1
|
Klangprapan J, Souza GR, Ferreira JN. Bioprinting salivary gland models and their regenerative applications. BDJ Open 2024; 10:39. [PMID: 38816372 PMCID: PMC11139920 DOI: 10.1038/s41405-024-00219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Salivary gland (SG) hypofunction is a common clinical condition arising from radiotherapy to suppress head and neck cancers. The radiation often destroys the SG secretory acini, and glands are left with limited regenerative potential. Due to the complex architecture of SG acini and ducts, three-dimensional (3D) bioprinting platforms have emerged to spatially define these in vitro epithelial units and develop mini-organs or organoids for regeneration. Due to the limited body of evidence, this comprehensive review highlights the advantages and challenges of bioprinting platforms for SG regeneration. METHODS SG microtissue engineering strategies such as magnetic 3D bioassembly of cells and microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes have been proposed to replace the damaged acinar units, avoid the use of xenogeneic matrices (like Matrigel), and restore salivary flow. RESULTS Replacing the SG damaged organ is challenging due to its complex architecture, which combines a ductal network with acinar epithelial units to facilitate a unidirectional flow of saliva. Our research group was the first to develop 3D bioassembly SG epithelial functional organoids with innervation to respond to both cholinergic and adrenergic stimulation. More recently, microtissue engineering using coaxial 3D bioprinting of hydrogel microfibers and microtubes could also supported the formation of viable epithelial units. Both bioprinting approaches could overcome the need for Matrigel by facilitating the assembly of adult stem cells, such as human dental pulp stem cells, and primary SG cells into micro-sized 3D constructs able to produce their own matrix and self-organize into micro-modular tissue clusters with lumenized areas. Furthermore, extracellular vesicle (EV) therapies from organoid-derived secretome were also designed and validated ex vivo for SG regeneration after radiation damage. CONCLUSION Magnetic 3D bioassembly and microfluidic coaxial bioprinting platforms have the potential to create SG mini-organs for regenerative applications via organoid transplantation or organoid-derived EV therapies.
Collapse
Affiliation(s)
- Jutapak Klangprapan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Glauco R Souza
- Greiner Bio-one North America Inc., 4238 Capital Drive, Monroe, NC, 28110, USA
| | - João N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Tangporncharoen R, Silathapanasakul A, Tragoonlugkana P, Pruksapong C, Tawonsawatruk T, Supokawej A. The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis. J Orthop Surg Res 2024; 19:255. [PMID: 38650022 PMCID: PMC11034088 DOI: 10.1186/s13018-024-04747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atiruj Silathapanasakul
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
3
|
Kamprom W, Tangporncharoen R, Vongthaiwan N, Tragoonlugkana P, Phetfong J, Pruksapong C, Supokawej A. Enhanced potent immunosuppression of intracellular adipose tissue-derived stem cell extract by priming with three-dimensional spheroid formation. Sci Rep 2024; 14:9084. [PMID: 38643332 PMCID: PMC11032398 DOI: 10.1038/s41598-024-59910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Immunomodulatory properties of mesenchymal stem cells are widely studied, supporting the use of MSCs as cell-based therapy in immunological diseases. This study aims to generate cell-free MSC extract and improves their immunomodulatory potential. Intracellular extracts were prepared from adipose-derived stem cells (ADSC) spheroid via a freeze-thawing method. The immunomodulatory capacities of ADSC spheroid extracts were investigated in vitro, including lymphocyte proliferation, T regulatory cell expansion, and macrophage assays. A comparative study was conducted with ADSC monolayer extract. The key immunomodulatory mediators presented in ADSC extract were identified. The results revealed that ADSC spheroid extract could suppress lymphocyte activation while enhancing T regulatory cell expansion. Immunomodulatory molecules such as COX-2, TSG-6, and TGF-β1 were upregulated in ADSC priming via spheroid culture. Selective inhibition of COX-2 abrogates the effect of ADSC extract on inducing T regulatory cell expansion. Thus, ADSC spheroid extract gains high efficacy in regulating the immune responses which are associated in part by COX-2 generation. Furthermore, ADSC spheroid extract possessed a potent anti-inflammation by manipulation of TNF-α production from LPS-activated macrophage. Our current study has highlighted the opportunity of using cell-free extracts from adipose tissue-derived mesenchymal stem cells spheroid as novel immunomodulators for the treatment of immunological-associated diseases.
Collapse
Affiliation(s)
- Witchayapon Kamprom
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Nuttapoom Vongthaiwan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Department of Surgery, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Upadhyay A, Tran SD. Stem cell therapy for salivary gland regeneration after radiation injury. Expert Opin Biol Ther 2023:1-6. [PMID: 37005338 DOI: 10.1080/14712598.2023.2199123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Akshaya Upadhyay
- McGill Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada, H3A0C7
| | - Simon D Tran
- McGill Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada, H3A0C7
| |
Collapse
|
5
|
Cell-Free Therapies: The Use of Cell Extracts to Mitigate Irradiation-Injured Salivary Glands. BIOLOGY 2023; 12:biology12020305. [PMID: 36829582 PMCID: PMC9953449 DOI: 10.3390/biology12020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Radiotherapy is a standard treatment for head and neck cancer patients worldwide. However, millions of patients who received radiotherapy consequently suffer from xerostomia because of irreversible damage to salivary glands (SGs) caused by irradiation (IR). Current treatments for IR-induced SG hypofunction only provide temporary symptom alleviation but do not repair the damaged SG, thus resulting in limited treatment efficacy. Therefore, there has recently been a growing interest in regenerative treatments, such as cell-free therapies. This review aims to summarize cell-free therapies for IR-induced SG, with a particular emphasis on utilizing diverse cell extract (CE) administrations. Cell extract is a group of heterogeneous mixtures containing multifunctional inter-cellular molecules. This review discusses the current knowledge of CE's components and efficacy. We propose optimal approaches to improve cell extract treatment from multiple perspectives (e.g., delivery routes, preparation methods, and other details regarding CE administration). In addition, the advantages and limitations of CE treatment are systematically discussed by comparing it to other cell-free (such as conditioned media and exosomes) and cell-based therapies. Although a comprehensive identification of the bioactive factors within CEs and their mechanisms of action have yet to be fully understood, we propose cell extract therapy as an effective, practical, user-friendly, and safe option to conventional therapies in IR-induced SG.
Collapse
|
6
|
Unbiased proteomic analysis detects painful systemic inflammatory profile in the serum of nerve-injured mice. Pain 2023; 164:e77-e90. [PMID: 35587992 PMCID: PMC9833115 DOI: 10.1097/j.pain.0000000000002695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Neuropathic pain is a complex, debilitating disease that results from injury to the somatosensory nervous system. The presence of systemic chronic inflammation has been observed in patients with chronic pain but whether it plays a causative role remains unclear. This study aims to determine the perturbation of systemic homeostasis by an injury to peripheral nerve and its involvement in neuropathic pain. We assessed the proteomic profile in the serum of mice at 1 day and 1 month after partial sciatic nerve injury (PSNL) or sham surgery. We also assessed mouse mechanical and cold sensitivity in naïve mice after receiving intravenous administration of serum from PSNL or sham mice. Mass spectrometry-based proteomic analysis revealed that PSNL resulted in a long-lasting alteration of serum proteome, where most of the differentially expressed proteins were in inflammation-related pathways, involving cytokines and chemokines, autoantibodies, and complement factors. Although transferring sham serum to naïve mice did not change their pain sensitivity, PSNL serum significantly lowered mechanical thresholds and induced cold hypersensitivity in naïve mice. With broad anti-inflammatory properties, bone marrow cell extracts not only partially restored serum proteomic homeostasis but also significantly ameliorated PSNL-induced mechanical allodynia, and serum from bone marrow cell extracts-treated PSNL mice no longer induced hypersensitivity in naïve mice. These findings clearly demonstrate that nerve injury has a long-lasting impact on systemic homeostasis, and nerve injury-associated systemic inflammation contributes to the development of neuropathic pain.
Collapse
|
7
|
Almansoori AA, Hariharan A, Cao UMN, Upadhyay A, Tran SD. Drug Therapeutics Delivery to the Salivary Glands: Intraglandular and Intraductal Injections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:119-130. [PMID: 36809639 DOI: 10.1007/5584_2023_765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Salivary gland hypofunction and xerostomia following pathological conditions like Sjogren's syndrome or head and neck radiotherapy usually lead to tremendous impairment of oral health, speech, and swallowing. The use of systemic drugs to alleviate the symptoms of these conditions has been associated with various adverse effects. Techniques of local drug delivery to the salivary gland have grown enormously to address this problem properly. The techniques include intraglandular and intraductal injections. In this chapter, we will provide a review of the literature for both techniques while incorporating our lab experience in using them.
Collapse
Affiliation(s)
- Akram Abdo Almansoori
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Uyen M N Cao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Chansaenroj A, Adine C, Charoenlappanit S, Roytrakul S, Sariya L, Osathanon T, Rungarunlert S, Urkasemsin G, Chaisuparat R, Yodmuang S, Souza GR, Ferreira JN. Magnetic bioassembly platforms towards the generation of extracellular vesicles from human salivary gland functional organoids for epithelial repair. Bioact Mater 2022; 18:151-163. [PMID: 35387159 PMCID: PMC8961305 DOI: 10.1016/j.bioactmat.2022.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022] Open
Abstract
Salivary glands (SG) are exocrine organs with secretory units commonly injured by radiotherapy. Bio-engineered organoids and extracellular vesicles (EV) are currently under investigation as potential strategies for SG repair. Herein, three-dimensional (3D) cultures of SG functional organoids (SGo) and human dental pulp stem cells (hDPSC) were generated by magnetic 3D bioassembly (M3DB) platforms. Fibroblast growth factor 10 (FGF10) was used to enrich the SGo in secretory epithelial units. After 11 culture days via M3DB, SGo displayed SG-specific acinar epithelial units with functional properties upon neurostimulation. To consistently develop 3D hDPSC in vitro, 3 culture days were sufficient to maintain hDPSC undifferentiated genotype and phenotype for EV generation. EV isolation was performed via sequential centrifugation of the conditioned media of hDPSC and SGo cultures. EV were characterized by nanoparticle tracking analysis, electron microscopy and immunoblotting. EV were in the exosome range for hDPSC (diameter: 88.03 ± 15.60 nm) and for SGo (123.15 ± 63.06 nm). Upon ex vivo administration, exosomes derived from SGo significantly stimulated epithelial growth (up to 60%), mitosis, epithelial progenitors and neuronal growth in injured SG; however, such biological effects were less distinctive with the ones derived from hDPSC. Next, these exosome biological effects were investigated by proteomic arrays. Mass spectrometry profiling of SGo exosomes predicted that cellular growth, development and signaling was due to known and undocumented molecular targets downstream of FGF10. Semaphorins were identified as one of the novel targets requiring further investigations. Thus, M3DB platforms can generate exosomes with potential to ameliorate SG epithelial damage.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Christabella Adine
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 119077, Singapore, Singapore
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sasitorn Rungarunlert
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ganokon Urkasemsin
- Department of Preclinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Glauco R. Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
- Nano3D Biosciences Inc., Houston, TX, 77030, USA
- Greiner Bio-One North America Inc, Monroe, NC, 28110, USA
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Dentistry, National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|
9
|
Su X, Liu Y, ElKashty O, Seuntjens J, Yamada K, Tran S. Human Bone Marrow Cell Extracts Mitigate Radiation Injury to Salivary Gland. J Dent Res 2022; 101:1645-1653. [PMID: 36408969 PMCID: PMC9693900 DOI: 10.1177/00220345221112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Mitigation of irradiation injury to salivary glands was previously reported using a cell-free extract from mouse bone marrow. However, to bring this potential therapy a step closer to clinical application, a human bone marrow cell extract (BMCE) needs to be tested. Here, we report that irradiation-induced injury of salivary glands in immunocompetent mice treated with human BMCE secreted 50% more saliva than saline-injected mice, and BMCE did not cause additional acute inflammatory reaction. In addition, to identify the cell fraction in BMCE with the most therapeutic activity, we sorted human bone marrow into 3 cell fractions (mononuclear, granulocyte, and red blood cells) and tested their respective cell extracts. We identified that the mononuclear cell extract (MCE) provided the best therapeutic efficacy. It increased salivary flow 50% to 73% for 16 wk, preserved salivary parenchymal and stromal cells, and doubled cell proliferation rates while producing less inflammatory response. In contrast, the cell extract of granulocytes was of shorter efficacy and induced an acute inflammatory response, while that from red blood cells was not therapeutically effective for salivary function. Several proangiogenic (MMP-8, MMP-9, VEGF, uPA) and antiangiogenic factors (TSP-1, PF4, TIMP-1, PAI-1) were identified in MCE. Added advantages of BMCE and MCE for potential clinical use were that cell extracts from both male and female donors were comparably bioactive and that cell extracts could be stored and transported much more conveniently than cells. These findings suggest human BMCE, specifically the MCE fraction, is a promising therapy against irradiation-induced salivary hypofunction.
Collapse
Affiliation(s)
- X. Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Sun Yat-sen University, Guanghua School of Stomatology, Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Y. Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - O. ElKashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - J. Seuntjens
- Gerald Bronfman Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - K.M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S.D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Biomimetic Aspects of Oral and Dentofacial Regeneration. Biomimetics (Basel) 2020; 5:biomimetics5040051. [PMID: 33053903 PMCID: PMC7709662 DOI: 10.3390/biomimetics5040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Biomimetic materials for hard and soft tissues have advanced in the fields of tissue engineering and regenerative medicine in dentistry. To examine these recent advances, we searched Medline (OVID) with the key terms “biomimetics”, “biomaterials”, and “biomimicry” combined with MeSH terms for “dentistry” and limited the date of publication between 2010–2020. Over 500 articles were obtained under clinical trials, randomized clinical trials, metanalysis, and systematic reviews developed in the past 10 years in three major areas of dentistry: restorative, orofacial surgery, and periodontics. Clinical studies and systematic reviews along with hand-searched preclinical studies as potential therapies have been included. They support the proof-of-concept that novel treatments are in the pipeline towards ground-breaking clinical therapies for orofacial bone regeneration, tooth regeneration, repair of the oral mucosa, periodontal tissue engineering, and dental implants. Biomimicry enhances the clinical outcomes and calls for an interdisciplinary approach integrating medicine, bioengineering, biotechnology, and computational sciences to advance the current research to clinics. We conclude that dentistry has come a long way apropos of regenerative medicine; still, there are vast avenues to endeavour, seeking inspiration from other facets in biomedical research.
Collapse
|
11
|
Kim JM, Choi ME, Kim SK, Kim JW, Kim YM, Choi JS. Keratinocyte Growth Factor-1 Protects Radioiodine-Induced Salivary Gland Dysfunction in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6322. [PMID: 32878050 PMCID: PMC7503708 DOI: 10.3390/ijerph17176322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Most patients with thyroid cancer suffer from salivary gland (SG) dysfunctions after radioiodine (RI) therapy. We investigated the effects of keratinocyte growth factor (KGF)-1 on RI-induced SG dysfunction in an animal model. METHODS Six C57BL/6 mice were assigned to each of the following groups: treatment naïve control group, RI group, and RI+KGF-1 group. Body and SG weights, salivary flow rates, salivary lag times and changes in 99mTc pertechnetate uptake and excretion were measured, and histologic changes were noted. Amylase activities and epidermal growth factor (EGF) concentrations in saliva were also measured. In addition, TUNEL assays were performed and apoptosis-related protein expressions were assessed. RESULTS RI-induced reductions in salivary flow rates and increases in salivary lag times observed in the RI group were not observed in RI+KGF-1 group. Mice in RI group had higher HIF1a levels than controls, but HIF1a levels in RI+KGF-1 group were similar to those in control group. Furthermore, mice in RI+KGF-1 group had more mucin stained acini and decreased periductal fibrosis than mice in RI group, and tissue remodeling of many salivary epithelial cells (AQP5) and endothelial cells (CD31) were observed in RI+KGF-1 group. Amylase activity and expression in saliva were greater in RI+KGF-1 group than in RI group, and fewer apoptotic cells were observed in RI+KGF-1 group. Furthermore, BCLxl (anti-apoptotic) expression was higher, and Bax (pro-apoptotic) expression was lower in RI+KGF-1 group than in RI group. CONCLUSIONS Local delivery of KGF-1 might prevent RI-induced SG damage by reducing apoptosis.
Collapse
Affiliation(s)
- Jeong Mi Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon 22332, Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Mi Eun Choi
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Seok-Ki Kim
- Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea;
| | - Ji Won Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Young-Mo Kim
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| | - Jeong-Seok Choi
- Translational Research Center, Inha University, Incheon 22332, Korea; (J.M.K.); (M.E.C.); (J.W.K.); (Y.-M.K.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon 22332, Korea
| |
Collapse
|
12
|
D’Agostino C, Elkashty OA, Chivasso C, Perret J, Tran SD, Delporte C. Insight into Salivary Gland Aquaporins. Cells 2020; 9:cells9061547. [PMID: 32630469 PMCID: PMC7349754 DOI: 10.3390/cells9061547] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The main role of salivary glands (SG) is the production and secretion of saliva, in which aquaporins (AQPs) play a key role by ensuring water flow. The AQPs are transmembrane channel proteins permeable to water to allow water transport across cell membranes according to osmotic gradient. This review gives an insight into SG AQPs. Indeed, it gives a summary of the expression and localization of AQPs in adult human, rat and mouse SG, as well as of their physiological role in SG function. Furthermore, the review provides a comprehensive view of the involvement of AQPs in pathological conditions affecting SG, including Sjögren's syndrome, diabetes, agedness, head and neck cancer radiotherapy and SG cancer. These conditions are characterized by salivary hypofunction resulting in xerostomia. A specific focus is given on current and future therapeutic strategies aiming at AQPs to treat xerostomia. A deeper understanding of the AQPs involvement in molecular mechanisms of saliva secretion and diseases offered new avenues for therapeutic approaches, including drugs, gene therapy and tissue engineering. As such, AQP5 represents a potential therapeutic target in different strategies for the treatment of xerostomia.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Osama A. Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, 35516 Mansoura, Egypt
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada; (O.A.E.); (S.D.T.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070 Brussels, Belgium; (C.D.); (C.C.); (J.P.)
- Correspondence: ; Tel.: +32-2-5556210
| |
Collapse
|
13
|
Su X, Liu Y, Bakkar M, ElKashty O, El-Hakim M, Seuntjens J, Tran SD. Labial Stem Cell Extract Mitigates Injury to Irradiated Salivary Glands. J Dent Res 2020; 99:293-301. [PMID: 31937182 DOI: 10.1177/0022034519898138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stem cell-based therapies could provide a permanent treatment for salivary gland (SG) hypofunction caused by ionizing radiation (IR) injury. However, current challenges for SG stem cells to reach the clinic include surgical invasiveness, amount of tissue needed, cell delivery, and storage methods. The objective of this study was to develop a clinically less invasive method to isolate and expand human SG stem cells and then to obtain a cell-free extract to be used as a therapy for IR-injured SGs. Human labial glands were biopsied, and labial stem cells (LSCs) were expanded by explant culture. The LSC extract (LSCE) was obtained by releasing the cellular components after 3 freeze-thaw cycles and 17,000g force centrifugation. LSCE was injected intravenously into mice that had their SGs injured with 13-Gy IR. Positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Three pieces of labial glands (0.1 g weight) could expand 1 to 2 million cells. LSCs had a doubling time of 18.8 h; could differentiate into osteocytes, adipocytes, and chondrocytes; and were positive for mesenchymal stem cell markers. Both angiogenic (FGF-1, FGF-2, KGF, angiopoietin, uPA, VEGF) and antiangiogenic factors (PAI-1, TIMP-1, TSP-1, CD26) were detected in LSCE. In addition, some angiogenic factors (PEDF, PTX3, VEGF) possessed neurotrophic functions. Mice treated with LSCE had 50% to 60% higher salivary flow rate than saline-treated mice at 8 and 12 wk post-IR. Saliva lag time measurements also confirmed that LSCE restored SG function. Histologic analyses of parotids and submandibular glands reported comparable numbers of acinar cells, blood vessels, and parasympathetic nerves and cell proliferation rates in sham IR and LSCE-treated mice, though significantly lower in saline-treated mice. An explant culture method can harvest a large number of LSCs from small pieces of labial glands. LSCE showed clinical potential to mitigate IR-injured SGs.
Collapse
Affiliation(s)
- X Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Y Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M Bakkar
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - O ElKashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M El-Hakim
- Department of Oral and Maxillofacial Surgery, McGill University, Montreal, QC, Canada
| | - J Seuntjens
- Gerald Bronfman Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - S D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Abughanam G, Elkashty OA, Liu Y, Bakkar MO, Tran SD. Mesenchymal Stem Cells Extract (MSCsE)-Based Therapy Alleviates Xerostomia and Keratoconjunctivitis Sicca in Sjogren's Syndrome-Like Disease. Int J Mol Sci 2019; 20:ijms20194750. [PMID: 31557796 PMCID: PMC6801785 DOI: 10.3390/ijms20194750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
Sjogren’s syndrome (SS) is an autoimmune disease that manifests primarily in salivary and lacrimal glands leading to dry mouth and eyes. Unfortunately, there is no cure for SS due to its complex etiopathogenesis. Mesenchymal stem cells (MSCs) were successfully tested for SS, but some risks and limitations remained for their clinical use. This study combined cell- and biologic-based therapies by utilizing the MSCs extract (MSCsE) to treat SS-like disease in NOD mice. We found that MSCsE and MSCs therapies were successful and comparable in preserving salivary and lacrimal glands function in NOD mice when compared to control group. Cells positive for AQP5, AQP4, α-SMA, CK5, and c-Kit were preserved. Gene expression of AQP5, EGF, FGF2, BMP7, LYZ1 and IL-10 were upregulated, and downregulated for TNF-α, TGF-β1, MMP2, CASP3, and IL-1β. The proliferation rate of the glands and serum levels of EGF were also higher. Cornea integrity and epithelial thickness were maintained due to tear flow rate preservation. Peripheral tolerance was re-established, as indicated by lower lymphocytic infiltration and anti-SS-A antibodies, less BAFF secretion, higher serum IL-10 levels and FoxP3+ Treg cells, and selective inhibition of B220+ B cells. These promising results opened new venues for a safer and more convenient combined biologic- and cell-based therapy.
Collapse
Affiliation(s)
- Ghada Abughanam
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Mohammed O Bakkar
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
15
|
Seo YJ, Lilliu MA, Abu Elghanam G, Nguyen TT, Liu Y, Lee JC, Presley JF, Zeitouni A, El-Hakim M, Tran SD. Cell culture of differentiated human salivary epithelial cells in a serum-free and scalable suspension system: The salivary functional units model. J Tissue Eng Regen Med 2019; 13:1559-1570. [PMID: 31151134 DOI: 10.1002/term.2908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 01/10/2023]
Abstract
Saliva aids in digestion, lubrication, and protection of the oral cavity against dental caries and oropharyngeal infections. Reduced salivary secretion, below an adequate level to sustain normal oral functions, is unfortunately experienced by head and neck cancer patients treated with radiotherapy and by patients with Sjögren's syndrome. No disease-modifying therapies exist to date to address salivary gland hypofunction (xerostomia, dry mouth) because pharmacotherapies are limited by the need for residual secretory acinar cells, which are lost at the time of diagnosis, whereas novel platforms such as cell therapies are yet immature for clinical applications. Autologous salivary gland primary cells have clinical utility as personalized cell therapies, if they could be cultured to a therapeutically useful mass while maintaining their in vivo phenotype. Here, we devised a serum-free scalable suspension culture system that grows partially digested human salivary tissue filtrates composing of acinar and ductal cells attached to their native extracellular matrix components while retaining their 3D in vivo spatial organization; we have coined these salivary spheroids as salivary functional units (SFU). The proposed SFU culture system was sub-optimal, but we have found that the cells could still survive and grow into larger salivary spheroids through cell proliferation and aggregation for 5 to 10 days within the oxygen diffusion rates in vitro. In summary, by using a less disruptive cell isolation procedure as the starting point for primary cell culture of human salivary epithelial cells, we demonstrated that aggregates of cells remained proliferative and continued to express acinar and ductal cell-specific markers.
Collapse
Affiliation(s)
- You Jung Seo
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Maria Alberta Lilliu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Ghada Abu Elghanam
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Anatomy and Histology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Thomas T Nguyen
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of periodontics, School of dentistry, University of Montreal, Montreal, QC, Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Jin Choon Lee
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan, South Korea
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anthony Zeitouni
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Michel El-Hakim
- Department of Oral and Maxillofacial Surgery, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Su X, Fang D, Liu Y, Ruan G, Seuntjens J, Kinsella JM, Tran SD. Lyophilized bone marrow cell extract functionally restores irradiation-injured salivary glands. Oral Dis 2018; 24:202-206. [PMID: 29480601 DOI: 10.1111/odi.12728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Bone marrow cell extract (BMCE) was previously reported to restore salivary gland hypofunction caused by irradiation injury. Proteins were shown to be the main active factors in BMCE. However, BMCE therapy requires multiple injections and protein denaturation is a concern during BMCE storage. This study aimed to preserve, by lyophilization (freeze-drying), the bioactive factors in BMCE. METHODS We developed a method to freeze-dry BMCE and then to analyze its ingredients and functions in vivo. Freeze-dried (FD) BMCE, freshly prepared BMCE (positive control), or saline (vehicle control) was injected into the tail vein of mice that had received irradiation to damage their salivary glands. RESULTS Results demonstrated that the presence of angiogenesis-related factors and cytokines in FD-BMCE remained comparable to those found in fresh BMCE. Both fresh and FD-BMCE restored comparably saliva secretion, increased cell proliferation, upregulated regenerative/repair genes, protected salivary acinar cells, parasympathetic nerves, and blood vessels from irradiation-damaged salivary glands. CONCLUSION Lyophilization of BMCE maintained its bioactivity and therapeutic effect on irradiation-injured salivary glands. The advantages of freeze-drying BMCE are its storage and transport at ambient temperature.
Collapse
Affiliation(s)
- X Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - D Fang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Y Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - G Ruan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - J Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, QC, Canada
| | - J M Kinsella
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - S D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Shin HS, Lee S, Kim YM, Lim JY. Hypoxia-Activated Adipose Mesenchymal Stem Cells Prevents Irradiation-Induced Salivary Hypofunction by Enhanced Paracrine Effect Through Fibroblast Growth Factor 10. Stem Cells 2018; 36:1020-1032. [PMID: 29569790 DOI: 10.1002/stem.2818] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/13/2022]
Abstract
To explore the effects and mechanisms of paracrine factors secreted from human adipose mesenchymal stem cell (hAdMSCs) that are activated by hypoxia on radioprotection against irradiation-induced salivary hypofunction in subjects undergoing radiotherapy for head and neck cancers. An organotypic spheroid coculture model to mimic irradiation (IR)-induced salivary hypofunction was set up for in vitro experiments. Human parotid gland epithelial cells were organized to form three-dimensional (3D) acinus-like spheroids on growth factor reduced -Matrigel. Cellular, structural, and functional damage following IR were examined after cells were cocultured with hAdMSCs preconditioned with either normoxia (hAdMSCNMX ) or hypoxia (hAdMSCHPX ). A key paracrine factor secreted by hAdMSCsHPX was identified by high-throughput microarray-based enzyme-linked immunosorbent assay. Molecular mechanisms and signaling pathways on radioprotection were explored. Therapeutic effects of hAdMSCsHPX were evaluated after in vivo transplant into mice with IR-induced salivary hypofunction. In our 3D coculture experiment, hAdMSCsHPX significantly enhanced radioresistance of spheroidal human parotid epithelial cells, and led to greater preservation of salivary epithelial integrity and acinar secretory function relative to hAdMSCsNMX . Coculture with hAdMSCsHPX promoted FGFR expression and suppressed FGFR diminished antiapoptotic activity of hAdMSCsHPX . Among FGFR-binding secreted factors, we found that fibroblast growth factor 10 (FGF10) contributed to therapeutic effects of hAdMSCsHPX by enhancing antiapoptotic effect, which was dependent on FGFR-PI3K signaling. An in vivo transplant of hAdMSCsHPX into irradiated salivary glands of mice reversed IR-induced salivary hypofunction where hAdMSC-released FGF10 contributed to tissue remodeling. Our results suggest that hAdMSCsHPX protect salivary glands from IR-induced apoptosis and preserve acinar structure and functions by activation of FGFR-PI3K signaling via actions of hAdMSC-secreted factors, including FGF10. Stem Cells 2018;36:1020-1032.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Songyi Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Fang D, Su X, Liu Y, Lee JC, Seuntjens J, Tran SD. Cell extracts from spleen and adipose tissues restore function to irradiation‐injured salivary glands. J Tissue Eng Regen Med 2017; 12:e1289-e1296. [DOI: 10.1002/term.2567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/24/2017] [Accepted: 09/01/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Dongdong Fang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Xinyun Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| | - Jin Choon Lee
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
- Department of Otorhinolaryngology‐Head and Neck SurgeryPusan National University School of Medicine Pusan Korea
| | - Jan Seuntjens
- Department of Oncology, Medical Physics UnitMcGill University Montreal Canada
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of DentistryMcGill University Montreal Canada
| |
Collapse
|
19
|
Fang D, Shang S, Liu Y, Bakkar M, Sumita Y, Seuntjens J, Tran SD. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation. J Tissue Eng Regen Med 2017; 12:e1195-e1205. [PMID: 28714550 DOI: 10.1002/term.2513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 03/07/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022]
Abstract
Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice.
Collapse
Affiliation(s)
- Dongdong Fang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Sixia Shang
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada.,Department of Stomatology, People's Hospital of Dongying, Dongying, China
| | - Younan Liu
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Mohammed Bakkar
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| | - Yoshinori Sumita
- Department of Regenerative Oral Surgery, Nagasaki University, Nagasaki, Japan
| | - Jan Seuntjens
- Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - Simon D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Identification of the protective mechanisms of Lactoferrin in the irradiated salivary gland. Sci Rep 2017; 7:9753. [PMID: 28852132 PMCID: PMC5575150 DOI: 10.1038/s41598-017-10351-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is commonly used in patients with head and neck cancer, and usually results in irreversible salivary glands damage and hypofunction. It is therefore important to manage such irradiation to prevent damage to the salivary glands. A previous study showed that Lactoferrin (LF) has a radioprotective effect, but the mechanism was not determined in salivary glands. In the present study, we investigated the detailed radioprotective effect of LF using both ex vivo submandibular salivary gland organ culture and ICR male mice in vivo. We found that LF had effects on both cell proliferation and CyclinD1-mediated cell-cycle progression which were regulated via the ERK1/2 and AKT signal transduction pathways. In addition, LF affected acinar cell structure and function after irradiation. These findings suggest that LF may be a useful agent to prevent irradiation effects in salivary glands.
Collapse
|
21
|
Comella K, Bell W. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study. Int Med Case Rep J 2017; 10:295-299. [PMID: 28860871 PMCID: PMC5566327 DOI: 10.2147/imcrj.s142514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) is a mixture of cells which can be isolated from a mini-lipoaspirate of fat tissue. Platelet-rich plasma (PRP) is a mixture of growth factors and other nutrients which can be obtained from peripheral blood. Adipose-derived stem/stromal cells (ADSCs) can be isolated from fat tissue and expanded in culture. The SVF includes a variety of different cells such as ADSCs, pericytes, endothelial/progenitor cells, and a mix of different growth factors. The adipocytes (fat cells) can be removed via centrifugation. Here, we describe the rationale and, to our knowledge, the first clinical implementation of SVF and PRP followed by repeat dosing of culture-expanded ADSCs into a patient with severe xerostomia postirradiation. METHODS Approximately 120 mLs of adipose tissue was removed via mini-lipoaspirate procedure under local anesthetic. The SVF was prepared from half of the fat and resuspended in PRP. The mixture was delivered via ultrasound directly into the submandibular and parotid glands on both the right and left sides. The remaining 60 mLs of fat was processed to culture-expand ADSCs. The patient received seven follow-up injections of the ADSCs plus PRP at 5, 8, 16, 18, 23, 28, and 31 months postliposuction. The subject was monitored over a period of 31 months for safety (adverse events), glandular size via ultrasound and saliva production. RESULTS Throughout the 31-month monitoring period, no safety events such as infection or severe adverse events were reported. The patient demonstrated an increase in gland size as measured by ultrasound which corresponded to increased saliva production. CONCLUSION Overall, the patient reported improved quality of life and willingness to continue treatments. The strong safety profile and preliminary efficacy results warrant larger studies to determine if this is a feasible treatment plan for patients postradiation.
Collapse
Affiliation(s)
| | - Walter Bell
- South African Stem Cell Institute, Parys, South Africa
| |
Collapse
|
22
|
Michel G, Blery P, Henoux M, Guicheux J, Weiss P, Brouard S, Malard O, Espitalier F. Bone marrow cell extract promotes the regeneration of irradiated bone. PLoS One 2017; 12:e0178060. [PMID: 28542343 PMCID: PMC5436862 DOI: 10.1371/journal.pone.0178060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mandibular osteoradionecrosis is a severe side effect of radiotherapy after the treatment of squamous cell carcinomas of the upper aerodigestive tract. As an alternative to its treatment by micro-anastomosed free-flaps, preclinical tissular engineering studies have been developed. Total bone marrow (TBM) associated with biphasic calcium phosphate (BCP) significantly enhanced bone formation in irradiated bone. One mechanism, explaining how bone marrow cells can help regenerate tissues like this, is the paracrine effect. The bone marrow cell extract (BMCE) makes use of this paracrine mechanism by keeping only the soluble factors such as growth factors and cytokines. It has provided significant results in repairing various tissues, but has not yet been studied in irradiated bone reconstruction. The purpose of this study was to evaluate the effect of BMCE via an intraosseous or intravenous delivery, with a calcium phosphate scaffold, in irradiated bone reconstruction. Twenty rats were irradiated on their hind limbs with a single 80-Gy dose. Three weeks later, surgery was performed to create osseous defects. The intraosseous group (n = 12) studied the effect of BMCE in situ, with six combinations (empty defect, BCP, TBM, BCP-TBM, lysate only, BCP-lysate). After four different combinations of implantation (empty defect, BCP, TBM, BCP-TBM), the intravenous group (n = 8) received four intravenous injections of BMCE for 2 weeks. Five weeks after implantation, samples were explanted for histological and scanning electron microscopy analysis. Lysate immunogenicity was studied with various mixed lymphocyte reactions. Intravenous injections of BMCE led to a significant new bone formation compared to the intraosseous group. The BCP-TBM mixture remained the most effective in the intraosseous group. However, intravenous injections were more effective, with TBM placed in the defect, with or without biomaterials. Histologically, highly cellularized bone marrow was observed in the defects after intravenous injections, and not after an in situ use of the lysate. The mixed lymphocyte reactions did not show any proliferation after 3, 5, or 7 days of lysate incubation with lymphocytes from another species. This study evaluated the role of BMCE in irradiated bone reconstruction. There were significant results arguing in favor of BMCE intravenous injections. This could open new perspectives to irradiated bone reconstruction.
Collapse
Affiliation(s)
- Guillaume Michel
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- * E-mail:
| | - Pauline Blery
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- Service d’Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire, Nantes, France
| | - Michaël Henoux
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Jérôme Guicheux
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Pierre Weiss
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
- Service d’Odontologie Restauratrice et Chirurgicale, Centre Hospitalier Universitaire, Nantes, France
| | - Sophie Brouard
- INSERM UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Olivier Malard
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| | - Florent Espitalier
- Service d'O.R.L. et de chirurgie cervico-faciale, Centre Hospitalier Universitaire, Nantes, France
- INSERM, UMRS 791, LIOAD, Université de Nantes, Nantes, France
| |
Collapse
|
23
|
Three-Dimensional Bioprinting Nanotechnologies towards Clinical Application of Stem Cells and Their Secretome in Salivary Gland Regeneration. Stem Cells Int 2016; 2016:7564689. [PMID: 28090208 PMCID: PMC5206456 DOI: 10.1155/2016/7564689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/23/2016] [Indexed: 01/23/2023] Open
Abstract
Salivary gland (SG) functional damage and severe dry mouth (or xerostomia) are commonly observed in a wide range of medical conditions from autoimmune to metabolic disorders as well as after radiotherapy to treat specific head and neck cancers. No effective therapy has been developed to completely restore the SG functional damage on the long-term and reverse the poor quality of life of xerostomia patients. Cell- and secretome-based strategies are currently being tested in vitro and in vivo for the repair and/or regeneration of the damaged SG using (1) epithelial SG stem/progenitor cells from salispheres or explant cultures as well as (2) nonepithelial stem cell types and/or their bioactive secretome. These strategies will be the focus of our review. Herein, innovative 3D bioprinting nanotechnologies for the generation of organotypic cultures and SG organoids/mini-glands will also be discussed. These bioprinting technologies will allow researchers to analyze the secretome components and extracellular matrix production, as well as their biofunctional effects in 3D mini-glands ex vivo. Improving our understanding of the SG secretome is critical to develop effective secretome-based therapies towards the regeneration and/or repair of all SG compartments for proper restoration of saliva secretion and flow into the oral cavity.
Collapse
|
24
|
Xerostomia: current streams of investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:53-60. [PMID: 27189896 DOI: 10.1016/j.oooo.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Xerostomia is the subjective feeling of dry mouth, and it is often related to salivary hypofunction. Besides medication-related salivary hypofunction, Sjögren syndrome and head-and-neck radiation are two common etiologies that have garnered considerable attention. Approaches to treating and/or preventing salivary hypofunction in patients with these conditions will likely incorporate gene therapy, stem cell therapy, and tissue engineering. Advances in these disciplines are central to current research in the cure for xerostomia and will be key to eventual treatment.
Collapse
|