1
|
Patel R, Park AY, Marchi E, Gropman AL, Whitehead MT, Lyon GJ. Ophthalmic manifestations of NAA10-related and NAA15-related neurodevelopmental syndromes: Analysis of cortical visual impairment and refractive errors. Am J Med Genet A 2024; 194:e63821. [PMID: 39012200 DOI: 10.1002/ajmg.a.63821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
NAA10-related (Ogden syndrome) and NAA15-related neurodevelopmental syndrome are known to present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. However, the ophthalmic manifestations of NAA10 and NAA15 variants are not yet fully characterized or understood. This study analyzed the prevalence of six ophthalmic conditions (cortical visual impairment, myopia, hyperopia, strabismus, nystagmus, and astigmatism) in 67 patients with pathogenic (P) or likely pathogenic (LP) variants in the NAA10 cohort (54 inherited, 10 de novo; 65 missense, 2 frameshift) and 19 patients with (L)P variants in the NAA15 cohort (18 de novo; 8 frameshift, 4 missense, 4 nonsense, and 1 splice site). Patients were interviewed virtually or in-person to collect a comprehensive medical history verified by medical records. These records were then analyzed to calculate the prevalence of these ophthalmic manifestations in each cohort. Analysis revealed a higher prevalence of ophthalmic conditions in our NAA10 cohort compared to existing literature (myopia 25.4% vs. 4.7%; astigmatism 37.3% vs. 13.2%; strabismus 28.4% vs. 3.8%; CVI 22.4% vs. 8.5%, respectively). No statistically significant differences were identified in the prevalence of these conditions between the NAA10 and NAA15 variants. Our study includes novel neuroimaging of 13 NAA10 and 5 NAA15 probands, which provides no clear correlation between globe size and severity of comorbid ophthalmic disease. Finally, anecdotal evidence was compiled to underscore the importance of early ophthalmologic evaluations and therapeutic interventions.
Collapse
Affiliation(s)
- Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Agnes Y Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Andrea L Gropman
- Department of Neurology, George Washington University, Washington, DC, USA
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew T Whitehead
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neurogenetics and Developmental Pediatrics, Children's National Health System, Washington, DC, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Saha S, Jain BP, Ghosh DK, Ranjan A. Conformational plasticity links structural instability of NAA10 F128I and NAA10 F128L mutants to their catalytic deregulation. Comput Struct Biotechnol J 2024; 23:4047-4063. [PMID: 39610905 PMCID: PMC11603127 DOI: 10.1016/j.csbj.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
The acetylation of proteins' N-terminal amino groups by the N-acetyltransferase complexes plays a crucial role in modulating the spatial stability and functional activities of diverse human proteins. Mutations disrupting the stability and function of NAA10 result in X-linked rare genetic disorders. In this study, we conducted a global analysis of the impact of fifteen disease-associated missense mutations in NAA10. The analyses revealed that mutations in specific residues, such as Y43, V107, V111, and F128, predictably disrupted interactions essential for NAA10 stability, while most mutations (except R79C, A111W, Q129P, and N178K) expectedly led to structural destabilization. Mutations in many conserved residues within short linear motifs and post-translational modification sites were predicted to affect NAA10 functionality and regulation. All mutations were classified as pathogenic, with F128I and F128L identified as the most destabilizing mutations. The findings show that the F128L and F128I mutations employ different mechanisms for the loss of catalytic activities of NAA10F128L and NAA10F128I due to their structural instability. These two mutations induce distinct folding energy states that differentially modulate the structures of different regions of NAA10F128L and NAA10F128I. Specifically, the predicted instability caused by the F128I mutation results in decreased flexibility within the substrate-binding region, impairing the substrate peptide binding ability of NAA10F128I. Conversely, F128L is predicted to reduce the flexibility of the region containing the acetyl-CoA binding residues in NAA10F128L. Our study provides insights into the mechanism of catalytic inactivation of mutants of NAA10, particularly elucidating the mechanistic features of the structural and functional pathogenicity of the F128L and F128I mutations.
Collapse
Affiliation(s)
- Smita Saha
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Wesely J, Rusielewicz T, Chen YR, Hartley B, McKenzie D, Yim MK, Maguire C, Bia R, Franklin S, Makwana R, Marchi E, Nikte M, Patil S, Sapar M, Moroziewicz D, Bauer L, Lee JT, Monsma FJ, Paull D, Lyon GJ. A repository of Ogden syndrome patient derived iPSC lines and isogenic pairs by X-chromosome screening and genome-editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.28.615067. [PMID: 39386428 PMCID: PMC11463393 DOI: 10.1101/2024.09.28.615067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes the enzyme NAA10, as the catalytic subunit for the N-terminal acetyltransferase A (NatA) complex, including the accessory protein, NAA15. The first human disease directly involving NAA10 was discovered in 2011, and it was named Ogden syndrome (OS), after the location of the first affected family residing in Ogden, Utah, USA. Since that time, other variants have been found in NAA10 and NAA15. Here we describe the generation of 31 iPSC lines, with 16 from females and 15 from males. This cohort includes CRISPR-mediated correction to the wild-type genotype in 4 male lines, along with editing one female line to generate homozygous wild-type or mutant clones. Following the monoclonalizaiton and screening for X-chromosome activation status in female lines, 3 additional pairs of female lines, in which either the wild type allele is on the active X chromosome (Xa) or the pathogenic variant allele is on Xa, have been generated. Subsets of this cohort have been successfully used to make cardiomyocytes and neural progenitor cells (NPCs). These cell lines are made available to the community via the NYSCF Repository.
Collapse
Affiliation(s)
- Josephine Wesely
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Tom Rusielewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Yu-Ren Chen
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Brigham Hartley
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dayna McKenzie
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Matthew K Yim
- Roseman University, South Jordan, Utah, United States of America
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Colin Maguire
- Clinical & Translational Research Core, Utah Clinical & Translational Research Institute, Salt Lake City, UT, United States of America
| | - Ryan Bia
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute (K.D., M.W.S., J.S.W., S.F.), University of Utah, Salt Lake City
| | - Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Manali Nikte
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Soha Patil
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Maria Sapar
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Dorota Moroziewicz
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Lauren Bauer
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frederick J Monsma
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY, United States of America
| | - Gholson J Lyon
- Roseman University, South Jordan, Utah, United States of America
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
4
|
Makwana R, Christ C, Marchi E, Harpell R, Lyon GJ. Longitudinal adaptive behavioral outcomes in Ogden syndrome by seizure status and therapeutic intervention. Am J Med Genet A 2024; 194:e63651. [PMID: 38747166 PMCID: PMC11315639 DOI: 10.1002/ajmg.a.63651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/28/2024]
Abstract
Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011 and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia, and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. The current study involves a total of 58 distinct participants; of these, 43 caregivers were interviewed using the Vineland-3 and answered a survey regarding therapy and other questions, 10 of whom completed the Vineland-3 but did not answer the survey, and 5 participants who answered the survey but have not yet performed the Vineland-3 due to language constraints. The average age at the time of the most recent assessment was 12.4 years, with individuals ranging in age from 11 months to 40.2 years. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome (n = 53). Sub-domain analysis found the decline to be present across all modalities. In addition, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. A therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy, with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status, and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
5
|
Roston TM, Bezzerides VJ, Roberts JD, Abrams DJ. Management of ultrarare inherited arrhythmia syndromes. Heart Rhythm 2024:S1547-5271(24)03142-4. [PMID: 39154872 DOI: 10.1016/j.hrthm.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Ultrarare inherited arrhythmia syndromes are increasingly diagnosed as a result of increased awareness as well as increased availability and reduced cost of genetic testing. Yet by definition, their rarity and heterogeneous expression make development of evidence-based management strategies more challenging, typically employing strategies garnered from similar genetic cardiac disorders. For the most part, reliance on anecdotal experiences, expert opinion, and small retrospective cohort studies is the only means to diagnose and to treat these patients. Here we review the management of specific ultrarare inherited arrhythmic syndromes together with the genetic and molecular basis, which will become increasingly important with the development of targeted therapies to correct the biologic basis of these disorders.
Collapse
Affiliation(s)
- Thomas M Roston
- Division of Cardiology and Centre for Cardiovascular Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vassilios J Bezzerides
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Bezzerides V, Yoshinaga D, Feng R, Prondzynski M, Shani K, Tharani Y, Mayourian J, Joseph M, Walker D, Bortolin R, Carreon C, Boss B, Upton S, Parker K, Pu W. Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy. RESEARCH SQUARE 2024:rs.3.rs-3398860. [PMID: 39070617 PMCID: PMC11275982 DOI: 10.21203/rs.3.rs-3398860/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
N-terminal-acetyltransferases including NAA10 catalyze N-terminal acetylation (Nt-acetylation), an evolutionarily conserved co-translational modification. Little is known about the role of Nt-acetylation in cardiac homeostasis. To gain insights, we studied a novel NAA10 variant (p.R4S) segregating with QT-prolongation, cardiomyopathy and developmental delay in a large kindred. Here we show that the NAA10-R4S mutation reduced enzymatic activity, decreased expression levels of NAA10/NAA15 proteins, and destabilized the enzymatic complex NatA. In NAA10R4S/Y-iPSC-CMs, dysregulation of the late sodium and slow rectifying potassium currents caused severe repolarization abnormalities, consistent with clinical QT prolongation. Engineered heart tissues generated from NAA10R4S/Y-iPSC-CMs had significantly decreased contractile force and sarcomeric disorganization, consistent with the pedigree's cardiomyopathic phenotype. We identified small molecule and genetic therapies that normalized the phenotype of NAA10R4S/Y-iPSC-CMs. Our study defines novel roles of Nt-acetylation in cardiac regulation and delineates mechanisms underlying QT prolongation, arrhythmia, and cardiomyopathy caused by NAA10 dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Shani
- Harvard School of Engineering and Applied Sciences
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Patel R, Makwana R, Christ C, Marchi E, Ung N, Harpell R, Miyake CY, Gropman AL, Lyon GJ, Whitehead MT. Neuroanatomical Features of NAA10- and NAA15-Related Neurodevelopmental Syndromes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309433. [PMID: 38978667 PMCID: PMC11230317 DOI: 10.1101/2024.06.24.24309433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background NAA10-related (Ogden Syndrome) and NAA15-related neurodevelopmental syndromes present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. While there is much data on the clinical manifestations of these conditions, there are few radiologic reports describing the neuroanatomical abnormalities present on imaging. Objective Our goal was to provide neuroimaging analyses for a subset of probands with NAA10- and NAA15-related neurodevelopmental symptoms and assess severity, common radiologic anomalies, and changes over time to better understand the pathophysiology of these disease processes. Materials and Methods Neuroimaging studies from 26 probands (18 with pathogenic variants in NAA10, 8 with pathogenic variants in NAA15) were collected and analyzed. Size of the cerebrum, brainstem, and cerebellum, as well as myelination, brain malformations, globus pallidus hyperintensity, brain lesions, 4th ventricle size, tegmentovermian angle, cisterna magna size, pituitary size, olfactory tract, palate arch, and choroid plexus abnormalities were analyzed. In depth medical histories were also collected on all probands, including genetic testing results and social, cognitive, and developmental history. The Vineland 3 Adaptive Behavior Scale was also administered to the parents to assess functional status of the probands. Results On average, individuals with Ogden Syndrome had 5.7 anatomical abnormalities (standard deviation (SD) = 3.0), whereas those with NAA15 related neurodevelopmental syndrome had 2.8 (SD = 2.3) (p = .02). Probands who had more anatomical abnormalities tended to score worse on Vineland assessments, suggesting a possible correlation between the two. Structural-functional anatomic differences seen were preserved such that individuals with greater defects on, for example, motor regions of their scans tested worse on motor portions of the Vineland. Probands followed longitudinally demonstrated several changes between scans, most commonly in the cerebellum, brainstem, and degree of myelination. Such changes were only observed for probands with NAA10 variants in our cohort. Conclusion Despite clinical imaging being reported as being predominantly "normal" during routine clinical care, this analysis of a cohort of patients with NAA10-related (Ogden Syndrome) and NAA15-related neurodevelopmental syndrome by one neuroradiologist has established a range of subtle abnormalities. We hope these findings guide future research and diagnostic studies for this patient population.
Collapse
Affiliation(s)
- Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Nathaniel Ung
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Christina Y. Miyake
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 6651 Main Street, Houston, TX 77003, USA
| | - Andrea L. Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children’s National Health System, Washington, DC, USA
- Department of Neurology, George Washington University, Washington, DC, US
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| | - Matthew T. Whitehead
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. PLoS One 2024; 19:e0301328. [PMID: 38713657 PMCID: PMC11075865 DOI: 10.1371/journal.pone.0301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| |
Collapse
|
9
|
Venezian J, Bar-Yosef H, Ben-Arie Zilberman H, Cohen N, Kleifeld O, Fernandez-Recio J, Glaser F, Shiber A. Diverging co-translational protein complex assembly pathways are governed by interface energy distribution. Nat Commun 2024; 15:2638. [PMID: 38528060 DOI: 10.1038/s41467-024-46881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
Collapse
Affiliation(s)
- Johannes Venezian
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Hagit Bar-Yosef
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | | | - Noam Cohen
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Haifa, Israel
| | - Ayala Shiber
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
| |
Collapse
|
10
|
Makwana R, Christ C, Marchi E, Harpell R, Lyon GJ. Longitudinal Adaptive Behavioral Outcomes in Ogden Syndrome by Seizure Status and Therapeutic Intervention. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.23.24303144. [PMID: 38585745 PMCID: PMC10996826 DOI: 10.1101/2024.02.23.24303144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011, and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. Additionally, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome. Sub-domain analysis found the decline to be present across all modalities. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. Therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy. with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
11
|
Patel R, Park AY, Marchi E, Gropman AL, Whitehead MT, Lyon GJ. Ophthalmic Manifestations of NAA10-Related and NAA15-Related Neurodevelopmental Syndrome: Analysis of Cortical Visual Impairment and Refractive Errors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24302161. [PMID: 38352572 PMCID: PMC10862986 DOI: 10.1101/2024.02.01.24302161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
NAA10-related and NAA15-related neurodevelopmental syndrome, otherwise known as Ogden Syndrome, is known to present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. However, the ophthalmic manifestations of NAA10 and NAA15 mutations are not yet fully characterized or understood. This study analyzed the prevalence of six ophthalmic conditions (cortical visual impairment, myopia, hyperopia, strabismus, nystagmus, and astigmatism) in 67 patients with pathogenic mutations in the NAA10 cohort (54 inherited, 10 de novo; 65 missense, 2 frameshift) and 19 patients with pathogenic mutations in the NAA15 cohort (18 de novo; 8 frameshift, 4 missense, 4 nonsense, and 1 splice site). Patients were interviewed virtually or in-person to collect a comprehensive medical history verified by medical records. These records were then analyzed to calculate the prevalence of these ophthalmic manifestations in each cohort. Analysis revealed a higher prevalence of ophthalmic conditions in our NAA10 cohort compared to existing literature (myopia 25.4% vs. 4.7%; astigmatism 37.3% vs. 13.2%; strabismus 28.4% vs. 3.8%; CVI 22.4% vs. 8.5%, respectively). No statistically significant differences were identified between the NAA10 and NAA15 mutations. Our study includes novel neuroimaging of 13 NAA10 and 5 NAA15 probands, which provides no clear correlation between globe size and severity of comorbid ophthalmic disease. Finally, anecdotal evidence was compiled to underscore the importance of early ophthalmologic evaluations and therapeutic interventions.
Collapse
Affiliation(s)
- Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Agnes Y. Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrea L. Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC, USA
- Department of Neurology, George Washington University, Washington, DC, US
| | - Matthew T. Whitehead
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
12
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538618. [PMID: 37163119 PMCID: PMC10168333 DOI: 10.1101/2023.04.27.538618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
13
|
Belbachir N, Wu Y, Shen M, Zhang SL, Zhang JZ, Liu C, Knollmann BC, Lyon GJ, Ma N, Wu JC. Studying Long QT Syndrome Caused by NAA10 Genetic Variants Using Patient-Derived Induced Pluripotent Stem Cells. Circulation 2023; 148:1598-1601. [PMID: 37956223 PMCID: PMC10697282 DOI: 10.1161/circulationaha.122.061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Affiliation(s)
- Nadjet Belbachir
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
| | - Yiyang Wu
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY (Y.W., G.J.L.)
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN (Y.W.)
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
| | - Sophia L. Zhang
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
| | - Joe Z. Zhang
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
- Greenstone Biosciences, Palo Alto, CA (C.L., J.C.W.)
| | - Bjorn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (B.C.K.)
| | - Gholson J. Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY (Y.W., G.J.L.)
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island (G.J.L.)
- Biology PhD Program, Graduate Center, City University of New York (G.J.L.)
| | - Ning Ma
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
- School of Basic Medical Sciences, Guangzhou Laboratory, Guangzhou Medical University, China (N.M.)
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, China (N.M.)
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.)
- Division of Cardiology, Department of Medicine (N.B., M.S., S.L.Z., J.Z.Z., C.L., N.M., J.C.W.), Stanford University School of Medicine, CA
- Department of Radiology (J.C.W.), Stanford University School of Medicine, CA
- Greenstone Biosciences, Palo Alto, CA (C.L., J.C.W.)
| |
Collapse
|
14
|
Lyon GJ, Vedaie M, Beisheim T, Park A, Marchi E, Gottlieb L, Hsieh TC, Klinkhammer H, Sandomirsky K, Cheng H, Starr LJ, Preddy I, Tseng M, Li Q, Hu Y, Wang K, Carvalho A, Martinez F, Caro-Llopis A, Gavin M, Amble K, Krawitz P, Marmorstein R, Herr-Israel E. Expanding the phenotypic spectrum of NAA10-related neurodevelopmental syndrome and NAA15-related neurodevelopmental syndrome. Eur J Hum Genet 2023; 31:824-833. [PMID: 37130971 PMCID: PMC10325952 DOI: 10.1038/s41431-023-01368-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.
Collapse
Affiliation(s)
- Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| | - Marall Vedaie
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Travis Beisheim
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Agnes Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Katherine Sandomirsky
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | | | - Lois J Starr
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Preddy
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marcellus Tseng
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ana Carvalho
- Department of Medical Genetics, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Francisco Martinez
- Unidad de Genetica, Hospital Universitario y Politecnico La Fe, 46026, Valencia, Spain
| | - Alfonso Caro-Llopis
- Grupo de Investigacion Traslacional en Genetica, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Maureen Gavin
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Karen Amble
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Herr-Israel
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
15
|
Wei K, Zou C. Clinical manifestations in a Chinese girl with heterozygous de novo NAA10 variant c. 247C > T, p. (Arg83Cys): a case report. Front Pediatr 2023; 11:1198906. [PMID: 37441566 PMCID: PMC10333532 DOI: 10.3389/fped.2023.1198906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The NAA10 gene encodes the catalytic subunit of the N-terminal acetyltransferase protein complex A (NatA), which is supposed to acetylate approximately 40% of the human proteins. After the advent of next-generation sequencing, more variants in the NAA10 gene and Ogden syndrome (OMIM# 300855) have been reported. Individuals with NAA10-related syndrome have a wide spectrum of clinical manifestations and the genotype-phenotype correlation is still far from being confirmed. Here, we report a three years old Chinese girl carrying a heterozygous de novo NAA10 [NM_003491: c. 247C > T, p. (Arg83Cys)] variant (dbSNP# rs387906701) (ClinVar# 208664) (OMIM# 300013.0010). The proband not only has some mild and common clinical manifestations, including dysmorphic features, developmental delay, obstructive hypertrophic cardiomyopathy, and arrhythmia, but also shows some rare clinical features such as exophthalmos, blue sclera, cutaneous capillary malformations, and adenoid hypertrophy. Our attempt is to expand the clinical phenotype associated with NAA10-related syndrome and explore genotype-phenotype correlation with such syndrome.
Collapse
|
16
|
Donnarumma F, Tucci V, Ambrosino C, Altucci L, Carafa V. NAA60 (HAT4): the newly discovered bi-functional Golgi member of the acetyltransferase family. Clin Epigenetics 2022; 14:182. [PMID: 36539894 PMCID: PMC9769039 DOI: 10.1186/s13148-022-01402-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.
Collapse
Affiliation(s)
- Federica Donnarumma
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy
| | - Valeria Tucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Concetta Ambrosino
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.47422.370000 0001 0724 3038Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lucia Altucci
- grid.428067.f0000 0004 4674 1402Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino, Italy ,grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| | - Vincenzo Carafa
- grid.9841.40000 0001 2200 8888Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio7, 80138 Naples, Italy
| |
Collapse
|
17
|
Mizuno Y, Ichikawa Y, Kawai S, Wakamiya T, Murakami H, Kurosawa K, Ueda H. A Case of NAA10-related Syndrome With Prolonged QTc Treated With a Subcutaneous Implantable Cardioverter Defibrillator After Ventricular Fibrillation. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:270-273. [PMID: 37969489 PMCID: PMC10642139 DOI: 10.1016/j.cjcpc.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2023]
Abstract
NAA10 is an enzyme involved in the N-terminal acetylation of proteins. NAA10-related syndrome is caused by a pathogenic variant of NAA10 on X chromosome, resulting in several phenotypes, including mental retardation, hypotonia, growth retardation, and various external malformations, with varying degrees of severity. With regard to cardiac diseases, hypertrophic cardiomyopathy is a possible complication. Some mutations are also associated with long QT syndrome. Herein, we describe the case of a 7-year-old boy with a novel NAA10 mutation who experienced cardiopulmonary arrest possibly due to long QT syndrome and was implanted with a subcutaneous implantable cardioverter defibrillator.
Collapse
Affiliation(s)
- Yuta Mizuno
- Department of Cardiovascular Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yasuhiro Ichikawa
- Department of Cardiovascular Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Shun Kawai
- Department of Cardiovascular Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Takuya Wakamiya
- Department of Cardiovascular Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Hideaki Ueda
- Department of Cardiovascular Medicine, Kanagawa Children’s Medical Center, Yokohama, Japan
| |
Collapse
|
18
|
Hofman J, Hutny M, Chwialkowska K, Korotko U, Loranc K, Kruk A, Lechowicz U, Rozy A, Gajdanowicz P, Kwasniewski M, Krajewska-Walasek M, Paprocka J, Jezela-Stanek A. Case report: Rare among ultrarare—Clinical odyssey of a new patient with Ogden syndrome. Front Genet 2022; 13:979377. [PMID: 36134023 PMCID: PMC9483008 DOI: 10.3389/fgene.2022.979377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: The definition of ultra-rare disease in terms of its prevalence varies between the sources, usually amounting to ca. 1 in 1.000.000 births. Nonetheless, there are even less frequent disorders, such as Ogden syndrome, which up to this day was diagnosed in less than 10 patients worldwide. They present typically with a variety of developmental defects, including postnatal growth retardation, psychomotor delay and hypotonia. This disorder is caused by the heterozygous mutations in NAA10 gene, which encodes N-alpha-acetyltransferase 10, involved in protein biosynthesis. Therefore, Ogden syndrome belongs to the broader group of genetic disorders, collectively described as NAA10-related syndrome.Case report: We present a case of a Polish male infant, born in 39. GW with c-section due to the pathological cardiotocography signal. Hypotrophy (2400 g) and facial dysmorphism were noted in the physical examination. From the first minute, the child required mechanical ventilation - a nasal continuous positive airway pressure. For the first 27 days, the patient was treated in a neonatal intensive care unit, where a series of examinations were conducted. On their basis, the presence of the following defects was determined: muscular ventricular septal defects, patent foramen ovale, pectus excavatum, clubfoot and axial hypotonia. Child was then consequently referred to the genetic clinic for counselling. Results of the tests allowed the diagnosis of Ogden syndrome. In the following months the patient’s condition worsened due to the numerous pulmonary infections. Despite the advanced treatment including the variety of medications, the patient eventually died at the age of 10 months.Conclusion: This case report presents a tenth patient diagnosed with Ogden syndrome reported worldwide. It expands the morphologic and clinical phenotype, emphasizing the possible severity of pneumonological disorders in these patients, which may pose a greater threat to a child’s life than more frequently described cardiovascular dysfunctions associated with this syndrome.
Collapse
Affiliation(s)
- Jagoda Hofman
- Students’ Scientific Society, Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michal Hutny
- Students’ Scientific Society, Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Chwialkowska
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Urszula Korotko
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | | | | | - Urszula Lechowicz
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Adriana Rozy
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Pawel Gajdanowicz
- IMAGENE.ME SA, Bialystok, Poland
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Miroslaw Kwasniewski
- IMAGENE.ME SA, Bialystok, Poland
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | | | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Jezela-Stanek
- IMAGENE.ME SA, Bialystok, Poland
- Department of Genetics and Clinical Immunology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
- *Correspondence: Aleksandra Jezela-Stanek,
| |
Collapse
|
19
|
Biochemical analysis of novel NAA10 variants suggests distinct pathogenic mechanisms involving impaired protein N-terminal acetylation. Hum Genet 2022; 141:1355-1369. [PMID: 35039925 PMCID: PMC9304055 DOI: 10.1007/s00439-021-02427-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023]
Abstract
NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.
Collapse
|
20
|
Hydroxylation of the Acetyltransferase NAA10 Trp38 Is Not an Enzyme-Switch in Human Cells. Int J Mol Sci 2021; 22:ijms222111805. [PMID: 34769235 PMCID: PMC8583962 DOI: 10.3390/ijms222111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.
Collapse
|
21
|
Kweon HY, Lee MN, Dorfel M, Seo S, Gottlieb L, PaPazyan T, McTiernan N, Ree R, Bolton D, Garcia A, Flory M, Crain J, Sebold A, Lyons S, Ismail A, Marchi E, Sonn SK, Jeong SJ, Jeon S, Ju S, Conway SJ, Kim T, Kim HS, Lee C, Roh TY, Arnesen T, Marmorstein R, Oh GT, Lyon GJ. Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway. eLife 2021; 10:e65952. [PMID: 34355692 PMCID: PMC8376253 DOI: 10.7554/elife.65952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Mi-Ni Lee
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
- Laboratory Animal Resource Center Korea ResearchInstitute of Bioscience and BiotechnologyChungbukRepublic of Korea
| | - Max Dorfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Seungwoon Seo
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Leah Gottlieb
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Thomas PaPazyan
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Nina McTiernan
- Department of Biomedicine, University of BergenBergenNorway
| | - Rasmus Ree
- Department of Biomedicine, University of BergenBergenNorway
| | - David Bolton
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Andrew Garcia
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Jonathan Crain
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Alison Sebold
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Ahmed Ismail
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Seong-keun Sonn
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Se-Jin Jeong
- Center for Cardiovascular Research, Washington University School of MedicineSaint LouisUnited States
| | - Sejin Jeon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisUnited States
| | - Taesoo Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun-Seok Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee UniversitySeoulRepublic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Thomas Arnesen
- Department of Biomedicine, University of BergenBergenNorway
- Department of Biological Sciences, University of BergenBergenNorway
- Department of Surgery, Haukeland University HospitalBergenNorway
| | - Ronen Marmorstein
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Goo Taeg Oh
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
- Biology PhD Program, The Graduate Center, The City University of New YorkNew YorkUnited States
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| |
Collapse
|
22
|
Maini I, Caraffi SG, Peluso F, Valeri L, Nicoli D, Laurie S, Baldo C, Zuffardi O, Garavelli L. Clinical Manifestations in a Girl with NAA10-Related Syndrome and Genotype-Phenotype Correlation in Females. Genes (Basel) 2021; 12:genes12060900. [PMID: 34200686 PMCID: PMC8230408 DOI: 10.3390/genes12060900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 01/30/2023] Open
Abstract
Since 2011, eight males with an X-linked recessive disorder (Ogden syndrome, MIM #300855) associated with the same missense variant p.(Ser37Pro) in the NAA10 gene have been described. After the advent of whole exome sequencing, many NAA10 variants have been reported as causative of syndromic or non-syndromic intellectual disability in both males and females. The NAA10 gene lies in the Xq28 region and encodes the catalytic subunit of the major N-terminal acetyltransferase complex NatA, which acetylates almost half the human proteome. Here, we present a young female carrying a de novo NAA10 [NM_003491:c.247C > T, p.(Arg83Cys)] variant. The 18-year-old girl has severely delayed motor and language development, autistic traits, postnatal growth failure, facial dysmorphisms, interventricular septal defect, neuroimaging anomalies and epilepsy. Our attempt is to expand and compare genotype–phenotype correlation in females with NAA10-related syndrome. A detailed clinical description could have relevant consequences for the clinical management of known and newly identified individuals.
Collapse
Affiliation(s)
- Ilenia Maini
- Child Neuropsychiatry Unit, Azienda USL di Parma, 43121 Parma, Italy;
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.G.C.); (F.P.); (L.V.)
| | - Stefano G. Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.G.C.); (F.P.); (L.V.)
| | - Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.G.C.); (F.P.); (L.V.)
| | - Lara Valeri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.G.C.); (F.P.); (L.V.)
- Post Graduate School of Paediatrics, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Steven Laurie
- Clinical Genomics, Centre Nacional d’Anàlisi Genòmica, Centre de Regulació Genòmica, 08016 Barcelona, Spain;
| | - Chiara Baldo
- Laboratory of Human Genetics, Galliera Hospital, 16128 Genoa, Italy;
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.G.C.); (F.P.); (L.V.)
- Correspondence: ; Tel.: +39-052-229-6244
| |
Collapse
|
23
|
Gogoll L, Steindl K, Joset P, Zweier M, Baumer A, Gerth-Kahlert C, Tutschek B, Rauch A. Confirmation of Ogden syndrome as an X-linked recessive fatal disorder due to a recurrent NAA10 variant and review of the literature. Am J Med Genet A 2021; 185:2546-2560. [PMID: 34075687 PMCID: PMC8361982 DOI: 10.1002/ajmg.a.62351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Ogden syndrome is a rare lethal X‐linked recessive disorder caused by a recurrent missense variant (Ser37Pro) in the NAA10 gene, encoding the catalytic subunit of the N‐terminal acetyltransferase A complex (NatA). So far eight boys of two different families have been described in the literature, all presenting the distinctive and recognizable phenotype, which includes mostly postnatal growth retardation, global severe developmental delay, characteristic craniofacial features, and structural cardiac anomalies and/or arrhythmias. Here, we report the ninth case of Ogden syndrome with an independent recurrence of the Ser37Pro variant. We were able to follow the clinical course of the affected boy and delineate the evolving phenotype from his birth until his unfortunate death at 7 months. We could confirm the associated phenotype as well as the natural history of this severe disease. By describing new presenting features, we are further expanding the clinical spectrum associated with Ogden syndrome and review other phenotypes associated with NAA10 variants.
Collapse
Affiliation(s)
- Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | | | - Boris Tutschek
- Prenatal Zürich, Zürich, Switzerland.,Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland.,University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
24
|
McTiernan N, Gill H, Prada CE, Pachajoa H, Lores J, Arnesen T. NAA10 p.(N101K) disrupts N-terminal acetyltransferase complex NatA and is associated with developmental delay and hemihypertrophy. Eur J Hum Genet 2021; 29:280-288. [PMID: 32973342 PMCID: PMC7868364 DOI: 10.1038/s41431-020-00728-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 01/23/2023] Open
Abstract
Nearly half of all human proteins are acetylated at their N-termini by the NatA N-terminal acetyltransferase complex. NAA10 is evolutionarily conserved as the catalytic subunit of NatA in complex with NAA15, but may also have NatA-independent functions. Several NAA10 variants are associated with genetic disorders. The phenotypic spectrum includes developmental delay, intellectual disability, and cardiac abnormalities. Here, we have identified the previously undescribed NAA10 c.303C>A and c.303C>G p.(N101K) variants in two unrelated girls. These girls have developmental delay, but they both also display hemihypertrophy a feature normally not observed or registered among these cases. Functional studies revealed that NAA10 p.(N101K) is completely impaired in its ability to bind NAA15 and to form an enzymatically active NatA complex. In contrast, the integrity of NAA10 p.(N101K) as a monomeric acetyltransferase is intact. Thus, this NAA10 variant may represent the best example of the impact of NatA mediated N-terminal acetylation, isolated from other potential NAA10-mediated cellular functions and may provide important insights into the phenotypes observed in individuals expressing pathogenic NAA10 variants.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway
| | - Harinder Gill
- Department of Medical Genetics, Children's and Women's Health Centre of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 45229, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 45229, Cincinnati, OH, USA
- Centro de Medicina Genomica y Metabolismo, Fundacion Cardiovascular de Colombia, Floridablanca, Colombia
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras Universidad Icesi, Cali, Colombia
- Fundación Clínica Valle del Lili, Cali, Colombia
| | - Juliana Lores
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras Universidad Icesi, Cali, Colombia
- Fundación Clínica Valle del Lili, Cali, Colombia
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway.
- Department of Surgery, Haukeland University Hospital, N-5021, Bergen, Norway.
| |
Collapse
|
25
|
Afrin A, Prokop JW, Underwood A, Uhl KL, VanSickle EA, Baruwal R, Wajda M, Rajasekaran S, Bupp C. NAA10 variant in 38-week-gestation male patient: a case study. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005868. [PMID: 33335012 PMCID: PMC7784496 DOI: 10.1101/mcs.a005868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
We present a male patient born at 38-wk gestation with rhizomelic shortening of extremities, hepatomegaly, ventriculomegaly, heart failure, severely depressed left ventricular function, biventricular hypertrophy, and biatrial enlargement. Additional physical findings included anteriorly displaced anus, vertebral anomalies, and brachydactyly. The patient's cardiac malformations led to persistent hypotension, sinus tachycardia, and multiorgan failure in the absence of arrhythmias. Rapid whole-exome sequencing was ordered on day of life (DOL) 8. The patient's family elected to withdraw supportive care, and he passed away that evening. Whole-exome sequencing returned posthumously and identified a variant in NAA10, E100K. The genotype-phenotype was closest to Ogden syndrome or amino-terminal acetyltransferase deficiency. Typical features of this rare X-linked syndrome include progeroid appearance, failure to thrive, developmental delays, hypotonia, and cardiac arrhythmias. Other family members were tested and the patient's mother, who has a history of mild intellectual disability, as well as a daughter born later, were identified as carriers. All carriers showed no cardiac findings. The carrier sister has manifested developmental delay and cortical atrophy. Protein modeling, evolution, dynamics, population variant assessments, and immunoprecipitation depict the deleterious nature of the variant on the interactions of NAA10 with NAA15 These findings had subsequent implications for posthumous diagnosis of the index patient, for female carriers, and regarding family planning. We highlight how these rapid genetic tests and variant characterization can potentially lead to informed decision-making between health-care providers and family members of patients with critical or lethal conditions when treatment options are limited.
Collapse
Affiliation(s)
- Antara Afrin
- College of Human Medicine,, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Jeremy W Prokop
- College of Human Medicine,, Michigan State University, Grand Rapids, Michigan 49503, USA.,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Adam Underwood
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan 49503, USA.,Walsh University, North Canton, Ohio 44720, USA
| | - Katie L Uhl
- College of Human Medicine,, Michigan State University, Grand Rapids, Michigan 49503, USA.,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan 49503, USA
| | - Elizabeth A VanSickle
- Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, Michigan 49503, USA
| | | | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan 49503, USA.,Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, Michigan 49503, USA
| | - Caleb Bupp
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, Michigan 49503, USA.,Medical Genetics, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
26
|
NAA10 p.(D10G) and NAA10 p.(L11R) Variants Hamper Formation of the NatA N-Terminal Acetyltransferase Complex. Int J Mol Sci 2020; 21:ijms21238973. [PMID: 33255974 PMCID: PMC7730585 DOI: 10.3390/ijms21238973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022] Open
Abstract
The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits—the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms.
Collapse
|
27
|
Ritter A, Berger JH, Deardorff M, Izumi K, Lin KY, Medne L, Ahrens-Nicklas RC. Variants in NAA15 cause pediatric hypertrophic cardiomyopathy. Am J Med Genet A 2020; 185:228-233. [PMID: 33103328 DOI: 10.1002/ajmg.a.61928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/28/2023]
Abstract
The NatA N-acetyltransferase complex is important for cotranslational protein modification and regulation of multiple cellular processes. The NatA complex includes the core components of NAA10, the catalytic subunit, and NAA15, the auxiliary component. Both NAA10 and NAA15 have been associated with neurodevelopmental disorders with overlapping clinical features, including variable intellectual disability, dysmorphic facial features, and, less commonly, congenital anomalies such as cleft lip or palate. Cardiac arrhythmias, including long QT syndrome, ventricular tachycardia, and ventricular fibrillation were among the first reported cardiac manifestations in patients with NAA10-related syndrome. Recently, three individuals with NAA10-related syndrome have been reported to also have hypertrophic cardiomyopathy (HCM). The general and cardiac phenotypes of NAA15-related syndrome are not as well described as NAA10-related syndrome. Congenital heart disease, including ventricular septal defects, and arrhythmias, such as ectopic atrial tachycardia, have been reported in a small proportion of patients with NAA15-related syndrome. Given the relationship between NAA10 and NAA15, we propose that HCM is also likely to occur in NAA15-related disorder. We present two patients with pediatric HCM found to have NAA15-related disorder via exome sequencing, providing the first evidence that variants in NAA15 can cause HCM.
Collapse
Affiliation(s)
- Alyssa Ritter
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Justin H Berger
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Deardorff
- Department of Pathology and Laboratory Medicine and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Y Lin
- Divison of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Livija Medne
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rebecca C Ahrens-Nicklas
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Shishido A, Morisada N, Tominaga K, Uemura H, Haruna A, Hanafusa H, Nozu K, Iijima K. A Japanese boy with NAA10-related syndrome and hypertrophic cardiomyopathy. Hum Genome Var 2020; 7:23. [PMID: 32864149 PMCID: PMC7429835 DOI: 10.1038/s41439-020-00110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/05/2022] Open
Abstract
NAA10-related syndrome is an extremely rare X-chromosomal disorder, the symptoms of which include intellectual disability (ID), ocular anomalies, or congenital heart diseases, such as hypertrophic cardiomyopathy (HCM). Here, we describe a 4-year-old Japanese male patient who exhibited mild ID, HCM, and specific facial features. A hemizygous mutation (NM_003491.3: c.455_458del, p. Thr152Argfs*6) in exon 7 of NAA10 was detected. We recommend that patients undergo precise medical follow-up considering the characteristics of NAA10-related syndrome.
Collapse
Affiliation(s)
- Ayumi Shishido
- Department of General Medicine, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Hyogo Japan
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka Japan
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Hyogo Japan
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo Japan
| | - Kenta Tominaga
- Department of Cardiology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Hyogo Japan
| | - Hiroyasu Uemura
- Department of Pediatrics, Himeji Red Cross Hospital, Himeji, Hyogo Japan
| | - Akiko Haruna
- Department of Urology, Hyogo Prefectural Kobe Children’s Hospital, Kobe, Hyogo Japan
| | - Hiroaki Hanafusa
- Center for Medical Genetics, Shinshu University Hospital, Matsumoto, Nagano Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo Japan
| |
Collapse
|
29
|
Bader I, McTiernan N, Darbakk C, Boltshauser E, Ree R, Ebner S, Mayr JA, Arnesen T. Severe syndromic ID and skewed X-inactivation in a girl with NAA10 dysfunction and a novel heterozygous de novo NAA10 p.(His16Pro) variant - a case report. BMC MEDICAL GENETICS 2020; 21:153. [PMID: 32698785 PMCID: PMC7374887 DOI: 10.1186/s12881-020-01091-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/12/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND NAA10 is the catalytic subunit of the major N-terminal acetyltransferase complex NatA which acetylates almost half the human proteome. Over the past decade, many NAA10 missense variants have been reported as causative of genetic disease in humans. Individuals harboring NAA10 variants often display variable degrees of intellectual disability (ID), developmental delay, and cardiac anomalies. Initially, carrier females appeared to be oligo- or asymptomatic with X-inactivation pattern skewed towards the wild type allele. However, recently it has been shown that NAA10 variants can cause syndromic or non-syndromic intellectual disability in females as well. The impact of specific NAA10 variants and the X-inactivation pattern on the individual phenotype in females remains to be elucidated. CASE PRESENTATION Here we present a novel de novo NAA10 (NM_003491.3) c.[47A > C];[=] (p.[His16Pro];[=]) variant identified in a young female. The 10-year-old girl has severely delayed motor and language development, disturbed behavior with hyperactivity and restlessness, moderate dilatation of the ventricular system and extracerebral CSF spaces. Her blood leukocyte X-inactivation pattern was skewed (95/5) towards the maternally inherited X-chromosome. Our functional study indicates that NAA10 p.(H16P) impairs NatA complex formation and NatA catalytic activity, while monomeric NAA10 catalytic activity appears to be intact. Furthermore, cycloheximide experiments show that the NAA10 H16P variant does not affect the cellular stability of NAA10. DISCUSSION AND CONCLUSIONS We demonstrate that NAA10 p.(His16Pro) causes a severe form of syndromic ID in a girl most likely through impaired NatA-mediated Nt-acetylation of cellular proteins. X-inactivation analyses showed a skewed X-inactivation pattern in DNA from blood of the patient with the maternally inherited allele being preferentially methylated/inactivated.
Collapse
Affiliation(s)
- Ingrid Bader
- Einheit für Klinische Genetik, Universitätsklinik für Kinder- und Jugendheilkunde, Paracelsus Medizinische Universität, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sabine Ebner
- Einheit für Klinische Genetik, Universitätsklinik für Kinder- und Jugendheilkunde, Paracelsus Medizinische Universität, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Johannes A. Mayr
- Children’s Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Katoh K, Aiba K, Fukushi D, Yoshimura J, Suzuki Y, Mitsui J, Morishita S, Tuji S, Yamada K, Wakamatsu N. Clinical and molecular genetic characterization of two female patients harboring the Xq27.3q28 deletion with different ratios of X chromosome inactivation. Hum Mutat 2020; 41:1447-1460. [PMID: 32485067 DOI: 10.1002/humu.24058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 11/10/2022]
Abstract
A heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is very rare in females, with only 10 patients having been reported. Here, we examined two female patients with different clinical features harboring the Xq27.3q28 deletion and determined the chromosomal breakpoints. Moreover, we assessed the X chromosome inactivation (XCI) in peripheral blood from both patients. Both patients had an almost overlapping deletion at Xq27.3q28, however, the more severe patient (Patient 1) showed skewed XCI of the normal X chromosome (79:21) whereas the milder patient (Patient 2) showed random XCI. Therefore, deletion at Xq27.3q28 critically affected brain development, and the ratio of XCI of the normal X chromosome greatly affected the clinical characteristics of patients with deletion at Xq27.3q28. As the chromosomal breakpoints were determined, we analyzed a change in chromatin domains termed topologically associated domains (TADs) using published Hi-C data on the Xq27.3q28 region, and found that only patient 1 had a possibility of a drastic change in TADs. The altered chromatin topologies on the Xq27.3q28 region might affect the clinical features of patient 1 by changing the expression of genes just outside the deletion and/or the XCI establishment during embryogenesis resulting in skewed XCI.
Collapse
Affiliation(s)
- Kimiko Katoh
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Kaori Aiba
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyo Suzuki
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shoji Tuji
- Department of Molecular Neurology, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan.,Department of Neurology, Neurology and Stroke Center, Takamatsu Municipal Hospital, Takamatsu, Kagawa, Japan.,Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
31
|
Deng S, McTiernan N, Wei X, Arnesen T, Marmorstein R. Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK. Nat Commun 2020; 11:818. [PMID: 32042062 PMCID: PMC7010799 DOI: 10.1038/s41467-020-14584-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/18/2020] [Indexed: 01/04/2023] Open
Abstract
The human N-terminal acetyltransferase E (NatE) contains NAA10 and NAA50 catalytic, and NAA15 auxiliary subunits and associates with HYPK, a protein with intrinsic NAA10 inhibitory activity. NatE co-translationally acetylates the N-terminus of half the proteome to mediate diverse biological processes, including protein half-life, localization, and interaction. The molecular basis for how NatE and HYPK cooperate is unknown. Here, we report the cryo-EM structures of human NatE and NatE/HYPK complexes and associated biochemistry. We reveal that NAA50 and HYPK exhibit negative cooperative binding to NAA15 in vitro and in human cells by inducing NAA15 shifts in opposing directions. NAA50 and HYPK each contribute to NAA10 activity inhibition through structural alteration of the NAA10 substrate-binding site. NAA50 activity is increased through NAA15 tethering, but is inhibited by HYPK through structural alteration of the NatE substrate-binding site. These studies reveal the molecular basis for coordinated N-terminal acetylation by NatE and HYPK.
Collapse
Affiliation(s)
- Sunbin Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nina McTiernan
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xuepeng Wei
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Biological Sciences, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Huber M, Bienvenut WV, Linster E, Stephan I, Armbruster L, Sticht C, Layer D, Lapouge K, Meinnel T, Sinning I, Giglione C, Hell R, Wirtz M. NatB-Mediated N-Terminal Acetylation Affects Growth and Biotic Stress Responses. PLANT PHYSIOLOGY 2020; 182:792-806. [PMID: 31744933 PMCID: PMC6997699 DOI: 10.1104/pp.19.00792] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 05/22/2023]
Abstract
N∝-terminal acetylation (NTA) is one of the most abundant protein modifications in eukaryotes. In humans, NTA is catalyzed by seven Nα-acetyltransferases (NatA-F and NatH). Remarkably, the plant Nat machinery and its biological relevance remain poorly understood, although NTA has gained recognition as a key regulator of crucial processes such as protein turnover, protein-protein interaction, and protein targeting. In this study, we combined in vitro assays, reverse genetics, quantitative N-terminomics, transcriptomics, and physiological assays to characterize the Arabidopsis (Arabidopsis thaliana) NatB complex. We show that the plant NatB catalytic (NAA20) and auxiliary subunit (NAA25) form a stable heterodimeric complex that accepts canonical NatB-type substrates in vitro. In planta, NatB complex formation was essential for enzymatic activity. Depletion of NatB subunits to 30% of the wild-type level in three Arabidopsis T-DNA insertion mutants (naa20-1, naa20-2, and naa25-1) caused a 50% decrease in plant growth. A complementation approach revealed functional conservation between plant and human catalytic NatB subunits, whereas yeast NAA20 failed to complement naa20-1 Quantitative N-terminomics of approximately 1000 peptides identified 32 bona fide substrates of the plant NatB complex. In vivo, NatB was seen to preferentially acetylate N termini starting with the initiator Met followed by acidic amino acids and contributed 20% of the acetylation marks in the detected plant proteome. Global transcriptome and proteome analyses of NatB-depleted mutants suggested a function of NatB in multiple stress responses. Indeed, loss of NatB function, but not NatA, increased plant sensitivity toward osmotic and high-salt stress, indicating that NatB is required for tolerance of these abiotic stressors.
Collapse
Affiliation(s)
- Monika Huber
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Eric Linster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Iwona Stephan
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | - Dominik Layer
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-α-acetylation of Pgc1α. Mol Cell 2019; 76:500-515.e8. [DOI: 10.1016/j.molcel.2019.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023]
|
34
|
Cheng H, Gottlieb L, Marchi E, Kleyner R, Bhardwaj P, Rope AF, Rosenheck S, Moutton S, Philippe C, Eyaid W, Alkuraya FS, Toribio J, Mena R, Prada CE, Stessman H, Bernier R, Wermuth M, Kauffmann B, Blaumeiser B, Kooy RF, Baralle D, Mancini GMS, Conway SJ, Xia F, Chen Z, Meng L, Mihajlovic L, Marmorstein R, Lyon GJ. Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15. Hum Mol Genet 2019; 28:2900-2919. [PMID: 31127942 PMCID: PMC6736318 DOI: 10.1093/hmg/ddz111] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Puja Bhardwaj
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alan F Rope
- Kaiser Permanente Center for Health Research, Portland, OR 97227, USA
- Genome Medical, South San Francisco, CA 94080, USA
| | - Sarah Rosenheck
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sébastien Moutton
- Reference Center for Developmental Anomalies, Department of Medical Genetics, Dijon University Hospital, Dijon, France
- Génétique des Anomalies du développement, INSERM U1231, Lipides Nutrition et Cancer, UMR1231, Université de Bourgogne, F-21000, Dijon 21070, France
| | - Christophe Philippe
- Génétique des Anomalies du développement, INSERM U1231, Lipides Nutrition et Cancer, UMR1231, Université de Bourgogne, F-21000, Dijon 21070, France
- Laboratoire de Génétique, Innovation Diagnostic Génomique des Maladies Rares UF6254, Plate-forme de Biologie Hospitalo-Universitaire, Centre Hospitalier Universitaire, Dijon 21070, France
| | - Wafaa Eyaid
- King Abdulaziz Medical City, King Saud Bin AbdulAziz University—Health Science, King Abdullah International Medical Research Center, Riyadh 11426, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Janet Toribio
- Division of Cardiology, CEDIMAT, Santo Domingo 51000, Dominican Republic
| | - Rafael Mena
- Neonatal Intensive Care Unit, Centro de Obstetricia y Ginecologia, Santo Domingo, Dominican Republic
- Division Of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Holly Stessman
- Department of Pharmacology, Creighton University Medical School, Omaha, NE 68178, USA
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Marieke Wermuth
- Klinik für Kinder-und Jugendmedizin, Neuropädiatrie, Klinikum Links der Weser, Senator-Weβling-Str.1. in 28211 Bremen, Germany
| | - Birgit Kauffmann
- Klinik für Kinder-und Jugendmedizin, Neuropädiatrie, Klinikum Links der Weser, Senator-Weβling-Str.1. in 28211 Bremen, Germany
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 5YA, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Zhao Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | | | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
35
|
Ree R, Geithus AS, Tørring PM, Sørensen KP, Damkjær M, Lynch SA, Arnesen T. A novel NAA10 p.(R83H) variant with impaired acetyltransferase activity identified in two boys with ID and microcephaly. BMC MEDICAL GENETICS 2019; 20:101. [PMID: 31174490 PMCID: PMC6554967 DOI: 10.1186/s12881-019-0803-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Background N-terminal acetylation is a common protein modification in human cells and is catalysed by N-terminal acetyltransferases (NATs), mostly cotranslationally. The NAA10-NAA15 (NatA) protein complex is the major NAT, responsible for acetylating ~ 40% of human proteins. Recently, NAA10 germline variants were found in patients with the X-linked lethal Ogden syndrome, and in other familial or de novo cases with variable degrees of developmental delay, intellectual disability (ID) and cardiac anomalies. Methods Here we report a novel NAA10 (NM_003491.3) c.248G > A, p.(R83H) missense variant in NAA10 which was detected by whole exome sequencing in two unrelated boys with intellectual disability, developmental delay, ADHD like behaviour, very limited speech and cardiac abnormalities. We employ in vitro acetylation assays to functionally test the impact of this variant on NAA10 enzyme activity. Results Functional characterization of NAA10-R83H by in vitro acetylation assays revealed a reduced enzymatic activity of monomeric NAA10-R83H. This variant is modelled to have an altered charge density in the acetyl-coenzyme A (Ac-CoA) binding region of NAA10. Conclusions We show that NAA10-R83H has a reduced monomeric catalytic activity, likely due to impaired enzyme-Ac-CoA binding. Our data support a model where reduced NAA10 and/or NatA activity cause the phenotypes observed in the two patients. Electronic supplementary material The online version of this article (10.1186/s12881-019-0803-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | - Anni Sofie Geithus
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway
| | | | | | - Mads Damkjær
- Hans Christian Andersen Children's Hospital, Odense University Hospital, DK-5000, Odense C, Denmark
| | | | - Sally Ann Lynch
- Temple Street Children's Hospital, Temple Street, Dublin, D01 X584, Ireland.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5020, Bergen, Norway. .,Department of Biological Sciences, University of Bergen, NO-5020, Bergen, Norway. .,Department of Surgery, Haukeland University Hospital, NO-5021, Bergen, Norway.
| |
Collapse
|
36
|
Ocular Manifestations of the NAA10-Related Syndrome. Case Rep Genet 2019; 2019:8492965. [PMID: 31093388 PMCID: PMC6476065 DOI: 10.1155/2019/8492965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 12/05/2022] Open
Abstract
The NAA10-related syndrome is a rare X-linked neurodevelopmental condition that was first described in 2011. The disorder is caused by pathogenic variants in the NAA10 gene located on chromosome X at position Xq28. Clinical features typically include severe psychomotor developmental delay, cardiac disease, dysmorphic features, postnatal growth failure, and hypotonia, although there is significant variability in the severity of the phenotype among affected individuals. We describe a 5-year-old female with the syndrome; massively parallel exome sequencing and analysis revealed the c.247C>T (p.Arg83Cys) pathogenic variant that has been previously reported in ten affected individuals. Ocular manifestations of the NAA10-related syndrome are not uncommon, although they have not been well characterized in literature reports. From a systematic review of previously published cases to date, ocular abnormalities are present in more than half of patients with the syndrome. Common ocular findings reported include astigmatism, hyperopia, cortical vision impairment, microphthalmia/anophthalmia, and hypertelorism. Our patient presented with growth restriction, dysmorphic features, and hypotonia. Ocular manifestations identified in this child include downslanting palpebral fissures, myopic astigmatism, nystagmus, and exotropia. We speculate that the type and severity of ocular defects present in individuals with the NAA10-related syndrome are dependent on the specific NAA10 pathogenic variant involved.
Collapse
|
37
|
Aksnes H, Ree R, Arnesen T. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases. Mol Cell 2019; 73:1097-1114. [PMID: 30878283 DOI: 10.1016/j.molcel.2019.02.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of N-terminal acetylation have identified new N-terminal acetyltransferases (NATs) and expanded the known functions of these enzymes beyond their roles as ribosome-associated co-translational modifiers. For instance, the identification of Golgi- and chloroplast-associated NATs shows that acetylation of N termini also happens post-translationally. In addition, we now appreciate that some NATs are highly specific; for example, a dedicated NAT responsible for post-translational N-terminal acetylation of actin was recently revealed. Other studies have extended NAT function beyond Nt acetylation, including functions as lysine acetyltransferases (KATs) and non-catalytic roles. Finally, emerging studies emphasize the physiological relevance of N-terminal acetylation, including roles in calorie-restriction-induced longevity and pathological α-synuclein aggregation in Parkinson's disease. Combined, the NATs rise as multifunctional proteins, and N-terminal acetylation is gaining recognition as a major cellular regulator.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Rasmus Ree
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
38
|
X-chromosomale Entwicklungsstörungen im weiblichen Geschlecht. MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Zusammenfassung
In den letzten Jahren wurden Mutationen in einer wachsenden Zahl von X‑chromosomalen Genen als Ursache für Entwicklungsstörungen bei Mädchen identifiziert. Dies führt zu einer Aufweichung der traditionellen Abgrenzung von X‑chromosomal-rezessiven und X‑chromosomal-dominanten Erbgängen. Für viele X‑chromosomale, mit Entwicklungsstörungen assoziierte Gene zeichnet sich nun ein phänotypisches Spektrum ab, welches beide Geschlechter umfasst. Die Mechanismen, die zu einer oft variablen Krankheitsausprägung zwischen den Geschlechtern aber auch innerhalb des weiblichen Geschlechts führen, sind bisher noch sehr unvollständig verstanden. Verschiedene Faktoren wie Art, Lokalisation und „Schwere“ der jeweiligen Mutation sowie insbesondere die X‑Inaktivierung spielen dabei eine Rolle. Dieser Artikel gibt einen Überblick über den derzeitigen Kenntnisstand (ohne Anspruch auf Vollständigkeit) X‑chromosomaler Entwicklungsstörungen bei Mädchen. Exemplarisch werden zudem einige neue Krankheitsbilder bei Mädchen beschrieben und diskutiert, die durch De-novo-Mutationen in X‑chromosomalen Genen verursacht werden.
Collapse
|
39
|
Varland S, Aksnes H, Kryuchkov F, Impens F, Van Haver D, Jonckheere V, Ziegler M, Gevaert K, Van Damme P, Arnesen T. N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Mol Cell Proteomics 2018; 17:2309-2323. [PMID: 30150368 PMCID: PMC6283290 DOI: 10.1074/mcp.ra118.000982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
Nt-acetylation is a prevalent protein modification catalyzed by N-terminal acetyltransferases using acetyl-CoA as acetyl donor. Here, we performed a global analysis of Nt-acetylation in yeast following nutrient starvation. Contrary to histone acetylation, which is sensitive to acetyl-CoA levels, we demonstrate that Nt-acetylation remains largely unaffected to changes in cellular metabolism. We did, however, identify two protein groups that were differentially Nt-acetylated, one showing the same sensitivity to acetyl-CoA as histones. We propose that specific, rather than global, Nt-acetylation events are subject to metabolic regulation. N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes and impacts a wide range of cellular processes, including protein quality control and stress tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. Here, we present the first global study of Nt-acetylation in yeast cells as they progress to stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in acetyl-CoA levels. We further observed two distinct sets of protein N termini that display differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic process. The first protein cluster was enriched for annotated N termini showing increased Nt-acetylation in stationary phase compared with exponential growth phase. The second protein cluster was conversely enriched for alternative nonannotated N termini (i.e. N termini indicative of shorter N-terminal proteoforms) and, like histones, showed reduced acetylation levels in stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex (Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins were regulated both by starvation and NatA activity. In summary, this study represents the first comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather than global, Nt-acetylation events are subject to metabolic regulation.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Donnelly Center for Cellular and Bio‡molecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Fedor Kryuchkov
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
40
|
Abstract
NAA10-related syndrome is an X-linked condition with a broad spectrum of findings ranging from a severe phenotype in males with p.Ser37Pro in NAA10, originally described as Ogden syndrome, to the milder NAA10-related intellectual disability found with different variants in both males and females. Although developmental impairments/intellectual disability may be the presenting feature (and in some cases the only finding), many individuals have additional cardiovascular, growth, and dysmorphic findings that vary in type and severity. Therefore, this set of disorders has substantial phenotypic variability and, as such, should be referred to more broadly as NAA10-related syndrome. NAA10 encodes an enzyme NAA10 that is certainly involved in the amino-terminal acetylation of proteins, alongside other proposed functions for this same protein. The mechanistic basis for how variants in NAA10 lead to the various phenotypes in humans is an active area of investigation, some of which will be reviewed herein. A detailed overview of a rare X-linked hereditary disorder gives clinicians a resource for making an informed diagnosis based on genetic data and developmental abnormalities. Around 80% of all human proteins are modified on their amino terminus via tagging with an acetyl group, and the NAA10 enzyme plays a major role in this process. Mutations in the gene encoding NAA10 produce severe neurological and cardiovascular effects. Yiyang Wu and Gholson Lyon at the Cold Spring Harbor Laboratory, Woodbury, USA, have reviewed current research to facilitate accurate identification of ‘NAA10-related syndrome’. Since this gene resides on the X chromosome, mutations strongly affect males, although some female carriers also show symptoms. NAA10-related syndrome is exceedingly rare, with only 26 cases reported to date, and the researchers describe both known causative mutations and unrelated disorders that produce similar developmental defects.
Collapse
|
41
|
Vo TTL, Jeong CH, Lee S, Kim KW, Ha E, Seo JH. Versatility of ARD1/NAA10-mediated protein lysine acetylation. Exp Mol Med 2018; 50:1-13. [PMID: 30054464 PMCID: PMC6063952 DOI: 10.1038/s12276-018-0100-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Post-translational modifications (PTMs) are chemical alterations that occur in proteins that play critical roles in various cellular functions. Lysine acetylation is an important PTM in eukaryotes, and it is catalyzed by lysine acetyltransferases (KATs). KATs transfer acetyl-coenzyme A to the internal lysine residue of substrate proteins. Arrest defective 1 (ARD1) is a member of the KAT family. Since the identification of its KAT activity 15 years ago, many studies have revealed that diverse cellular proteins are acetylated by ARD1. ARD1-mediated lysine acetylation is a key switch that regulates the enzymatic activities and biological functions of proteins and influences cell biology from development to pathology. In this review, we summarize protein lysine acetylation mediated by ARD1 and describe the biological meanings of this modification. Enzymes that modify proteins by adding an acetyl group have profound effects on metabolism and development, as well as disease. This process, known as acetylation, is carried out by KAT proteins, which are present throughout the body. Although acetyl groups are small, acetylation can change a protein’s electrical charge and shape, and even alter its function. Ji Hae Seo at Keimyung University School of Medicine in Daegu, South Korea, and co-workers reviewed the roles of KAT proteins in health and disease. They report that KAT proteins control gene expression, switch metabolic pathways on or off, and regulate development. Malfunction can lead to various disorders, including neurodegeneration and tumor growth. The researchers highlight several KAT proteins, in particular an enzyme that acetylates the amino acid lysine, that are promising targets for treatment of diseases, including cancer.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- College of Pharmacy, Keimyung University, Daegue, 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegue, 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegue, 42601, Republic of Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea.
| |
Collapse
|
42
|
Lee MN, Kweon HY, Oh GT. N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Exp Mol Med 2018; 50:1-11. [PMID: 30054454 PMCID: PMC6063908 DOI: 10.1038/s12276-018-0105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms. Further investigations are needed into the role of a key enzyme in biological development and its encoding gene. The enzyme N-α-acetyltransferase 10 (NAA10), encoded by the NAA10 gene, plays a role in multiple biological processes. While the function of NAA10 has been studied in cancer, less is known about the roles of the gene and the enzyme during development, according to a review by Goo Taeg Oh and co-workers at the Ewha Womans University in Seoul, South Korea. Mutations in NAA10 are found in patients with developmental delay, cardiac problems and skeletal abnormalities, while reduced enzyme activity is associated with developmental defects. Mouse studies suggest a role for NAA10 in neuronal development, bone formation and healthy sperm generation. The impact of variable NAA10 expression in different organs at different developmental stages needs clarification.
Collapse
Affiliation(s)
- Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Varland S, Arnesen T. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Res Notes 2018; 11:404. [PMID: 29929531 PMCID: PMC6013942 DOI: 10.1186/s13104-018-3513-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Objective N-terminal acetylation is a common protein modification that occurs preferentially co-translationally as the substrate N-terminus is emerging from the ribosome. The major N-terminal acetyltransferase complex A (NatA) is estimated to N-terminally acetylate more than 40% of the human proteome. To form a functional NatA complex the catalytic subunit NAA10 must bind the auxiliary subunit NAA15, which properly folds NAA10 for correct substrate acetylation as well as anchors the entire complex to the ribosome. Mutations in these two genes are associated with various neurodevelopmental disorders in humans. The aim of this study was to investigate the in vivo functionality of a Schizosaccharomyces pombe NAA15 mutant that is known to prevent NatA from associating with ribosomes, but retains NatA-specific activity in vitro. Results Here, we show that Schizosaccharomyces pombe NatA can functionally replace Saccharomyces cerevisiae NatA. We further demonstrate that the NatA ribosome-binding mutant Naa15 ΔN K6E is unable to rescue the temperature-sensitive growth phenotype of budding yeast lacking NatA. This finding indicates the in vivo importance of the co-translational nature of NatA-mediated N-terminal acetylation.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biological Sciences, University of Bergen, 5006, Bergen, Norway. .,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, 5006, Bergen, Norway.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
44
|
Valentine V, Sogawa Y, Rajan D, Ortiz D. A case of de novo NAA10 mutation presenting with eyelid myoclonias (AKA Jeavons syndrome). Seizure 2018; 60:120-122. [PMID: 29957440 DOI: 10.1016/j.seizure.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022] Open
Affiliation(s)
- Vinod Valentine
- Department of Child Neurology, Children's Hospital of Pittsburgh of UPMC, United States.
| | - Yoshimi Sogawa
- Department of Child Neurology, Children's Hospital of Pittsburgh of UPMC, United States
| | - Deepa Rajan
- Department of Child Neurology, Children's Hospital of Pittsburgh of UPMC, United States
| | - Damara Ortiz
- Department of Genetics, Children's Hospital of Pittsburgh of UPMC, United States
| |
Collapse
|
45
|
A novel NAA10 variant with impaired acetyltransferase activity causes developmental delay, intellectual disability, and hypertrophic cardiomyopathy. Eur J Hum Genet 2018; 26:1294-1305. [PMID: 29748569 DOI: 10.1038/s41431-018-0136-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 03/02/2018] [Indexed: 11/09/2022] Open
Abstract
The NAA10-NAA15 complex (NatA) is an N-terminal acetyltransferase that catalyzes N-terminal acetylation of ~40% of all human proteins. N-terminal acetylation has several different roles in the cell, including altering protein stability and degradation, protein localization and protein-protein interactions. In recent years several X-linked NAA10 variants have been associated with genetic disorders. We have identified a previously undescribed NAA10 c.215T>C p.(Ile72Thr) variant in three boys from two unrelated families with a milder phenotypic spectrum in comparison to most of the previously described patients with NAA10 variants. These boys have development delay, intellectual disability, and cardiac abnormalities as overlapping phenotypes. Functional studies reveal that NAA10 Ile72Thr is destabilized, while binding to NAA15 most likely is intact. Surprisingly, the NatA activity of NAA10 Ile72Thr appears normal while its monomeric activity is decreased. This study further broadens the phenotypic spectrum associated with NAA10 deficiency, and adds to the evidence that genotype-phenotype correlations for NAA10 variants are much more complex than initially anticipated.
Collapse
|
46
|
Cheng H, Dharmadhikari AV, Varland S, Ma N, Domingo D, Kleyner R, Rope AF, Yoon M, Stray-Pedersen A, Posey JE, Crews SR, Eldomery MK, Akdemir ZC, Lewis AM, Sutton VR, Rosenfeld JA, Conboy E, Agre K, Xia F, Walkiewicz M, Longoni M, High FA, van Slegtenhorst MA, Mancini GMS, Finnila CR, van Haeringen A, den Hollander N, Ruivenkamp C, Naidu S, Mahida S, Palmer EE, Murray L, Lim D, Jayakar P, Parker MJ, Giusto S, Stracuzzi E, Romano C, Beighley JS, Bernier RA, Küry S, Nizon M, Corbett MA, Shaw M, Gardner A, Barnett C, Armstrong R, Kassahn KS, Van Dijck A, Vandeweyer G, Kleefstra T, Schieving J, Jongmans MJ, de Vries BBA, Pfundt R, Kerr B, Rojas SK, Boycott KM, Person R, Willaert R, Eichler EE, Kooy RF, Yang Y, Wu JC, Lupski JR, Arnesen T, Cooper GM, Chung WK, Gecz J, Stessman HAF, Meng L, Lyon GJ. Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies. Am J Hum Genet 2018; 102:985-994. [PMID: 29656860 DOI: 10.1016/j.ajhg.2018.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/27/2018] [Indexed: 11/30/2022] Open
Abstract
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
Collapse
Affiliation(s)
| | | | - Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Ning Ma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deepti Domingo
- School of Biological Sciences, Faculty of Genes and Evolution, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Alan F Rope
- Department of Medical Genetics, Kaiser Permanente Northwest, Portland, OR 97227, USA
| | - Margaret Yoon
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA
| | - Asbjørg Stray-Pedersen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, N-0424 Oslo, and Institute of Clinical Medicine, University of Oslo, N-0318 Oslo, Norway
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah R Crews
- Department of Pharmacology, Creighton University Medical School, Omaha, NE, 68178, USA
| | - Mohammad K Eldomery
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Vernon R Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erin Conboy
- Department of Clinical Genomics, Mayo Clinic, MN 55905, USA
| | - Katherine Agre
- Department of Clinical Genomics, Mayo Clinic, MN 55905, USA
| | - Fan Xia
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Magdalena Walkiewicz
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The National Institute of Allergy and Infectious Disease, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Frances A High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | | | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Nicolette den Hollander
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Sakkubai Naidu
- Kennedy Krieger Institute, 801 North Broadway Baltimore, MD 21205, USA
| | - Sonal Mahida
- Kennedy Krieger Institute, 801 North Broadway Baltimore, MD 21205, USA
| | - Elizabeth E Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2031, Australia
| | - Lucinda Murray
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Derek Lim
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham B15 2TG, UK
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL 33155, USA
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Stefania Giusto
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | - Emanuela Stracuzzi
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | - Corrado Romano
- Oasi Research Institute - Istituto di Ricovero e Cura a Carattere Scientifico, Troina 94018, Italy
| | | | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle WA, 98195, USA
| | - Sébastien Küry
- Department of Medical Genetics, Centre Hospitalier Universitaire, Nantes 44093, France
| | - Mathilde Nizon
- Department of Medical Genetics, Centre Hospitalier Universitaire, Nantes 44093, France
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Alison Gardner
- Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia
| | - Christopher Barnett
- Paediatric and Reproductive Genetics, South Australian Clinical Genetics Service, SA Pathology (at Women's and Children's Hospital), Adelaide, SA 5006, Australia
| | - Ruth Armstrong
- East Anglian Medical Genetics Service, Clinical Genetics, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Karin S Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Jolanda Schieving
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Marjolijn J Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9PL, UK; Division of Evolution and Genomic Sciences School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Samantha K Rojas
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Yaping Yang
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center of Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway; Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jozef Gecz
- School of Biological Sciences, Faculty of Genes and Evolution, the University of Adelaide, Adelaide, SA 5000, Australia; Adelaide Medical School and Robinson Research Institute, the University of Adelaide, Adelaide, SA 5000, Australia; Healthy Mothers, Babies and Children, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Holly A F Stessman
- Department of Pharmacology, Creighton University Medical School, Omaha, NE, 68178, USA
| | - Linyan Meng
- Baylor Genetics, Houston, TX, 77021, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, 1Bungtown Road, Cold Spring Harbor Laboratory, NY 11724, USA.
| |
Collapse
|
47
|
Pesz K, Pienkowski VM, Pollak A, Gasperowicz P, Sykulski M, Kosińska J, Kiszko M, Krzykwa B, Bartnik-Głaska M, Nowakowska B, Rydzanicz M, Sasiadek MM, Płoski R. Phenotypic consequences of gene disruption by a balanced de novo translocation involving SLC6A1 and NAA15. Eur J Med Genet 2018; 61:596-601. [PMID: 29621621 DOI: 10.1016/j.ejmg.2018.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022]
Abstract
Mapping of de novo balanced chromosomal translocations (BCTs) in patients with sporadic poorly characterized disease(s) is an unbiased method of finding candidate gene(s) responsible for the observed symptoms. We present a paediatric patient suffering from epilepsy, developmental delay (DD) and atrial septal defect IIº (ASD) requiring surgery. Karyotyping indicated an apparently balanced de novo reciprocal translocation 46,XX,t(3;4)(p25.3;q31.1), whereas aCGH did not reveal any copy number changes. Using shallow mate-pair whole genome sequencing and direct Sanger sequencing of breakpoint regions we found that translocation disrupted SLC6A1 and NAA15 genes. Our results confirm two previous reports indicating that loss of function of a single allele of SLC6A1 causes epilepsy. In addition, we extend existing evidence that disruption of NAA15 is associated with DD and with congenital heart defects.
Collapse
Affiliation(s)
- Karolina Pesz
- Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Piotr Gasperowicz
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Maciej Sykulski
- Department of Medical Informatics and Telemedicine, Warsaw Medical University, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | | | | | | | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
48
|
McTiernan N, Støve SI, Aukrust I, Mårli MT, Myklebust LM, Houge G, Arnesen T. NAA10 dysfunction with normal NatA-complex activity in a girl with non-syndromic ID and a de novo NAA10 p.(V111G) variant - a case report. BMC MEDICAL GENETICS 2018; 19:47. [PMID: 29558889 PMCID: PMC5859388 DOI: 10.1186/s12881-018-0559-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 01/02/2023]
Abstract
Background The NAA10-NAA15 (NatA) protein complex is an N-terminal acetyltransferase responsible for acetylating ~ 40% of eukaryotic proteins. In recent years, NAA10 variants have been found in patients with an X-linked developmental disorder called Ogden syndrome in its most severe form and, in other familial or de novo cases, with variable degrees of syndromic intellectual disability (ID) affecting both sexes. Case presentation Here we report and functionally characterize a novel and de novo NAA10 (NM_003491.3) c.332 T > G p.(V111G) missense variant, that was detected by trio-based whole exome sequencing in an 11 year old girl with mild/moderate non-syndromic intellectual disability. She had delayed motor and language development, but normal behavior without autistic traits. Her blood leukocyte X-inactivation pattern was within normal range (80/20). Functional characterization of NAA10-V111G by cycloheximide chase experiments suggests that NAA10-V111G has a reduced stability compared to NAA10-WT, and in vitro acetylation assays revealed a reduced enzymatic activity of monomeric NAA10-V111G but not for NAA10-V111G in complex with NAA15 (NatA enzymatic activity). Conclusions We show that NAA10-V111G has a reduced stability and monomeric catalytic activity, while NatA function remains unaltered. This is the first example of isolated NAA10 dysfunction in a case of ID, suggesting that the syndromic cases may also require a degree of compromised NatA function.
Collapse
Affiliation(s)
- Nina McTiernan
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Svein Isungset Støve
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020, Bergen, Norway
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, N-5021, Bergen, Norway
| | | | - Line M Myklebust
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020, Bergen, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, N-5021, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Bergen, Norway. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5020, Bergen, Norway. .,Department of Surgery, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
49
|
Zhao JJ, Halvardson J, Zander CS, Zaghlool A, Georgii‐Hemming P, Månsson E, Brandberg G, Sävmarker HE, Frykholm C, Kuchinskaya E, Thuresson A, Feuk L. Exome sequencing reveals NAA15 and PUF60 as candidate genes associated with intellectual disability. Am J Med Genet B Neuropsychiatr Genet 2018; 177:10-20. [PMID: 28990276 PMCID: PMC5765476 DOI: 10.1002/ajmg.b.32574] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 11/07/2022]
Abstract
Intellectual Disability (ID) is a clinically heterogeneous condition that affects 2-3% of population worldwide. In recent years, exome sequencing has been a successful strategy for studies of genetic causes of ID, providing a growing list of both candidate and validated ID genes. In this study, exome sequencing was performed on 28 ID patients in 27 patient-parent trios with the aim to identify de novo variants (DNVs) in known and novel ID associated genes. We report the identification of 25 DNVs out of which five were classified as pathogenic or likely pathogenic. Among these, a two base pair deletion was identified in the PUF60 gene, which is one of three genes in the critical region of the 8q24.3 microdeletion syndrome (Verheij syndrome). Our result adds to the growing evidence that PUF60 is responsible for the majority of the symptoms reported for carriers of a microdeletion across this region. We also report variants in several genes previously not associated with ID, including a de novo missense variant in NAA15. We highlight NAA15 as a novel candidate ID gene based on the vital role of NAA15 in the generation and differentiation of neurons in neonatal brain, the fact that the gene is highly intolerant to loss of function and coding variation, and previously reported DNVs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jin J. Zhao
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Jonatan Halvardson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Cecilia S. Zander
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ammar Zaghlool
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Patrik Georgii‐Hemming
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden,Department of Molecular Medicine and SurgeryKarolinska InstituteKarolinska University Hospital SolnaStockholmSweden
| | - Else Månsson
- Department of PediatricsÖrebro University HospitalÖrebroSweden
| | | | | | - Carina Frykholm
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics, and Department of Clinical MedicineLinköping UniversityLinköpingSweden
| | - Ann‐Charlotte Thuresson
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| | - Lars Feuk
- Department of ImmunologyGenetics and PathologyScience for Life Laboratory UppsalaUppsala UniversityUppsalaSweden
| |
Collapse
|
50
|
Varland S, Myklebust LM, Goksøyr SØ, Glomnes N, Torsvik J, Varhaug JE, Arnesen T. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30. Gene 2017; 644:27-37. [PMID: 29247799 DOI: 10.1016/j.gene.2017.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
N-terminal acetylation is a highly abundant and important protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs). In humans, six different NATs have been identified (NatA-NatF), each composed of individual subunits and acetylating a distinct set of substrates. Along with most NATs, NatC acts co-translationally at the ribosome. The NatC complex consists of the catalytic subunit Naa30 and the auxiliary subunits Naa35 and Naa38, and can potentially Nt-acetylate cytoplasmic proteins when the initiator methionine is followed by a bulky hydrophobic/amphipathic residue at position 2. Here, we have identified a splice variant of human NAA30, which encodes a truncated protein named Naa30288. The splice variant was abundantly present in thyroid cancer tissues and in several different human cancer cell lines. Surprisingly, Naa30288 localized predominantly to the nucleus, as opposed to annotated Naa30 which has a cytoplasmic localization. Full-length Naa30 acetylated a classical NatC substrate peptide in vitro, whereas no significant NAT activity was detected for Naa30288. Due to the nuclear localization, we also examined acetyltransferase activity towards lysine residues. Neither full-length Naa30 nor Naa30288 displayed any lysine acetyltransferase activity. Overexpression of full-length Naa30 increased cell viability via inhibition of apoptosis. In contrast, Naa30288 did not exert an anti-apoptotic effect. In sum, we identified a novel and widely expressed Naa30 isoform with a potential non-catalytic role in the nucleus.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Siri Øfsthus Goksøyr
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Nina Glomnes
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway; Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Janniche Torsvik
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Jan Erik Varhaug
- Department of Surgery, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway; Department of Surgery, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway.
| |
Collapse
|