1
|
Radhakrishnan V, Kaifi JT, Suvilesh KN. Circulating Tumor Cells: How Far Have We Come with Mining These Seeds of Metastasis? Cancers (Basel) 2024; 16:816. [PMID: 38398206 PMCID: PMC10887304 DOI: 10.3390/cancers16040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that slough off from the tumor and circulate in the peripheral blood and lymphatic system as micro metastases that eventually results in macro metastases. Through a simple blood draw, sensitive CTC detection from clinical samples has proven to be a useful tool for determining the prognosis of cancer. Recent technological developments now make it possible to detect CTCs reliably and repeatedly from a simple and straightforward blood test. Multicenter trials to assess the clinical value of CTCs have demonstrated the prognostic value of these cancer cells. Studies on CTCs have filled huge knowledge gap in understanding the process of metastasis since their identification in the late 19th century. However, these rare cancer cells have not been regularly used to tailor precision medicine and or identify novel druggable targets. In this review, we have attempted to summarize the milestones of CTC-based research from the time of identification to molecular characterization. Additionally, the need for a paradigm shift in dissecting these seeds of metastasis and the possible future avenues to improve CTC-based discoveries are also discussed.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
| | - Jussuf T. Kaifi
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Kanve N. Suvilesh
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA; (V.R.); (J.T.K.)
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
2
|
Setiawan L, Setiabudy R, Kresno SB, Sutandyo N, Syahruddin E, Jovianti F, Nadliroh S, Mubarika S, Setiabudy R, Siregar NC. Circulating miR-10b, soluble urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 as predictors of non-small cell lung cancer progression and treatment response. Cancer Biomark 2024; 39:137-153. [PMID: 38073374 PMCID: PMC11002724 DOI: 10.3233/cbm-220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Despite advances in lung cancer treatment, most lung cancers are diagnosed at an advanced stage. Expression of microRNA10b (miR-10b) and fibrinolytic activity, as reflected by soluble urokinase-type plasminogen activator receptor (suPAR) and plasminogen activator inhibitor 1 (PAI-1), are promising biomarker candidates. OBJECTIVE To assess the expression of miR-10b, and serum levels of suPAR and PAI-1 in advanced stage non-small cell lung cancer (NSCLC) patients, and their correlation with progression, treatment response and prognosis. METHODS The present prospective cohort and survival study was conducted at Dharmais National Cancer Hospital and included advanced stage NSCLC patients diagnosed between March 2015 and September 2016. Expression of miR-10b was quantified using qRT-PCR. Levels of suPAR and PAI-1 were assayed using ELISA. Treatment response was evaluated using the RECIST 1.1 criteria. Patients were followed up until death or at least 1 year after treatment. RESULTS Among the 40 patients enrolled, 25 completed at least four cycles of chemotherapy and 15 patients died during treatment. Absolute miR-10b expression ⩾ 592,145 copies/μL or miR-10b fold change ⩾ 0.066 were protective for progressive disease and poor treatment response, whereas suPAR levels ⩾ 4,237 pg/mL was a risk factor for progressive disease and poor response. PAI-1 levels > 4.6 ng/mL was a protective factor for poor response. Multivariate analysis revealed suPAR as an independent risk factor for progression (ORadj, 13.265; 95% confidence intervals (CI), 2.26577.701; P= 0.006) and poor response (ORadj, 15.609; 95% CI, 2.221-109.704; P= 0.006), whereas PAI-1 was an independent protective factor of poor response (ORadj, 0.127; 95% CI, 0.019-0.843; P= 0.033). CONCLUSIONS Since miR-10b cannot be used as an independent risk factor for NSCLC progression and treatment response, we developed a model to predict progression using suPAR levels and treatment response using suPAR and PAI-1 levels. Further studies are needed to validate this model.
Collapse
Affiliation(s)
- Lyana Setiawan
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Rahajuningsih Setiabudy
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Siti Boedina Kresno
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Elisna Syahruddin
- Department of Pulmonology, Faculty of Medicine, University of Indonesia/Persahabatan General Hospital, Jakarta, Indonesia
| | | | | | - Sofia Mubarika
- Department of Histology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Nurjati C. Siregar
- Department of Anatomical Pathology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
3
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? Int J Mol Sci 2022; 23:12141. [PMID: 36292996 PMCID: PMC9603393 DOI: 10.3390/ijms232012141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Metastatic breast cancer (MBC) is typically an incurable disease with high mortality rates; thus, early identification of metastatic features and disease recurrence through precise biomarkers is crucial. Circulating tumor cells (CTCs) consisting of heterogeneous subpopulations with different morphology and genetic, epigenetic, and gene expression profiles represent promising candidate biomarkers for metastatic potential. The experimentally verified role of epithelial-to-mesenchymal transition in cancer dissemination has not been clearly described in BC patients, but the stemness features of CTCs strongly contributes to metastatic potency. Single CTCs have been shown to be protected in the bloodstream against recognition by the immune system through impaired interactions with T lymphocytes and NK cells, while associations of heterotypic CTC clusters with platelets, leucocytes, neutrophils, tumor-associated macrophages, and fibroblasts improve their tumorigenic behavior. In addition to single CTC and CTC cluster characteristics, we reviewed CTC evaluation methods and clinical studies in early and metastatic BCs. The variable CTC tests were developed based on specific principles and strategies. However, CTC count and the presence of CTC clusters were shown to be most clinically relevant in existing clinical trials. Despite the known progress in CTC research and sampling of BC patients, implementation of CTCs and CTC clusters in routine diagnostic and treatment strategies still requires improvement in detection sensitivity and precise molecular characterizations, focused predominantly on the role of CTC clusters for their higher metastatic potency.
Collapse
|
5
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer 2022; 21:95. [PMID: 35379239 PMCID: PMC8978379 DOI: 10.1186/s12943-022-01506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.
Collapse
|
7
|
Circulating tumour cells in the -omics era: how far are we from achieving the 'singularity'? Br J Cancer 2022; 127:173-184. [PMID: 35273384 PMCID: PMC9296521 DOI: 10.1038/s41416-022-01768-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/27/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, cancer diagnosis has expanded to include liquid biopsies in addition to tissue biopsies. Liquid biopsies can result in earlier and more accurate diagnosis and more effective monitoring of disease progression than tissue biopsies as samples can be collected frequently. Because of these advantages, liquid biopsies are now used extensively in clinical care. Liquid biopsy samples are analysed for circulating tumour cells (CTCs), cell-free DNA, RNA, proteins and exosomes. CTCs originate from the tumour, play crucial roles in metastasis and carry information on tumour heterogeneity. Multiple single-cell omics approaches allow the characterisation of the molecular makeup of CTCs. It has become evident that CTCs are robust biomarkers for predicting therapy response, clinical development of metastasis and disease progression. This review describes CTC biology, molecular heterogeneity within CTCs and the involvement of EMT in CTC dynamics. In addition, we describe the single-cell multi-omics technologies that have provided insights into the molecular features within therapy-resistant and metastasis-prone CTC populations. Functional studies coupled with integrated multi-omics analyses have the potential to identify therapies that can intervene the functions of CTCs.
Collapse
|
8
|
Chedid J, Allam S, Chamseddine N, Bou Zerdan M, El Nakib C, Assi HI. Role of circulating tumor DNA and circulating tumor cells in breast cancer: History and updates. SAGE Open Med 2022; 10:20503121221077838. [PMID: 35223029 PMCID: PMC8874178 DOI: 10.1177/20503121221077838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Circulating tumor DNA, cell-free DNA, and circulating tumor cells have been at the epitome of recent research in breast cancer. These forms of liquid biopsies have been used in monitoring disease progression, estimating the risk of relapse, and response to treatment. Much has been done in relation to serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. Some studies have also explored their use in monitoring treatment response. As the field of liquid biopsies expands, more prospective studies are needed to tailor management in an individualistic approach. In this literature review, the authors explore the multiple uses of circulating tumor DNA and circulating tumor cells in breast cancer.
Collapse
Affiliation(s)
- Julien Chedid
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Sabine Allam
- Faculty of Medicine, University of Balamand, Beirut, Lebanon
| | - Nathalie Chamseddine
- Department of Obstetrics and Gynecology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hazem I Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
9
|
Yu T, Wang C, Xie M, Zhu C, Shu Y, Tang J, Guan X. Heterogeneity of CTC contributes to the organotropism of breast cancer. Biomed Pharmacother 2021; 137:111314. [PMID: 33581649 DOI: 10.1016/j.biopha.2021.111314] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Circulating tumor cells (CTCs) are viewed as pro-metastasis precursors shed from primary tumors or metastatic sites. The phenotypic and molecular heterogeneity of CTCs is associated with breast cancer progression and prognosis. Therefore, we divided CTCs into several subtypes according to their differences in biomarker status, epithelial/mesenchymal phenotype, aggregation status, and other factors to summarize their characteristics. Considering that the organ-specific metastasis is a hallmark of breast cancer, we adopted the "seed and soil" model to further analyze the relationship between the heterogeneity of CTCs and the organotropism of breast cancer. We speculated that CTCs might not only develop their genetic potential but communicate with surroundings, including chemokine systems, hemocytes, and extracellular matrix components, to regulate the organ-specific metastases of breast cancer.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Cenzhu Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Chengjun Zhu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
| | - Xiaoxiang Guan
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
10
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
11
|
Cortés-Hernández LE, Eslami-S Z, Pantel K, Alix-Panabières C. Molecular and Functional Characterization of Circulating Tumor Cells: From Discovery to Clinical Application. Clin Chem 2020; 66:97-104. [PMID: 31811001 DOI: 10.1373/clinchem.2019.303586] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND One of the objectives for the liquid biopsy is to become a surrogate to tissue biopsies in diagnosis of cancer as a minimally invasive method, with clinical utility in real-time follow-ups of patients. To achieve this goal, it is still necessary to achieve a better understanding of the mechanisms of cancer and the biological principles that govern its behavior, particularly with regard to circulating tumor cells (CTCs). CONTENT The isolation, enumeration, detection, and characterization of CTCs have already proven to provide relevant clinical information about patient prognosis and treatment prediction. Moreover, CTCs can be analyzed at the genome, proteome, transcriptome, and secretome levels and can also be used for functional studies in in vitro and in vivo models. These features, taken together, have made CTCs a very valuable biosource. SUMMARY To further advance the field and discover new clinical applications for CTCs, several studies have been performed to learn more about these cells and better understand the biology of metastasis. In this review, we describe the recent literature on the topic of liquid biopsy with particular focus on the biology of CTCs.
Collapse
Affiliation(s)
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
13
|
A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas. Cell Commun Signal 2020; 18:61. [PMID: 32276641 PMCID: PMC7146875 DOI: 10.1186/s12964-020-00550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. Conclusion The discovery that miR-10b mediates an aspect of cancer stemness – that of enhanced tumor cell adhesion, known to facilitate metastatic colonization – provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.
Collapse
|
14
|
Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med 2020; 12:31. [PMID: 32192534 PMCID: PMC7082968 DOI: 10.1186/s13073-020-00728-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.
| |
Collapse
|
15
|
Wang J, Yan Y, Zhang Z, Li Y. Role of miR-10b-5p in the prognosis of breast cancer. PeerJ 2019; 7:e7728. [PMID: 31579605 PMCID: PMC6756141 DOI: 10.7717/peerj.7728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Aberrant expression levels of miR-10b-5p in breast cancer has been reported while the molecular mechanism of miR-10b-5p in tumorigenesis remains elusive. Therefore, this study was aimed to investigate the role of miR-10b-5p in breast cancer and the network of its target genes using bioinformatics analysis. In this study, the expression profiles and prognostic value of miR-10b-5p in breast cancer were analyzed from public databases. Association between miR-10b-5p and clinicopathological parameters were analyzed by non-parametric test. Moreover, the optimal target genes of miR-10b-5p were obtained and their expression patterns were examined using starBase and HPA database. Additionally, the role of these target genes in cancer development were explored via Cancer Hallmarks Analytics Tool (CHAT). The protein–protein interaction (PPI) networks were constructed to further investigate the interactive relationships among these genes. Furthermore, GO, KEGG pathway and Reactome pathway analyses were carried out to decipher functions of these target genes. Results demonstrated that miR-10b-5p was down-regulated in breast cancer and low expression of miR-10b-5p was significantly correlated to worse outcome. Five genes, BIRC5, E2F2, KIF2C, FOXM1, and MCM5, were considered as potential key target genes of miR-10b-5p. As expected, higher expression levels of these genes were observed in breast cancer tissues than in normal tissues. Moreover, analysis from CHAT revealed that these genes were mainly involved in sustaining proliferative signaling in cancer development. In addition, PPI networks analysis revealed strong interactions between target genes. GO, KEGG, and Reactome pathway analysis suggested that these target genes of miR-10b-5p in breast cancer were significantly involved in cell cycle. Predicted target genes were further validated by qRT-PCR analysis in human breast cancer cell line MDA-MB-231 transfected with miR-10b mimic or antisense inhibitors. Taken together, our data suggest that miR-10b-5p functions to impede breast carcinoma progression via regulation of its key target genes and hopefully serves as a potential diagnostic and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Junmin Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yanyun Yan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhiqi Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yali Li
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
16
|
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol 2019; 16:409-424. [DOI: 10.1038/s41571-019-0187-3] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Profiling of Invasive Breast Carcinoma Circulating Tumour Cells-Are We Ready for the 'Liquid' Revolution? Cancers (Basel) 2019; 11:cancers11020143. [PMID: 30691008 PMCID: PMC6406427 DOI: 10.3390/cancers11020143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
As dissemination through blood and lymph is the critical step of the metastatic cascade, circulating tumour cells (CTCs) have attracted wide attention as a potential surrogate marker to monitor progression into metastatic disease and response to therapy. In patients with invasive breast carcinoma (IBC), CTCs are being considered nowadays as a valid counterpart for the assessment of known prognostic and predictive factors. Molecular characterization of CTCs using protein detection, genomic and transcriptomic panels allows to depict IBC biology. Such molecular profiling of circulating cells with increased metastatic abilities appears to be essential, especially after tumour resection, as well as in advanced disseminated disease, when information crucial for identification of therapeutic targets becomes unobtainable from the primary site. If CTCs are truly representative of primary tumours and metastases, characterization of the molecular profile of this easily accessible ‘biopsy’ might be of prime importance for clinical practice in IBC patients. This review summarizes available data on feasibility and documented benefits of monitoring of essential IBC biological features in CTCs, with special reference to multifactorial proteomic, genomic, and transcriptomic panels of known prognostic or predictive value.
Collapse
|
18
|
Sole C, Arnaiz E, Manterola L, Otaegui D, Lawrie CH. The circulating transcriptome as a source of cancer liquid biopsy biomarkers. Semin Cancer Biol 2019; 58:100-108. [PMID: 30684535 DOI: 10.1016/j.semcancer.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Non-invasive biomarkers or liquid biopsies have the potential to revolutionise cancer patient management as repeated sampling allows real-time monitoring of disease progression and response to treatment. This allows for earlier intervention and dynamic treatment management; both cornerstones of personalised medicine. The circulating transcriptome represents a rich source of potential cancer biomarkers that includes many classes of RNA, both coding and non-coding, that are only now beginning to be explored. In particular the increasing power and availability of RNAseq techniques have pushed studies beyond circulating miRNAs, to other classes of RNA including mRNA, snRNA, snoRNA, piRNA, YRNA, lncRNA and circRNA. In this review we focus on the emerging potential for these different classes of RNA as cancer biomarkers, and in particular the barriers and limitations that remain to be overcome if these molecules are to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Sole
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n, San Sebastián, 20014, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n, San Sebastián, 20014, Spain
| | - Lorea Manterola
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n, San Sebastián, 20014, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n, San Sebastián, 20014, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n, San Sebastián, 20014, Spain; Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
19
|
Kulasinghe A, Kenny L, Perry C, Thiery JP, Jovanovic L, Vela I, Nelson C, Punyadeera C. Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget 2018; 7:71223-71234. [PMID: 27655722 PMCID: PMC5342074 DOI: 10.18632/oncotarget.12086] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Background The ability to identify high risk head and neck cancer (HNC) patients with disseminated disease prior to presenting with clinically detectable metastases holds remarkable potential. A fraction of circulating tumour cells (CTCs) are invasive cancer cells which mediate metastasis by intravasation, survival and extravasation from the blood stream to metastatic sites. CTCs have been cleared by the FDA for use as surrogate markers of overall survival and progression free survival for breast, prostate and colorectal cancers using the CellSearch® system. However, the clinical significance of CTCs in head and neck cancer patients has yet to be determined. There has been a significant shift in CTC enrichment platforms, away from exclusively single marker selection, to epitope-independent systems. Methods The aim of this study was to screen advanced stage HNC patients by the CellSearch® platform and utilise two other epitope-independent approaches, ScreenCell® (microfiltration device) and RosetteSep™ (negative enrichment), to determine how a shift to such methodologies would enable CTC enrichment and detection. Results In advanced stage HNC patients, single CTCs were detected in 8/43 (18.6%) on CellSearch®, 13/28 (46.4%) on ScreenCell® and 16/25 (64.0%) by RosetteSep™ (the latter could also detect CTC clusters). Notably, in patients with suspicious lung nodules, too small to biopsy, CTCs were found upon presentation. Moreover, CTCs were readily detected in advanced stage HNC patients. Conclusion The epitope-independent platforms detected higher CTC numbers and clusters. Further studies are needed to ascertain whether CTCs can be used as independent prognostic markers for HNCs.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Chris Perry
- Department of Otolaryngology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jean-Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Ian Vela
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Department of Urology, Princess Alexandra Hospital, Wolloongabba, Queensland, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
20
|
Riethdorf S, O'Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 2018; 125:102-121. [PMID: 29355669 DOI: 10.1016/j.addr.2018.01.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The CellSearch® system (CS) enables standardized enrichment and enumeration of circulating tumor cells (CTCs) that are repeatedly assessable via non-invasive "liquid biopsy". While the association of CTCs with poor clinical outcome for cancer patients has clearly been demonstrated in numerous clinical studies, utilizing CTCs for the identification of therapeutic targets, stratification of patients for targeted therapies and uncovering mechanisms of resistance is still under investigation. Here, we comprehensively review the current benefits and drawbacks of clinical CTC analyses for patients with metastatic and non-metastatic tumors. Furthermore, the review focuses on approaches beyond CTC enumeration that aim to uncover therapeutically relevant antigens, genomic aberrations, transcriptional profiles and epigenetic alterations of CTCs at a single cell level. This characterization of CTCs may shed light on the heterogeneity and genomic landscapes of malignant tumors, an understanding of which is highly important for the development of new therapeutic strategies.
Collapse
|
21
|
Abraham J, Singh S, Joshi S. Liquid biopsy - emergence of a new era in personalized cancer care. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s41241-018-0053-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Turashvili G, Brogi E. Tumor Heterogeneity in Breast Cancer. Front Med (Lausanne) 2017; 4:227. [PMID: 29276709 PMCID: PMC5727049 DOI: 10.3389/fmed.2017.00227] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease and differs greatly among different patients (intertumor heterogeneity) and even within each individual tumor (intratumor heterogeneity). Clinical and morphologic intertumor heterogeneity is reflected by staging systems and histopathologic classification of breast cancer. Heterogeneity in the expression of established prognostic and predictive biomarkers, hormone receptors, and human epidermal growth factor receptor 2 oncoprotein is the basis for targeted treatment. Molecular classifications are indicators of genetic tumor heterogeneity, which is probed with multigene assays and can lead to improved stratification into low- and high-risk groups for personalized therapy. Intratumor heterogeneity occurs at the morphologic, genomic, transcriptomic, and proteomic levels, creating diagnostic and therapeutic challenges. Understanding the molecular and cellular mechanisms of tumor heterogeneity that are relevant to the development of treatment resistance is a major area of research. Despite the improved knowledge of the complex genetic and phenotypic features underpinning tumor heterogeneity, there has been only limited advancement in diagnostic, prognostic, or predictive strategies for breast cancer. The current guidelines for reporting of biomarkers aim to maximize patient eligibility for targeted therapy, but do not take into account intratumor heterogeneity. The molecular classification of breast cancer is not implemented in routine clinical practice. Additional studies and in-depth analysis are required to understand the clinical significance of rapidly accumulating data. This review highlights inter- and intratumor heterogeneity of breast carcinoma with special emphasis on pathologic findings, and provides insights into the clinical significance of molecular and cellular mechanisms of heterogeneity.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
23
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
24
|
Alix-Panabières C, Pantel K. Characterization of single circulating tumor cells. FEBS Lett 2017; 591:2241-2250. [DOI: 10.1002/1873-3468.12662] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH); Department of Cell and Tissue Biopathology of Tumors; University Medical Centre; Montpellier France
- EA2415 - Help for Personalized Decision: Methodological Aspects; University Institute of Clinical Research (IURC); Montpellier University; France
| | - Klaus Pantel
- Department of Tumor Biology; Center of Experimental Medicine; University Cancer Center Hamburg; Germany
| |
Collapse
|
25
|
Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin Cell Dev Biol 2017; 64:65-72. [DOI: 10.1016/j.semcdb.2016.08.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022]
|
26
|
Thiele JA, Bethel K, Králíčková M, Kuhn P. Circulating Tumor Cells: Fluid Surrogates of Solid Tumors. ANNUAL REVIEW OF PATHOLOGY 2017; 12:419-447. [PMID: 28135562 PMCID: PMC7846475 DOI: 10.1146/annurev-pathol-052016-100256] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
Collapse
Affiliation(s)
- J-A Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - K Bethel
- Scripps Clinic Medical Group, Scripps Clinic, La Jolla, California 92121
| | - M Králíčková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University in Prague, 301 00 Pilsen, Czech Republic
| | - P Kuhn
- Bridge Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089;
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
27
|
Leong SM, Tan KML, Chua HW, Huang MC, Cheong WC, Li MH, Tucker S, Koay ESC. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells. Clin Chem 2017; 63:731-741. [PMID: 28073899 DOI: 10.1373/clinchem.2016.264432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/08/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. METHODS Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA)® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. RESULTS We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. CONCLUSIONS Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses.
Collapse
Affiliation(s)
- Sai Mun Leong
- Department of Laboratory Medicine, NUH, Singapore, Singapore; .,Department of Pathology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | | | - Hui Wen Chua
- Department of Pathology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Mo-Chao Huang
- Department of Laboratory Medicine, NUH, Singapore, Singapore
| | | | | | - Steven Tucker
- Tucker Medical, Novena Specialist Center, Singapore, Singapore
| | - Evelyn Siew-Chuan Koay
- Department of Laboratory Medicine, NUH, Singapore, Singapore; .,Department of Pathology, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| |
Collapse
|
28
|
Swennenhuis JF, van Dalum G, Zeune LL, Terstappen LWMM. Improving the CellSearch® system. Expert Rev Mol Diagn 2016; 16:1291-1305. [PMID: 27797592 DOI: 10.1080/14737159.2016.1255144] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The CellSearch® CTC test enumerates tumor cells present in 7.5 ml blood of cancer patients. improvements, extensions and different utilities of the cellsearch system are discussed in this paper. Areas covered: This paper describes work performed with the CellSearch system, which go beyond the normal scope of the test. All results from searches with the search term 'CellSearch' from Web of Science and PubMed were categorized and discussed. Expert commentary: The CellSearch Circulating Tumor Cell test captures and identifies tumor cells in blood that are associated with poor clinical outcome. How to best use CTC in clinical practice is being explored in many clinical trials. The ability to extract information from the CTC to guide therapy will expand the potential clinical utility of CTC.
Collapse
Affiliation(s)
- J F Swennenhuis
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - G van Dalum
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L L Zeune
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L W M M Terstappen
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| |
Collapse
|
29
|
Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, Malamos N, Georgoulias V, Lianidou E. Direct Comparison of Metastasis-Related miRNAs Expression Levels in Circulating Tumor Cells, Corresponding Plasma, and Primary Tumors of Breast Cancer Patients. Clin Chem 2016; 62:1002-11. [DOI: 10.1373/clinchem.2015.253716] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Circulating tumor cells (CTCs) and microRNAs (miRNAs) are important in liquid biopsies in which peripheral blood is used to characterize the evolution of solid tumors. We evaluated the expression levels of miR-21, miR-146a, miR-200c, and miR-210 in CTCs of breast cancer patients with verified metastasis and compared their expression levels in corresponding plasma and primary tumors.
METHODS
Expression levels of the miRNAs were quantified by quantitative reverse transcription PCR (RT-qPCR) in (a) 89 primary breast tumors and 30 noncancerous breast tissues and (b) CTCs and corresponding plasma of 55 patients with metastatic breast cancer and 20 healthy donors. For 30 of these patients, CTCs, corresponding plasma, and primary tumor tissues were available.
RESULTS
In formalin-fixed, paraffin-embedded tissues, these miRNAs were differentially expressed between primary breast tumors and noncancerous breast tissues. miR-21 (P < 0.001) and miR-146a (P = 0.001) were overexpressed, whereas miR-200c (P = 0.004) and miR-210 (P = 0.002) were underexpressed. In multivariate analysis, miR-146a overexpression was significantly [hazard ratio 2.969 (1.231–7.157), P = 0.015] associated with progression-free survival. In peripheral blood, all miRNAs studied were overexpressed in both CTC and corresponding plasma. There was a significant association between miR-21 expression levels in CTCs and plasma for 36 of 55 samples (P = 0.008). In plasma, ROC curve analysis revealed that miR-21, miR-146a, and miR-210 could discriminate patients from healthy individuals.
CONCLUSIONS
Metastasis-related miRNAs are overexpressed in CTCs and corresponding plasma; miR-21 expression levels highly correlate in CTCs and plasma; and miR-21, miR-146a, and miR-210 are valuable plasma biomarkers for discriminating patients from healthy individuals.
Collapse
Affiliation(s)
- Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Martha Zavridou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Ioanna Sourvinou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - George Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sofia Kounelis
- Oncology Unit and Pathology Department, Helena Venizelou Hospital, Athens, Greece
| | - Nikos Malamos
- Oncology Unit and Pathology Department, Helena Venizelou Hospital, Athens, Greece
| | - Vasilis Georgoulias
- Department of Medical Oncology, University General Hospital of Heraklion, Heraklion, Greece
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
30
|
A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticity in prostate cancer. Oncogene 2016; 36:24-34. [PMID: 27270433 DOI: 10.1038/onc.2016.185] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
MicroRNA-375 (miR-375) is frequently elevated in prostate tumors and cell-free fractions of patient blood, but its role in genesis and progression of prostate cancer is poorly understood. In this study, we demonstrated that miR-375 is inversely correlated with epithelial-mesenchymal transition signatures (EMT) in clinical samples and can drive mesenchymal-epithelial transition (MET) in model systems. Indeed, miR-375 potently inhibited invasion and migration of multiple prostate cancer lines. The transcription factor YAP1 was found to be a direct target of miR-375 in prostate cancer. Knockdown of YAP1 phenocopied miR-375 overexpression, and overexpression of YAP1 rescued anti-invasive effects mediated by miR-375. Furthermore, transcription of the miR-375 gene was shown to be directly repressed by the EMT transcription factor, ZEB1. Analysis of multiple patient cohorts provided evidence for this ZEB1-miR-375-YAP1 regulatory circuit in clinical samples. Despite its anti-invasive and anti-EMT capacities, plasma miR-375 was found to be correlated with circulating tumor cells in men with metastatic disease. Collectively, this study provides new insight into the function of miR-375 in prostate cancer, and more broadly identifies a novel pathway controlling epithelial plasticity and tumor cell invasion in this disease.
Collapse
|
31
|
Alix-Panabières C, Pantel K. Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. Cancer Discov 2016; 6:479-91. [PMID: 26969689 DOI: 10.1158/2159-8290.cd-15-1483] [Citation(s) in RCA: 942] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED "Liquid biopsy" focusing on the analysis of circulating tumor cells (CTC) and circulating cell-free tumor DNA (ctDNA) in the blood of patients with cancer has received enormous attention because of its obvious clinical implications for personalized medicine. Analyses of CTCs and ctDNA have paved new diagnostic avenues and are, to date, the cornerstones of liquid biopsy diagnostics. The present review focuses on key areas of clinical applications of CTCs and ctDNA, including detection of cancer, prediction of prognosis in patients with curable disease, monitoring systemic therapies, and stratification of patients based on the detection of therapeutic targets or resistance mechanisms. SIGNIFICANCE The application of CTCs and ctDNA for the early detection of cancer is of high public interest, but it faces serious challenges regarding specificity and sensitivity of the current assays. Prediction of prognosis in patients with curable disease can already be achieved in several tumor entities, particularly in breast cancer. Monitoring the success or failure of systemic therapies (i.e., chemotherapy, hormonal therapy, or other targeted therapies) by sequential measurements of CTCs or ctDNA is also feasible. Interventional studies on treatment stratification based on the analysis of CTCs and ctDNA are needed to implement liquid biopsy into personalized medicine. Cancer Discov; 6(5); 479-91. ©2016 AACR.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), Department of Cellular and Tissular Biopathology of Tumors, University Medical Centre, Montpellier, France. EA2415 - Help for Personalized Decision, Methodological Aspects, University Institute of Clinical Research (IURC), Montpellier University, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|