggests that ESWP may elicit significant effects on the treatment of polyuria. Potential mechanisms at least partially involve hormone regulation, and alleviating renal pathological damage. Simultaneously, ESWP may alter renal water absorption by increasing AQP 2 and AVPR 2 expression levels. Thus, the in vivo experimental evidence indicates that ESWP has a therapeutic effect on the SKYD syndrome, which is consistent with its traditional usage.
Collapse
|
22
|
Prevalence and Prognostic Value of Abnormal Liver Test Results in Critically Ill Children and the Impact of Delaying Parenteral Nutrition. Pediatr Crit Care Med 2018; 19:1120-1129. [PMID: 30234740 PMCID: PMC6282934 DOI: 10.1097/pcc.0000000000001734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In the Early versus Late Parenteral Nutrition in the Pediatric ICU randomized controlled trial, delaying parenteral nutrition to beyond day 7 (late parenteral nutrition) was clinically superior to supplemental parenteral nutrition initiated within 24 hours (early parenteral nutrition), but resulted in a higher rise in bilirubin. We aimed to document prevalence and prognostic value of abnormal liver tests in the PICU and the impact hereon of withholding early parenteral nutrition. DESIGN Preplanned secondary analysis of the Early versus Late Parenteral Nutrition in the Pediatric ICU randomized controlled trial. Total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transpeptidase, alkaline phosphatase plasma concentrations were measured systematically in PICU. Liver test analyses were adjusted for baseline characteristics including severity of illness. SETTING Three PICUs in Belgium, the Netherlands, and Canada. PATIENTS As neonatal jaundice was considered a confounder, only the 1,231 of the 1,440 Early versus Late Parenteral Nutrition in the Pediatric ICU-patients 28 days to 17 years old were included. INTERVENTIONS Late parenteral nutrition as compared with early parenteral nutrition. MEASUREMENTS AND MAIN RESULTS During the first seven PICU days, the prevalence of cholestasis (> 2 mg/dL [34.2 μmol/L] bilirubin) ranged between 3.8% and 4.9% and of hypoxic hepatitis (≥ 20-fold upper limit of normality for alanine aminotransferase and aspartate aminotransferase) between 0.8% and 2.2%, both unaffected by the use of parenteral nutrition. Throughout the first week in PICU plasma bilirubin concentrations were higher in late parenteral nutrition patients (p < 0.05), but became comparable to early parenteral nutrition patients as soon as parenteral nutrition was started on day 8. Plasma concentrations of gamma-glutamyl transpeptidase, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were unaffected by parenteral nutrition. High day 1 plasma concentrations of gamma-glutamyl transpeptidase, alanine aminotransferase, and aspartate aminotransferase (p ≤ 0.01), but not alkaline phosphatase, were independent risk factors for PICU mortality. Day 1 plasma bilirubin concentrations displayed a U-shaped association with PICU mortality, with higher mortality associated with bilirubin less than 0.20 mg/dL and greater than 0.76 mg/dL (< 3.42 μmol/L and > 13 μmol/L) (p ≤ 0.01). CONCLUSIONS Overt cholestasis and hypoxic hepatitis were rare and unrelated to the nutritional strategy. However, withholding parenteral nutrition up to 1 week in PICU increased plasma bilirubin. A mild elevation of bilirubin on the first PICU day was associated with lower risk of death and may reflect a stress response, rather than true cholestasis.
Collapse
|
23
|
Febres Aldana CAF, Poppiti RJ. Cholangitis Lenta Causing Bile Cast Nephropathy: A Unique Model of Hepatorenal Failure in Sepsis. Fetal Pediatr Pathol 2018; 37:424-432. [PMID: 30351239 DOI: 10.1080/15513815.2018.1520945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Inadequate perfusion and abnormal cellular metabolism are among the mechanisms of organ dysfunction in sepsis. Concomitant hepatorenal failure during the late phase of sepsis is poorly understood. CASE REPORT The autopsy of a child who developed sepsis-induced hepatorenal failure revealed bile cast nephropathy, hepatic centrilobular necrosis and cholangitis lenta, a type of sepsis-induced cholestasis, with no biliary obstruction, fibrosis or cirrhosis. The liver and renal function declined at the same rate as procalcitonin increased. DISCUSSION Failure of resolution and persistent inflammation in sepsis can result in ductular injury and stagnation of bile with subsequent cholemia. The kidney failure was associated with the formation of intratubular bile casts. CONCLUSION This case illustrates how severe cholestasis in combination with bile cast nephropathy may be potential and unrecognized contributors to hepatorenal failure in sepsis. Whether bile toxicity causes renal failure in the context of cholangitis lenta should be further studied.
Collapse
Affiliation(s)
| | - Robert J Poppiti
- a Mount Sinai Medical Center, Arkadi M. Rywlin M.D. , Department of Pathology and Laboratory Medicine , Miami Beach , FL , USA.,b Herbert Wertheim College of Medicine , Florida International University , Miami , FL , USA
| |
Collapse
|
24
|
Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD. Bilirubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando) 2018; 32:234-240. [PMID: 29983261 PMCID: PMC6535229 DOI: 10.1016/j.trre.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
In patients with end-stage renal disease, kidney transplantation has been associated with numerous benefits, including increased daily activity, and better survival rates. However, over 20% of kidney transplants result in rejection within five years. Rejection is primarily due to a hypersensitive immune system and ischemia/reperfusion injury. Bilirubin has been shown to be a potent antioxidant that is capable of potentially reversing or preventing damage from reactive oxygen species generated from ischemia and reperfusion. Additionally, bilirubin has several immunomodulatory effects that can dampen the immune system to promote organ acceptance. Increased bilirubin has also been shown to have a positive impact on renal hemodynamics, which is critical post-transplantation. Lastly, bilirubin levels have been correlated with biomarkers of successful transplantation. In this review, we discuss a multitude of potentially beneficial effects that bilirubin has on kidney acceptance of transplantation based on numerous clinical trials and animal models. Exogenous bilirubin delivery or increasing endogenous levels pre- or post-transplantation may have therapeutic benefits.
Collapse
Affiliation(s)
- Vikram L Sundararaghavan
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Sivjot Binepal
- Internal Medicine Department, Kettering Medical Center, Kettering, OH 45429, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Puneet Sindhwani
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA
| | - Terry D Hinds
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| |
Collapse
|
25
|
Liu Y, Li M, Song Y, Liu X, Zhao J, Deng B, Peng A, Qin L. Association of serum bilirubin with renal outcomes in Han Chinese patients with chronic kidney disease. Clin Chim Acta 2018; 480:9-16. [PMID: 29408172 DOI: 10.1016/j.cca.2018.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/01/2018] [Accepted: 01/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Oxidative stress and inflammation play pivotal roles in chronic kidney disease (CKD). Bilirubin is an endogenous anti-inflammatory antioxidant. However, the relationship between serum bilirubin and renal outcomes in CKD is controversial. We explored the association of serum bilirubin levels with renal outcomes in Han Chinese patients with CKD. METHODS Clinical and laboratory data were collected from 316 patients with CKD. The primary clinical endpoint was renal replacement therapy or death. The association between serum bilirubin and clinical parameters was assessed by correlation analysis. Multiple Cox regression analysis was used to explore the relationship between serum bilirubin and renal outcomes in patients with CKD. RESULTS Serum total and indirect bilirubin were positively correlated with estimated glomerular filtration rate, but negatively correlated with 24-h urine protein in patients with CKD. Serum total and indirect bilirubin were inversely associated with CKD stages in patients with CKD stages 1-5. Multiple Cox regression analysis demonstrated that the higher concentration of serum total bilirubin was independently associated with better renal outcomes in CKD. CONCLUSIONS Our results suggest that serum total bilirubin may have protective effects on kidneys.
Collapse
Affiliation(s)
- Yan Liu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China; Department of Nephrology, Heze Municipal Hospital, 2888, West Caozhou Road, Shandong 274031, China
| | - Mengyuan Li
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Yaxiang Song
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Xinying Liu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Jian Zhao
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Bingqing Deng
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Ai Peng
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China
| | - Ling Qin
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301, Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
26
|
Askari H, Seifi B, Kadkhodaee M, Sanadgol N, Elshiekh M, Ranjbaran M, Ahghari P. Protective effects of hydrogen sulfide on chronic kidney disease by reducing oxidative stress, inflammation and apoptosis. EXCLI JOURNAL 2018; 17:14-23. [PMID: 29383015 PMCID: PMC5780625 DOI: 10.17179/excli2017-711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/16/2017] [Indexed: 12/21/2022]
Abstract
The current study aimed to examine the renoprotective effects of long-term treatment with sodium hydrosulfide (NaHS), a prominent hydrogen sulfide donor, in 5/6 nephrectomy animal model. Twenty-four rats were randomly divided into 3 groups including sham-operated group (Sham), 5/6-nephrectomized group (5/6 Nx), and NaHS-treated group (5/6Nx+NaHS). NaHS (30 micromol/l) was added twice daily into the drinking water and renal failure was induced by 5/6 nephrectomy. Twelve weeks after surgical procedure, blood pressure, creatinine clearance (CCr), urine concentration of neutrophil gelatinase associated lipocalin (NGAL) and tissue concentration of malondialdehyde (MDA), superoxide dismutase (SOD), as well as renal morphological changes, apoptosis (cleaved caspase-3) and inflammation (p-NF-κB) were measured. Five-sixth nephrectomy induced severe renal damage as indicated by renal dysfunction, hypertension and significant histopathological injury which were associated with increased NGAL and MDA levels, oxidant/antioxidant imbalance, decreased SOD activity and CCr and also overexpression of p-NF-κB and cleaved caspase-3 proteins. Instead, NaHS treatment attenuated renal dysfunction through reduction of NGAL concentration, hypertension, CCr, oxidant/antioxidant imbalance, inflammation and apoptosis. These findings suggest that long term NaHS treatment can be useful in preventing the progression of CKD by improving oxidant/antioxidant balance and reducing inflammation and apoptosis in the kidney.
Collapse
Affiliation(s)
- Hassan Askari
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.,Young Researchers and Elite Club, Zahedan Branch, Islamic Azad University, Zahedan, Iran
| | - Mohammed Elshiekh
- Department of Physiology, Faculty of Medicine, University of Dongola, Dongola, Sudan
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahghari
- Department of Physiology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| |
Collapse
|
27
|
Benito S, Sánchez-Ortega A, Unceta N, Andrade F, Aldámiz-Echevarria L, Goicolea MA, Barrio RJ. Untargeted metabolomics for plasma biomarker discovery for early chronic kidney disease diagnosis in pediatric patients using LC-QTOF-MS. Analyst 2018; 143:4448-4458. [DOI: 10.1039/c8an00864g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pediatric chronic kidney disease (CKD) is a clinical syndrome characterized by renal hypofunction occurring due to gradual and irreversible kidney damage that can further progress over time.
Collapse
Affiliation(s)
- S. Benito
- Department of Analytical Chemistry
- University of the Basque Country (UPV/EHU)
- Faculty of Pharmacy
- Paseo de la Universidad 7
- 01006 Vitoria-Gasteiz
| | - A. Sánchez-Ortega
- Central Service of Analysis (SGiker)
- University of the Basque Country (UPV/EHU)
- 01006 Vitoria-Gasteiz
- Spain
| | - N. Unceta
- Department of Analytical Chemistry
- University of the Basque Country (UPV/EHU)
- Faculty of Pharmacy
- Paseo de la Universidad 7
- 01006 Vitoria-Gasteiz
| | - F. Andrade
- Group of Metabolism
- BioCruces Health Research Institute
- CIBER de Enfermedades Raras (CIBERER)
- 48903 Barakaldo
- Spain
| | - L. Aldámiz-Echevarria
- Group of Metabolism
- BioCruces Health Research Institute
- CIBER de Enfermedades Raras (CIBERER)
- 48903 Barakaldo
- Spain
| | - M. A. Goicolea
- Department of Analytical Chemistry
- University of the Basque Country (UPV/EHU)
- Faculty of Pharmacy
- Paseo de la Universidad 7
- 01006 Vitoria-Gasteiz
| | - R. J. Barrio
- Department of Analytical Chemistry
- University of the Basque Country (UPV/EHU)
- Faculty of Pharmacy
- Paseo de la Universidad 7
- 01006 Vitoria-Gasteiz
| |
Collapse
|
28
|
Rosenzweig B, Rubinstein ND, Reznik E, Shingarev R, Juluru K, Akin O, Hsieh JJ, Jaimes EA, Russo P, Susztak K, Coleman JA, Hakimi AA. Benign and tumor parenchyma metabolomic profiles affect compensatory renal growth in renal cell carcinoma surgical patients. PLoS One 2017; 12:e0180350. [PMID: 28727768 PMCID: PMC5519040 DOI: 10.1371/journal.pone.0180350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/14/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pre-operative kidney volume is an independent predictor of glomerular filtration rate in renal cell carcinoma patients. Compensatory renal growth (CRG) can ensue prior to nephrectomy in parallel to tumor growth and benign parenchyma loss. We aimed to test whether renal metabolite abundances significantly associate with CRG, suggesting a causative relationship. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS Tissue metabolomics data from 49 patients, with a median age of 60 years, were previously collected and the pre-operative fold-change of their contra to ipsi-lateral benign kidney volume served as a surrogate for their CRG. Contra-lateral kidney volume fold-change within a 3.3 +/- 2.1 years follow-up interval was used as a surrogate for long-term CRG. Using a multivariable statistical model, we identified metabolites whose abundances significantly associate with CRG. RESULTS Our analysis found 13 metabolites in the benign (e.g. L-urobilin, Variable Influence in Projection, VIP, score = 3.02, adjusted p = 0.017) and 163 metabolites in the malignant (e.g. 3-indoxyl-sulfate, VIP score = 1.3, adjusted p = 0.044) tissues that significantly associate with CRG. Benign/tumor fold change in metabolite abundances revealed three additional metabolites with that significantly positively associate with CRG (e.g. p-cresol sulfate, VIP score = 2.945, adjusted p = 0.033). At the pathway level, we show that fatty-acid oxidation is highly enriched with metabolites whose benign tissue abundances strongly positively associate with CRG, both pre-operatively and long term, whereas in the tumor tissue significant enrichment of dipeptides and benzoate (positive association), glycolysis/gluconeogenesis, lysolipid and nucleotide sugar pentose (negative associations) sub-pathways, were observed. CONCLUSION These data suggest that specific biological processes in the benign as well as in the tumor parenchyma strongly influence compensatory renal growth.
Collapse
Affiliation(s)
- Barak Rosenzweig
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nimrod D. Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ed Reznik
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Roman Shingarev
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Krishna Juluru
- Body Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Oguz Akin
- Body Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - James J. Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Edgar A. Jaimes
- Renal Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jonathan A. Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (AAH); (JAC)
| | - A. Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail: (AAH); (JAC)
| |
Collapse
|
29
|
Park S, Kim DH, Hwang JH, Kim YC, Kim JH, Lim CS, Kim YS, Yang SH, Lee JP. Elevated bilirubin levels are associated with a better renal prognosis and ameliorate kidney fibrosis. PLoS One 2017; 12:e0172434. [PMID: 28225832 PMCID: PMC5321406 DOI: 10.1371/journal.pone.0172434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/04/2017] [Indexed: 12/23/2022] Open
Abstract
Background Bilirubin has been reported to protect against kidney injury. However, further studies highlighting the beneficial effects of bilirubin on renal fibrosis and chronic renal function decline are necessary. Methods We assessed a prospective cohort with a reference range of total bilirubin levels. The primary outcome was a 30% reduction in the estimated glomerular filtration rate (eGFR) from baseline, and the secondary outcome was a doubling of the serum creatinine levels, halving of the eGFR and the initiation of dialysis. In addition, experiments with tubular epithelial cells and C57BL/6 mice were performed to investigate the protective effects of bilirubin on kidney fibrosis. Results As a result, 1,080 patients were included in the study cohort. The study group with relative hyperbilirubinemia (total bilirubin 0.8–1.2 mg/dL) showed a better prognosis in terms of the primary outcome (adjusted hazard ratio (HR) 0.33, 95% confidence interval (CI) 0.19–0.59, P < 0.001) and the secondary outcome (adjusted HR 0.20, 95% CI 0.05 to 0.71, P = 0.01) than that of the control group. Moreover, the bilirubin-treated mice showed less fibrosis in the unilateral ureteral obstruction (UUO) model (P < 0.05). In addition, bilirubin treatment decreased fibronectin expression in tubular epithelial cells in a dose-dependent manner (P < 0.05). Conclusions Mildly elevated serum bilirubin levels were associated with better renal prognosis, and bilirubin treatment induced a beneficial effect on renal fibrosis. Therefore, bilirubin could be a potential therapeutic target to delay fibrosis-related kidney disease progression.
Collapse
Affiliation(s)
- Sehoon Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Do Hyoung Kim
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
| | - Jin Ho Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Yong-Chul Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Hyuk Kim
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yon Su Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (JPL); (SHY)
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, Korea
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (JPL); (SHY)
| |
Collapse
|
30
|
Zhang D, Zhu B, Zhang W, Wang W, Guo D, Yang L, Wang L. Total bilirubin level may be a biomarker of nephropathy in type 2 diabetes mellitus: A meta-analysis of observational studies based on MOOSE compliant. Medicine (Baltimore) 2017; 96:e5765. [PMID: 28072721 PMCID: PMC5228681 DOI: 10.1097/md.0000000000005765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, the number of the studies on the relationship between the total bilirubin level (TBL) and diabetic nephropathy (DN) is increasing, but their results were not consistent. Therefore, we performed a meta-analysis to analyze the relationship between TBL and the risk of DN.We searched 5 databases before October 31, 2016, and reviewed the reference list of relevant articles. The fixed or random-effects model was used to pool risk estimates. We conducted the dose-response meta-analysis to evaluate the relationship between TBL and the risk of DN.Our meta-analysis showed that TBL in the DN group was lower than that in diabetes without the kidney disease (NDN) group (standard mean difference [SMD]: -0.63, 95% CI: -0.80, -0.46). The result of each subgroup also showed that TBL in the DN group was lower than that in the NDN group. The result of meta-regression indicated that duration of diabetes mellitus might be the source of heterogeneity. Our meta-analysis also showed that there was a significant negative relationship between TBL and the risk of DN (OR: 0.86, 95%CI: 0.82, 0.90). The results of subgroup analysis were similar to those of SMD; no sources of heterogeneity were detected by meta-regression. Sensitivity analysis indicated that the results were robust. We observed a linear association between TBL and the risk of DN, and there was a negative dose-response association between TBL and the risk of DN.In conclusion, bilirubin may be used as a biomarker of DN. It helps early diagnosis and effective therapeutic strategies on DN.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| | - Bo Zhu
- Department of Cancer Prevention and Treatment, Cancer Hospital of China Medical University/ Liaoning Cancer Hospital & Institute Shenyang, People's Republic of China
| | - Wei Zhang
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| | - Wei Wang
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| | - Dan Guo
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| | - Ligang Yang
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| | - Lu Wang
- Department of Endocrinology, Fourth Hospital of China Medical University, Shenyang
| |
Collapse
|
31
|
Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine. ScientificWorldJournal 2016; 2016:2695718. [PMID: 27975080 PMCID: PMC5126435 DOI: 10.1155/2016/2695718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
The main aim of the study was to prove the compensative effect of intestine for renal function. Rat kidney was impaired by intragastrically administrating adenine (400 mg per day for 5 days). Intestinal tract was harvested and equally divided into 20 segments except cecum. Kidneys were harvested and histologically examined with hematoxylin-eosin staining kits. Uric acid, urea (BUN), and creatinine in serum were determined with assay kits, and BUN and creatinine in every intestinal segment were also determined. The results showed that adenine was able to increase uric acid level in serum from 20.98 ± 6.98 μg/mL to 40.77 ± 7.52 μg/mL and cause renal function damage with BUN (from 3.87 ± 0.62 mM to 12.33 ± 3.27 mM) and creatinine (from 51.48 ± 6.98 μM to 118.25 ± 28.63 μM) increasing in serum and with abnormally micromorphological changes in kidney. The amount of BUN and creatinine distributed in intestinal tract was positively correlated with those in blood. In impaired renal function rats, the amount of BUN (from 4.26 ± 0.21 μMole to 10.72 ± 0.55 μMole) and creatinine (from 681.4 ± 23.3 nMole to 928.7 ± 21.3 nMole) distributed in intestinal tract significantly increased. All the results proved that intestinal tract had excretory function compensative for renal function.
Collapse
|
32
|
Francoz C, Nadim MK, Durand F. Kidney biomarkers in cirrhosis. J Hepatol 2016; 65:809-824. [PMID: 27238754 DOI: 10.1016/j.jhep.2016.05.025] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
Abstract
Impaired renal function due to acute kidney injury (AKI) and/or chronic kidney diseases (CKD) is frequent in cirrhosis. Recurrent episodes of AKI may occur in end-stage cirrhosis. Differential diagnosis between functional (prerenal and hepatorenal syndrome) and acute tubular necrosis (ATN) is crucial. The concept that AKI and CKD represent a continuum rather than distinct entities, is now emerging. Not all patients with AKI have a potential for full recovery. Precise evaluation of kidney function and identification of kidney changes in patients with cirrhosis is central in predicting reversibility. This review examines current biomarkers for assessing renal function and identifying the cause and mechanisms of impaired renal function. When CKD is suspected, clearance of exogenous markers is the reference to assess glomerular filtration rate, as creatinine is inaccurate and cystatin C needs further evaluation. Recent biomarkers may help differentiate ATN from hepatorenal syndrome. Neutrophil gelatinase-associated lipocalin has been the most extensively studied biomarker yet, however, there are no clear-cut values that differentiate each of these conditions. Studies comparing ATN and hepatorenal syndrome in cirrhosis, do not include a gold standard. Combinations of innovative biomarkers are attractive to identify patients justifying simultaneous liver and kidney transplantation. Accurate biomarkers of underlying CKD are lacking and kidney biopsy is often contraindicated in this population. Urinary microRNAs are attractive although not definitely validated. Efforts should be made to develop biomarkers of kidney fibrosis, a common and irreversible feature of CKD, whatever the cause. Biomarkers of maladaptative repair leading to irreversible changes and CKD after AKI are also promising.
Collapse
Affiliation(s)
- Claire Francoz
- Hepatology and Liver Intensive Care, Hospital Beaujon, Clichy, France; University Paris VII Diderot, Paris, France; INSERM U1149, Paris, France; Département Hospitalo-Universitaire UNITY, Clichy, France.
| | - Mitra K Nadim
- Division of Nephrology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - François Durand
- Hepatology and Liver Intensive Care, Hospital Beaujon, Clichy, France; University Paris VII Diderot, Paris, France; INSERM U1149, Paris, France; Département Hospitalo-Universitaire UNITY, Clichy, France
| |
Collapse
|
33
|
Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells. Sci Rep 2016; 6:29240. [PMID: 27381978 PMCID: PMC4933905 DOI: 10.1038/srep29240] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/14/2016] [Indexed: 01/16/2023] Open
Abstract
Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9-1.5 pmol mg(-1) protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3-5 pmol mg(-1) protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5-13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function.
Collapse
|