1
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
2
|
Raj S, Vishwakarma P, Saxena S, Kumar V, Khatri R, Kumar A, Singh M, Mishra S, Asthana S, Ahmed S, Samal S. Intradermal Immunization of Soluble Influenza HA Derived from a Lethal Virus Induces High Magnitude and Breadth of Antibody Responses and Provides Complete Protection In Vivo. Vaccines (Basel) 2023; 11:780. [PMID: 37112692 PMCID: PMC10141624 DOI: 10.3390/vaccines11040780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.
Collapse
Affiliation(s)
- Sneha Raj
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shikha Saxena
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Varun Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Amit Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Mrityunjay Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Surbhi Mishra
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shailendra Asthana
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Shubbir Ahmed
- Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
3
|
Wang Y, Tang CY, Wan XF. Antigenic characterization of influenza and SARS-CoV-2 viruses. Anal Bioanal Chem 2022; 414:2841-2881. [PMID: 34905077 PMCID: PMC8669429 DOI: 10.1007/s00216-021-03806-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Primary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influenza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vaccine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods and current developments for addressing these challenges.
Collapse
Affiliation(s)
- Yang Wang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Cynthia Y Tang
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia, MO, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
4
|
Lau BT, Pavlichin D, Hooker AC, Almeda A, Shin G, Chen J, Sahoo MK, Huang CH, Pinsky BA, Lee HJ, Ji HP. Profiling SARS-CoV-2 mutation fingerprints that range from the viral pangenome to individual infection quasispecies. Genome Med 2021; 13:62. [PMID: 33875001 PMCID: PMC8054698 DOI: 10.1186/s13073-021-00882-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background The genome of SARS-CoV-2 is susceptible to mutations during viral replication due to the errors generated by RNA-dependent RNA polymerases. These mutations enable the SARS-CoV-2 to evolve into new strains. Viral quasispecies emerge from de novo mutations that occur in individual patients. In combination, these sets of viral mutations provide distinct genetic fingerprints that reveal the patterns of transmission and have utility in contact tracing. Methods Leveraging thousands of sequenced SARS-CoV-2 genomes, we performed a viral pangenome analysis to identify conserved genomic sequences. We used a rapid and highly efficient computational approach that relies on k-mers, short tracts of sequence, instead of conventional sequence alignment. Using this method, we annotated viral mutation signatures that were associated with specific strains. Based on these highly conserved viral sequences, we developed a rapid and highly scalable targeted sequencing assay to identify mutations, detect quasispecies variants, and identify mutation signatures from patients. These results were compared to the pangenome genetic fingerprints. Results We built a k-mer index for thousands of SARS-CoV-2 genomes and identified conserved genomics regions and landscape of mutations across thousands of virus genomes. We delineated mutation profiles spanning common genetic fingerprints (the combination of mutations in a viral assembly) and a combination of mutations that appear in only a small number of patients. We developed a targeted sequencing assay by selecting primers from the conserved viral genome regions to flank frequent mutations. Using a cohort of 100 SARS-CoV-2 clinical samples, we identified genetic fingerprints consisting of strain-specific mutations seen across populations and de novo quasispecies mutations localized to individual infections. We compared the mutation profiles of viral samples undergoing analysis with the features of the pangenome. Conclusions We conducted an analysis for viral mutation profiles that provide the basis of genetic fingerprints. Our study linked pangenome analysis with targeted deep sequenced SARS-CoV-2 clinical samples. We identified quasispecies mutations occurring within individual patients and determined their general prevalence when compared to over 70,000 other strains. Analysis of these genetic fingerprints may provide a way of conducting molecular contact tracing.
Collapse
Affiliation(s)
- Billy T Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA.,Stanford Genome Technology Center West, Stanford University, Palo Alto, CA, 94304, USA
| | - Dmitri Pavlichin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA
| | - Anna C Hooker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA
| | - Giwon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA
| | - Jiamin Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun Hong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ho Joon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA.
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR 1120, Stanford, CA, 94305-5151, USA. .,Stanford Genome Technology Center West, Stanford University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
5
|
Lau BT, Pavlichin D, Hooker AC, Almeda A, Shin G, Chen J, Sahoo MK, Huang C, Pinsky BA, Lee H, Ji HP. Profiling SARS-CoV-2 mutation fingerprints that range from the viral pangenome to individual infection quasispecies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.02.20224816. [PMID: 33173909 PMCID: PMC7654905 DOI: 10.1101/2020.11.02.20224816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The genome of SARS-CoV-2 is susceptible to mutations during viral replication due to the errors generated by RNA-dependent RNA polymerases. These mutations enable the SARS-CoV-2 to evolve into new strains. Viral quasispecies emerge from de novo mutations that occur in individual patients. In combination, these sets of viral mutations provide distinct genetic fingerprints that reveal the patterns of transmission and have utility in contract tracing. Methods Leveraging thousands of sequenced SARS-CoV-2 genomes, we performed a viral pangenome analysis to identify conserved genomic sequences. We used a rapid and highly efficient computational approach that relies on k-mers, short tracts of sequence, instead of conventional sequence alignment. Using this method, we annotated viral mutation signatures that were associated with specific strains. Based on these highly conserved viral sequences, we developed a rapid and highly scalable targeted sequencing assay to identify mutations, detect quasispecies and identify mutation signatures from patients. These results were compared to the pangenome genetic fingerprints. Results We built a k-mer index for thousands of SARS-CoV-2 genomes and identified conserved genomics regions and landscape of mutations across thousands of virus genomes. We delineated mutation profiles spanning common genetic fingerprints (the combination of mutations in a viral assembly) and rare ones that occur in only small fraction of patients. We developed a targeted sequencing assay by selecting primers from the conserved viral genome regions to flank frequent mutations. Using a cohort of SARS-CoV-2 clinical samples, we identified genetic fingerprints consisting of strain-specific mutations seen across populations and de novo quasispecies mutations localized to individual infections. We compared the mutation profiles of viral samples undergoing analysis with the features of the pangenome. Conclusions We conducted an analysis for viral mutation profiles that provide the basis of genetic fingerprints. Our study linked pangenome analysis with targeted deep sequenced SARS-CoV-2 clinical samples. We identified quasispecies mutations occurring within individual patients, mutations demarcating dominant species and the prevalence of mutation signatures, of which a significant number were relatively unique. Analysis of these genetic fingerprints may provide a way of conducting molecular contact tracing.
Collapse
Affiliation(s)
- Billy T. Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
- Stanford Genome Technology Center West, Stanford University, Palo Alto, CA, 94304, United States
| | - Dmitri Pavlichin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Anna C. Hooker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Giwon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Jiamin Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, United States
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, United States
- Stanford Genome Technology Center West, Stanford University, Palo Alto, CA, 94304, United States
| |
Collapse
|
6
|
T RM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc Natl Acad Sci U S A 2020; 117:12306-12314. [PMID: 32439709 PMCID: PMC7275699 DOI: 10.1073/pnas.1915681117] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current influenza vaccination strategies require annual immunizations, with fairly low efficacy rates. One technique to improve protection against a greater breadth of influenza viruses is to elicit broadly cross-reactive cell-mediated immunity and generate a local population of cytotoxic T cells to respond to conserved regions of circulating viruses. However, this approach requires improved understanding of how these cells migrate within and attach to the tissue in order to persist and offer long-term immunity. This study investigates how receptors on the T cell surface impact the cell’s ability to interact with the tissue and provide evidence of which of these receptors are essential for protection. Furthermore, these studies reveal functional in vivo mechanisms of cellular markers used to characterize TRM. Tissue-resident memory CD8 T (TRM) cells are a unique immune memory subset that develops and remains in peripheral tissues at the site of infection, providing future host resistance upon reexposure to that pathogen. In the pulmonary system, TRM are identified through S1P antagonist CD69 and expression of integrins CD103/β7 and CD49a/CD29(β1). Contrary to the established role of CD69 on CD8 T cells, the functions of CD103 and CD49a on this population are not well defined. This study examines the expression patterns and functions of CD103 and CD49a with a specific focus on their impact on T cell motility during influenza virus infection. We show that the TRM cell surface phenotype develops by 2 wk postinfection, with the majority of the population expressing CD49a and a subset that is also positive for CD103. Despite a previously established role in retaining TRM in peripheral tissues, CD49a facilitates locomotion of virus-specific CD8 T cells, both in vitro and in vivo. These results demonstrate that CD49a may contribute to local surveillance mechanisms of the TRM population.
Collapse
|
7
|
Abstract
This work shows that the amidated terminal ends of the secreted hypocretin (HCRT) peptides (HCRTNH2) are autoantigens in type 1 narcolepsy, an autoimmune disorder targeting HCRT neurons. The autoimmune process is usually initiated by influenza A flu infections, and a particular piece of the hemagglutinin (HA) flu protein of the pandemic 2009 H1N1 strain was identified as a likely trigger. This HA epitope has homology with HCRTNH2 and T cells cross-reactive to both epitopes are involved in the autoimmune process by molecular mimicry. Genes associated with narcolepsy mark the particular HLA heterodimer (DQ0602) involved in presentation of these antigens and modulate expression of the specific T cell receptor segments (TRAJ24 and TRBV4-2) involved in T cell receptor recognition of these antigens, suggesting causality. Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide–specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273–287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17–31 and C-amidated but not native version of HCRT54–66 and HCRT86–97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3β TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273–287-tetramers, suggesting molecular mimicry. This public CDR3β uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/β CDR3 motifs of HCRT54–66-NH2 and HCRT86–97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/β CDR3 sequences found in pHA273–287, NP17–31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ–secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.
Collapse
|
8
|
Valley-Omar Z, Iyengar P, von Mollendorf C, Tempia S, Moerdyk A, Hellferscee O, Martinson N, McMorrow M, Variava E, Masonoke K, Cohen AL, Cohen C, Treurnicht FK. Intra-host and intra-household diversity of influenza A viruses during household transmissions in the 2013 season in 2 peri-urban communities of South Africa. PLoS One 2018; 13:e0198101. [PMID: 29795677 PMCID: PMC5967731 DOI: 10.1371/journal.pone.0198101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Limited information is available on influenza virus sequence drift between transmission events. In countries with high HIV burdens, like South Africa, the direct and indirect effect of HIV on influenza sequence drift between transmission events may be of public health concern. To this end, we measured hemagglutinin sequence diversity between influenza transmission events using data and specimens from a study investigating household transmission dynamics of seasonal influenza viruses in 2 peri-urban communities in South Africa during the 2013 influenza season. Thirty index cases and 107 of 110 eligible household contacts were enrolled into the study, 47% (14/30) demonstrating intra-household laboratory-confirmed influenza transmission. In this study 35 partial hemagglutinin gene sequences were obtained by Sanger sequencing from 11 index cases (sampled at enrolment only) and 16 secondary cases (8 cases sampled at 1 and 8 cases sampled at 2 time-points). Viral sequence identities confirmed matched influenza transmission pairs within the 11 households with corresponding sequenced index and secondary cases. Phylogenetic analysis revealed 10 different influenza viral lineages in the 14 households. Influenza A(H1N1)pdm09 strains were shown to be genetically distinct between the 2 communities (from distinct geographic regions), which was not observed for the influenza A(H3N2) strains. Intra-host/intra-household influenza A(H3N2) sequence drift was identified in 2 households. The first was a synonymous mutation between the index case and a household contact, and the second a non-synonymous mutation between 2 serial samples taken at days 0 and 4 post enrolment from an HIV-infected secondary case. Limited inter-household sequence diversity was observed as highlighted by sharing of the same influenza strain between different households within each community. The limited intra-household sequence drift is in line with previous studies also using Sanger sequencing, corroborating the presence of strict selective bottlenecks that limit sequence variance. We were not able to directly ascertain the effect of HIV on influenza sequence drift between transmission events.
Collapse
Affiliation(s)
- Ziyaad Valley-Omar
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Preetha Iyengar
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Claire von Mollendorf
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alexandra Moerdyk
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Orienka Hellferscee
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Meredith McMorrow
- Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ebrahim Variava
- Department of Internal Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Katlego Masonoke
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adam L. Cohen
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Global Immunization Monitoring and Surveillance, Expanded Programme on Immunization, Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florette K. Treurnicht
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
9
|
Abstract
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution.
Collapse
Affiliation(s)
- Katherine S Xue
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Louise H Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Chong Y, Ikematsu H. Is seasonal vaccination a contributing factor to the selection of influenza epidemic variants? Hum Vaccin Immunother 2017; 14:518-522. [PMID: 28857677 DOI: 10.1080/21645515.2017.1373228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Influenza A/H3N2 viruses are the most common and virulent subtypes for humans. Antigenic drift, changes in antigenicity through the accumulation of mutations in the hemagglutinin (HA) gene is chiefly responsible for the continuing circulation of A/H3N2 viruses, resulting in frequent updates of vaccine strains based on new variant analyses. In humans, these drift-related mutations are considered to be primarily caused by the immune pressure elicited by natural infection. Whether or not the immune pressure elicited by vaccination (vaccine pressure) can have a certain effect on drift-related mutations is unclear. Recently, our findings suggested the possible effect of vaccine pressure on HA mutations by directly comparing amino acid differences from the corresponding vaccine strains between isolates from vaccinated and unvaccinated patients. It is possible that influenza vaccine pressure selects variants genetically distant from the vaccine strains. Considering the effect of vaccine pressure on HA mutations would contribute to further understanding the mechanism of antigenic drift, which would be helpful for predicting future epidemic viruses.
Collapse
Affiliation(s)
- Yong Chong
- a Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences , Fukuoka , Japan
| | - Hideyuki Ikematsu
- b Influenza Study Group, Japan Physicians Association , Fukuoka , Japan
| |
Collapse
|