1
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
2
|
Read ML, Berry SC, Graham KS, Voets NL, Zhang J, Aggleton JP, Lawrence AD, Hodgetts CJ. Scene-selectivity in CA1/subicular complex: Multivoxel pattern analysis at 7T. Neuropsychologia 2024; 194:108783. [PMID: 38161052 DOI: 10.1016/j.neuropsychologia.2023.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Prior univariate functional magnetic resonance imaging (fMRI) studies in humans suggest that the anteromedial subicular complex of the hippocampus is a hub for scene-based cognition. However, it is possible that univariate approaches were not sufficiently sensitive to detect scene-related activity in other subfields that have been implicated in spatial processing (e.g., CA1). Further, as connectivity-based functional gradients in the hippocampus do not respect classical subfield boundary definitions, category selectivity may be distributed across anatomical subfields. Region-of-interest approaches, therefore, may limit our ability to observe category selectivity across discrete subfield boundaries. To address these issues, we applied searchlight multivariate pattern analysis to 7T fMRI data of healthy adults who undertook a simultaneous visual odd-one-out discrimination task for scene and non-scene (including face) visual stimuli, hypothesising that scene classification would be possible in multiple hippocampal regions within, but not constrained to, anteromedial subicular complex and CA1. Indeed, we found that the scene-selective searchlight map overlapped not only with anteromedial subicular complex (distal subiculum, pre/para subiculum), but also inferior CA1, alongside posteromedial (including retrosplenial) and parahippocampal cortices. Probabilistic overlap maps revealed gradients of scene category selectivity, with the strongest overlap located in the medial hippocampus, converging with searchlight findings. This was contrasted with gradients of face category selectivity, which had stronger overlap in more lateral hippocampus, supporting ideas of parallel processing streams for these two categories. Our work helps to map the scene, in contrast to, face processing networks within, and connected to, the human hippocampus.
Collapse
Affiliation(s)
- Marie-Lucie Read
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Samuel C Berry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Kim S Graham
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, John Radcliffe Hospital, Oxford, OX3 9DU2, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Mathematics and Computer Science, Swansea University, Swansea SA1 8DD, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK; Department of Psychology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
3
|
Lissaman R, Lancaster TM, Parker GD, Graham KS, Lawrence AD, Hodgetts CJ. Tract-specific differences in white matter microstructure between young adult APOE ε4 carriers and non-carriers: A replication and extension study. NEUROIMAGE. REPORTS 2022; 2:None. [PMID: 36507069 PMCID: PMC9726682 DOI: 10.1016/j.ynirp.2022.100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
The parahippocampal cingulum bundle (PHCB) interconnects regions known to be vulnerable to early Alzheimer's disease (AD) pathology, including posteromedial cortex and medial temporal lobe. While AD-related pathology has been robustly associated with alterations in PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger adults at increased risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young adult carriers of the apolipoprotein-E (APOE) ε4 allele - the strongest common genetic risk factor for AD - showed higher FA and lower MD in the PHCB but not the inferior longitudinal fasciculus (ILF). These results are consistent with proposals claiming that heightened neural activity and intrinsic connectivity play a significant role in increasing posteromedial cortex vulnerability to amyloid-β and tau spread beyond the medial temporal lobe. Given the implications for understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age range = 19-33). Extending this work, we also conducted an exploratory analysis using a more advanced measure of white matter microstructure: hindrance modulated orientational anisotropy (HMOA). Contrary to the original study, we did not observe higher FA or lower MD in the PHCB of APOE ε4 carriers relative to non-carriers. Bayes factors (BFs) further revealed moderate-to-strong evidence in support of these null findings. In addition, we observed no APOE ε4-related differences in PHCB HMOA. Our findings indicate that young adult APOE ε4 carriers and non-carriers do not differ in PHCB microstructure, casting some doubt on the notion that early-life variation in PHCB tract microstructure might enhance vulnerability to amyloid-β accumulation and/or tau spread.
Collapse
Affiliation(s)
- Rikki Lissaman
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- School of Psychology, University of Bath, Bath, England, United Kingdom
| | - Greg D. Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kim S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Carl J. Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Psychology, Royal Holloway, University of London, Egham, England, United Kingdom
| |
Collapse
|
4
|
Goddard E, Contini EW, Irish M. Exploring Information Flow from Posteromedial Cortex during Visuospatial Working Memory: A Magnetoencephalography Study. J Neurosci 2022; 42:5944-5955. [PMID: 35732493 PMCID: PMC9337606 DOI: 10.1523/jneurosci.2129-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/29/2023] Open
Abstract
The posteromedial cortex (PMC) is a major hub of the brain's default mode network, and is implicated in a broad range of internally driven cognitions, including visuospatial working memory. However, its precise contribution to these cognitive processes remains unclear. Using MEG, we measured PMC activity in healthy human participants (young adults of both sexes) while they performed a visuospatial working memory task. Multivariate pattern classification analyses revealed stimulus-related information during encoding and retrieval in a set of a priori defined cortical ROIs, including prefrontal, occipital, and ventrotemporal cortices, in addition to PMC. We measured the extent to which this stimulus information was exchanged between areas in an information flow analysis, measuring Granger-causal relationships between areas over time. Consistent with the visual nature of the task, information from occipital cortex shaped other regions across most epochs. However, the PMC shaped object representations in occipital and prefrontal cortices during visuospatial working memory, influencing occipital cortex during retrieval and PFC across all task epochs. Our findings are consistent with a proposed role for the PMC in the representation of internal content, including remembered information, and in the comparison of external stimuli with remembered material.SIGNIFICANCE STATEMENT The human brain operates as a collection of highly interconnected regions. Mapping the function of this interconnectivity, as well as the specializations within different regions, is central to understanding the neural processes underlying cognition. The posteromedial cortex (PMC) is a highly connected cortical region, implicated in visuospatial working memory, although its precise contribution remains unclear. We measured the activity of PMC during a visuospatial working memory task, testing how different regions represented the stimuli, and whether these representations were driven by other cortical regions. We found that PMC influenced stimulus information in other regions across all task phases, suggesting that PMC plays a key role in shaping stimulus representations during visuospatial working memory.
Collapse
Affiliation(s)
- Erin Goddard
- School of Psychology, University of New South Wales, Sydney, NSW 2052, Australia
| | - Erika W Contini
- Department of Cognitive Science, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Muireann Irish
- University of Sydney, School of Psychology and Brain & Mind Centre, Sydney, NSW 2050, Australia
| |
Collapse
|
5
|
Kawabata S. Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:913693. [PMID: 35865745 PMCID: PMC9294348 DOI: 10.3389/fnagi.2022.913693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
The amyloid hypothesis for the pathogenesis of Alzheimer’s disease (AD) is widely accepted. Last year, the US Food and Drug Administration considered amyloid-β peptide (Aβ) as a surrogate biomarker and approved an anti-Aβ antibody, aducanumab, although its effectiveness in slowing the progression of AD is still uncertain. This approval has caused a great deal of controversy. Opinions are divided about whether there is enough evidence to definitely consider Aβ as a causative substance of AD. To develop this discussion constructively and to discover the most suitable therapeutic interventions in the end, an alternative persuasive hypothesis needs to emerge to better explain the facts. In this paper, I propose a hypothesis that excessive/aberrant and maladaptive synaptic plasticity is the pathophysiological basis for AD.
Collapse
|
6
|
Costigan A, Umla-Runge K, Evans C, Raybould R, Graham K, Lawrence A. Evidence against altered excitatory/inhibitory balance in the posteromedial cortex of young adult APOE E4 carriers: A resting state 1H-MRS study. NEUROIMAGE. REPORTS 2021; 1:100059. [PMID: 36896169 PMCID: PMC9986794 DOI: 10.1016/j.ynirp.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
A strategy to gain insight into early changes that may predispose people to Alzheimer's disease (AD) is to study the brains of younger cognitively healthy people that are at increased genetic risk of AD. The Apolipoprotein (APOE) E4 allele is the strongest genetic risk factor for AD, and several neuroimaging studies comparing APOE E4 carriers with non-carriers at age ∼20-30 years have detected hyperactivity (or reduced deactivation) in posteromedial cortex (PMC), a key hub of the default network (DN), which has a high susceptibility to early amyloid deposition in AD. Transgenic mouse models suggest such early network activity alterations may result from altered excitatory/inhibitory (E/I) balance, but this is yet to be examined in humans. Here we test the hypothesis that PMC fMRI hyperactivity could be underpinned by altered levels of excitatory (glutamate) and/or inhibitory (GABA) neurotransmitters in this brain region. Forty-seven participants (20 APOE E4 carriers and 27 non-carriers) aged 18-25 years underwent resting-state proton magnetic resonance spectroscopy (1H-MRS), a non-invasive neuroimaging technique to measure glutamate and GABA in vivo. Metabolites were measured in a PMC voxel of interest and in a comparison voxel in the occipital cortex (OCC). There was no difference in either glutamate or GABA between the E4 carriers and non-carriers in either MRS voxel, or in the ratio of glutamate to GABA, a measure of E/I balance. Default Bayesian t-tests revealed evidence in support of this null finding. Our findings suggest that PMC hyperactivity in APOE E4 carriers is unlikely to be associated with, or possibly may precede, alterations in local resting-state PMC neurotransmitters, thus informing our understanding of the spatio-temporal sequence of early network alterations underlying APOE E4 related AD risk.
Collapse
Affiliation(s)
- A.G. Costigan
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K. Umla-Runge
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C.J. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R. Raybould
- UK Dementia Research Institute, Cardiff, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K.S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - A.D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
7
|
Zhang H, Chiu PW, Ip I, Liu T, Wong GHY, Song YQ, Wong SWH, Herrup K, Mak HKF. Asymmetric left-right hippocampal glutamatergic modulation of cognitive control in ApoE-isoform subjects is unrelated to neuroinflammation. Eur J Neurosci 2021; 54:5310-5326. [PMID: 34309092 PMCID: PMC9290961 DOI: 10.1111/ejn.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1H‐MRS) and task‐based functional magnetic resonance imaging (fMRI) study (using face‐name paired‐associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non‐ApoE4 carriers) found altered patterns of relationships between glutamatergic‐modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left–right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non‐carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non‐ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong
| | - Pui Wai Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Isaac Ip
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Tianyin Liu
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - Gloria Hoi Yan Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Savio Wai Ho Wong
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Karl Herrup
- Alzheimer Disease Research Centre, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Henry Ka Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Chandler HL, Hodgetts CJ, Caseras X, Murphy K, Lancaster TM. Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity. Neuropsychopharmacology 2020; 45:1171-1178. [PMID: 31896120 PMCID: PMC7234982 DOI: 10.1038/s41386-019-0595-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
Preclinical models of Alzheimer's disease (AD) suggest APOE modulates brain function in structures vulnerable to AD pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in young individuals remains unknown. In a large sample (N = 608) of young, asymptomatic individuals, we measure the impact of both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology. Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing. We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid potential therapeutic/interventional strategies in the detection and prevention of AD.
Collapse
Affiliation(s)
- Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Kevin Murphy
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Thomas M Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK.
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
9
|
Ben-Nejma IRH, Keliris AJ, Daans J, Ponsaerts P, Verhoye M, Van der Linden A, Keliris GA. Increased soluble amyloid-beta causes early aberrant brain network hypersynchronisation in a mature-onset mouse model of amyloidosis. Acta Neuropathol Commun 2019; 7:180. [PMID: 31727182 PMCID: PMC6857138 DOI: 10.1186/s40478-019-0810-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. According to the amyloid hypothesis, the accumulation and deposition of amyloid-beta (Aβ) peptides play a key role in AD. Soluble Aβ (sAβ) oligomers were shown to be involved in pathological hypersynchronisation of brain resting-state networks in different transgenic developmental-onset mouse models of amyloidosis. However, the impact of protein overexpression during brain postnatal development may cause additional phenotypes unrelated to AD. To address this concern, we investigated sAβ effects on functional resting-state networks in transgenic mature-onset amyloidosis Tet-Off APP (TG) mice. TG mice and control littermates were raised on doxycycline (DOX) diet from 3d up to 3 m of age to suppress transgenic Aβ production. Thereafter, longitudinal resting-state functional MRI was performed on a 9.4 T MR-system starting from week 0 (3 m old mice) up to 28w post DOX treatment. Ex-vivo immunohistochemistry and ELISA analysis was performed to assess the development of amyloid pathology. Functional Connectivity (FC) analysis demonstrated early abnormal hypersynchronisation in the TG mice compared to the controls at 8w post DOX treatment, particularly across regions of the default mode-like network, known to be affected in AD. Ex-vivo analyses performed at this time point confirmed a 20-fold increase in total sAβ levels preceding the apparition of Aβ plaques and inflammatory responses in the TG mice compared to the controls. On the contrary at week 28, TG mice showed an overall hypoconnectivity, coinciding with a widespread deposition of Aβ plaques in the brain. By preventing developmental influence of APP and/or sAβ during brain postnatal development, we demonstrated FC abnormalities potentially driven by sAβ neurotoxicity on resting-state neuronal networks in mature-induced TG mice. Thus, the Tet-Off APP mouse model could be a powerful tool while used as a mature-onset model to shed light into amyloidosis mechanisms in AD.
Collapse
|
10
|
Maass A, Berron D, Harrison TM, Adams JN, La Joie R, Baker S, Mellinger T, Bell RK, Swinnerton K, Inglis B, Rabinovici GD, Düzel E, Jagust WJ. Alzheimer's pathology targets distinct memory networks in the ageing brain. Brain 2019; 142:2492-2509. [PMID: 31199481 PMCID: PMC6658874 DOI: 10.1093/brain/awz154] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease researchers have been intrigued by the selective regional vulnerability of the brain to amyloid-β plaques and tau neurofibrillary tangles. Post-mortem studies indicate that in ageing and Alzheimer's disease tau tangles deposit early in the transentorhinal cortex, a region located in the anterior-temporal lobe that is critical for object memory. In contrast, amyloid-β pathology seems to target a posterior-medial network that subserves spatial memory. In the current study, we tested whether anterior-temporal and posterior-medial brain regions are selectively vulnerable to tau and amyloid-β deposition in the progression from ageing to Alzheimer's disease and whether this is reflected in domain-specific behavioural deficits and neural dysfunction. 11C-PiB PET and 18F-flortaucipir uptake was quantified in a sample of 131 cognitively normal adults (age: 20-93 years; 47 amyloid-β-positive) and 20 amyloid-β-positive patients with mild cognitive impairment or Alzheimer's disease dementia (65-95 years). Tau burden was relatively higher in anterior-temporal regions in normal ageing and this difference was further pronounced in the presence of amyloid-β and cognitive impairment, indicating exacerbation of ageing-related processes in Alzheimer's disease. In contrast, amyloid-β deposition dominated in posterior-medial regions. A subsample of 50 cognitively normal older (26 amyloid-β-positive) and 25 young adults performed an object and scene memory task while functional MRI data were acquired. Group comparisons showed that tau-positive (n = 18) compared to tau-negative (n = 32) older adults showed lower mnemonic discrimination of object relative to scene images [t(48) = -3.2, P = 0.002]. In a multiple regression model including regional measures of both pathologies, higher anterior-temporal flortaucipir (tau) was related to relatively worse object performance (P = 0.010, r = -0.376), whereas higher posterior-medial PiB (amyloid-β) was related to worse scene performance (P = 0.037, r = 0.309). The functional MRI data revealed that tau burden (but not amyloid-β) was associated with increased task activation in both systems and a loss of functional specificity, or dedifferentiation, in posterior-medial regions. The loss of functional specificity was related to worse memory. Our study shows a regional dissociation of Alzheimer's disease pathologies to distinct memory networks. While our data are cross-sectional, they indicate that with ageing, tau deposits mainly in the anterior-temporal system, which results in deficits in mnemonic object discrimination. As Alzheimer's disease develops, amyloid-β deposits preferentially in posterior-medial regions additionally compromising scene discrimination and anterior-temporal tau deposition worsens further. Finally, our findings propose that the progression of tau pathology is linked to aberrant activation and dedifferentiation of specialized memory networks that is detrimental to memory function.
Collapse
Affiliation(s)
- Anne Maass
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, 39120, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenna N Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Lab, Berkeley, 94720, USA
| | - Taylor Mellinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel K Bell
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin Swinnerton
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Lab, Berkeley, 94720, USA
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Lab, Berkeley, 94720, USA
| |
Collapse
|
11
|
Koelewijn L, Lancaster TM, Linden D, Dima DC, Routley BC, Magazzini L, Barawi K, Brindley L, Adams R, Tansey KE, Bompas A, Tales A, Bayer A, Singh K. Oscillatory hyperactivity and hyperconnectivity in young APOE-ɛ4 carriers and hypoconnectivity in Alzheimer's disease. eLife 2019; 8:e36011. [PMID: 31038453 PMCID: PMC6491037 DOI: 10.7554/elife.36011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2019] [Indexed: 11/14/2022] Open
Abstract
We studied resting-state oscillatory connectivity using magnetoencephalography in healthy young humans (N = 183) genotyped for APOE-ɛ4, the greatest genetic risk for Alzheimer's disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in APOE-ɛ4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in gamma (40-160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-ɛ4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished from their controls with above chance performance. These results support theories of initial hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present decades before the onset of AD symptomology.
Collapse
Affiliation(s)
- Loes Koelewijn
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Thomas M Lancaster
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiffUnited Kingdom
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | - David Linden
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiffUnited Kingdom
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | - Diana C Dima
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Bethany C Routley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Lorenzo Magazzini
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Kali Barawi
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUnited Kingdom
| | - Lisa Brindley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Rachael Adams
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Katherine E Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical and Life Sciences, Cardiff UniversityCardiffUnited Kingdom
| | - Aline Bompas
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
| | - Andrea Tales
- Department of PsychologyCollege of Human and Health Sciences, Swansea UniversitySwanseaUnited Kingdom
| | - Antony Bayer
- School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Krish Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUnited Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
12
|
Hillman A, Latimer J. Somaticization, the making and unmaking of minded persons and the fabrication of dementia. SOCIAL STUDIES OF SCIENCE 2019; 49:208-226. [PMID: 30834820 PMCID: PMC6902807 DOI: 10.1177/0306312719834069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article examines the strategies by which the different and variable signs of failing mental powers become known sufficiently for 'dementia' to be made into a stable bio-clinical entity, that can be tested, diagnosed and perhaps one day even treated. Drawing on data from ethnographic observations in memory clinics, together with interviews with associated scientists and clinicians, we document the challenges that clinicians face across the clinical and research domain in making dementia a stable object of their investigation. We illustrate how the pressure for early diagnoses of dementia creates tensions between the scientific representations of early dementia and its diagnosis in the clinic. Our aim is to highlight the extent to which the work of diagnosing dementia involves an intricate process of smoothing out seemingly insurmountable problems, such as the notoriously elusive connections between brain/mind and body/person. Furthermore, we show that a part of this process involves enrolling patients as minded, agentic subjects, the very subjects who are excluded from dementia science research in pursuit of biomarkers for the pre-clinical detection of dementia.
Collapse
Affiliation(s)
- Alexandra Hillman
- Alexandra Hillman, WISERD, School of Social Sciences, Cardiff University, 38 Park Place, Cathays, Cardiff CF10 3BB, UK.
| | | |
Collapse
|
13
|
Costigan AG, Umla-Runge K, Evans CJ, Hodgetts CJ, Lawrence AD, Graham KS. Neurochemical correlates of scene processing in the precuneus/posterior cingulate cortex: A multimodal fMRI and 1 H-MRS study. Hum Brain Mapp 2019; 40:2884-2898. [PMID: 30865358 PMCID: PMC6563468 DOI: 10.1002/hbm.24566] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Precuneus/posterior cingulate cortex (PCu/PCC) are key components of a midline network, activated during rest but also in tasks that involve construction of scene or situation models. Despite growing interest in PCu/PCC functional alterations in disease and disease risk, the underlying neurochemical modulators of PCu/PCC's task‐evoked activity are largely unstudied. Here, a multimodal imaging approach was applied to investigate whether interindividual differences in PCu/PCC fMRI activity, elicited during perceptual discrimination of scene stimuli, were correlated with local brain metabolite levels, measured during resting‐state 1H‐MRS. Forty healthy young adult participants completed an fMRI perceptual odd‐one‐out task for scenes, objects and faces. 1H‐MRS metabolites N‐acetyl‐aspartate (tNAA), glutamate (Glx) and γ‐amino‐butyric acid (GABA+) were quantified via PRESS and MEGA‐PRESS scans in a PCu/PCC voxel and an occipital (OCC) control voxel. Whole brain fMRI revealed a cluster in right dorsal PCu/PCC that showed a greater BOLD response to scenes versus faces and objects. When extracted from an independently defined PCu/PCC region of interest, scene activity (vs. faces and objects and also vs. baseline) was positively correlated with PCu/PCC, but not OCC, tNAA. A voxel‐wise regression analysis restricted to the PCu/PCC 1H‐MRS voxel area identified a significant PCu/PCC cluster, confirming the positive correlation between scene‐related BOLD activity and PCu/PCC tNAA. There were no correlations between PCu/PCC activity and Glx or GABA+ levels. These results demonstrate, for the first time, that scene activity in PCu/PCC is linked to local tNAA levels, identifying a neurochemical influence on interindividual differences in the task‐driven activity of a key brain hub.
Collapse
Affiliation(s)
- Alison G Costigan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Katja Umla-Runge
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - C John Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Wales, UK
| |
Collapse
|
14
|
Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 2019; 93:693-707. [DOI: 10.1007/s00204-019-02387-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
15
|
Hodgetts CJ, Shine JP, Williams H, Postans M, Sims R, Williams J, Lawrence AD, Graham KS. Increased posterior default mode network activity and structural connectivity in young adult APOE-ε4 carriers: a multimodal imaging investigation. Neurobiol Aging 2019; 73:82-91. [PMID: 30339963 PMCID: PMC6261847 DOI: 10.1016/j.neurobiolaging.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022]
Abstract
Young adult APOE-ε4 carriers show increased activity in posterior regions of the default mode network (pDMN), but how this is related to structural connectivity is unknown. Thirty young adults (one half of whom were APOE-ε4 carriers; mean age 20 years) were scanned using both diffusion and functional magnetic resonance imaging. The parahippocampal cingulum bundle (PHCB)-which links the pDMN and the medial temporal lobe-was manually delineated in individual participants using deterministic tractography. Measures of tract microstructure (mean diffusivity and fractional anisotropy) were then extracted from these tract delineations. APOE-ε4 carriers had lower mean diffusivity and higher fractional anisotropy relative to noncarriers in PHCB, but not in a control tract (the inferior longitudinal fasciculus). Furthermore, PHCB microstructure was selectively associated with pDMN (and medial temporal lobe) activity during a scene discrimination task known to be sensitive to Alzheimer's disease. These findings are consistent with a lifespan view of Alzheimer's disease risk, where early-life, connectivity-related changes in specific, vulnerable "hubs" (e.g., pDMN) lead to increased neural activity. Critically, such changes may reflect reduced network efficiency/flexibility in APOE-ε4 carriers, which in itself may portend a faster decline in connectivity over the lifespan and ultimately trigger early amyloid-β deposition in later life.
Collapse
Affiliation(s)
- Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, UK.
| | - Jonathan P Shine
- German Center for Neurodegenerative Diseases (DZNE), Aging and Cognition Research Group, Magdeburg, Germany
| | - Huw Williams
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Rebecca Sims
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK
| | - Julie Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Wales, UK; Dementia Research Institute, Cardiff University, Cardiff, Wales, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
16
|
Attentional capture by incongruent object/background scenes in patients with Alzheimer disease. Cortex 2018; 107:4-12. [DOI: 10.1016/j.cortex.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/28/2017] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
|
17
|
Wink AM, Tijms BM, Ten Kate M, Raspor E, de Munck JC, Altena E, Ecay-Torres M, Clerigue M, Estanga A, Garcia-Sebastian M, Izagirre A, Martinez-Lage Alvarez P, Villanua J, Barkhof F, Sanz-Arigita E. Functional brain network centrality is related to APOE genotype in cognitively normal elderly. Brain Behav 2018; 8:e01080. [PMID: 30136422 PMCID: PMC6160659 DOI: 10.1002/brb3.1080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Amyloid plaque deposition in the brain is an early pathological change in Alzheimer's disease (AD), causing disrupted synaptic connections. Brain network disruptions in AD have been demonstrated with eigenvector centrality (EC), a measure that identifies central regions within networks. Carrying an apolipoprotein (APOE)-ε4 allele is a genetic risk for AD, associated with increased amyloid deposition. We studied whether APOE-ε4 carriership is associated with EC disruptions in cognitively normal individuals. METHODS A total of 261 healthy middle-aged to older adults (mean age 56.6 years) were divided into high-risk (APOE-ε4 carriers) and low-risk (noncarriers) groups. EC was computed from resting-state functional MRI data. Clusters of between-group differences were assessed with a permutation-based method. Correlations between cluster mean EC with brain volume, CSF biomarkers, and psychological test scores were assessed. RESULTS Decreased EC in the visual cortex was associated with APOE-ε4 carriership, a genetic risk factor for AD. EC differences were correlated with age, CSF amyloid levels, and scores on the trail-making and 15-object recognition tests. CONCLUSION Our findings suggest that the APOE-ε4 genotype affects brain connectivity in regions previously found to be abnormal in AD as a sign of very early disease-related pathology. These differences were too subtle in healthy elderly to use EC for single-subject prediction of APOE genotype.
Collapse
Affiliation(s)
- Alle Meije Wink
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Betty M Tijms
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mara Ten Kate
- Department of Neurology, Alzheimer Centre, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Eva Raspor
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jan C de Munck
- Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ellemarije Altena
- Université Bordeaux, Bordeaux, France.,CNRS, SANPSY, USR 3413, Bordeaux, France
| | - Mirian Ecay-Torres
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | - Montserrat Clerigue
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | - Ainara Estanga
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | | | - Andrea Izagirre
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain
| | | | - Jorge Villanua
- CITA Alzheimer Foundation, Donostia University Hospital, San Sebastian, Spain.,Donostia Unit, Osatek, Donostia University Hospital, San Sebastian, Spain
| | - Frederik Barkhof
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | - Ernesto Sanz-Arigita
- Department of Radiology, Nuclear Medicine and PET Research, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands.,Université Bordeaux, Bordeaux, France
| |
Collapse
|
18
|
Evans S, Clarke D, Dowell NG, Tabet N, King SL, Hutton SB, Rusted JM. Using event-related fMRI to examine sustained attention processes and effects of APOE ε4 in young adults. PLoS One 2018; 13:e0198312. [PMID: 29856823 PMCID: PMC5983530 DOI: 10.1371/journal.pone.0198312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/17/2018] [Indexed: 01/05/2023] Open
Abstract
In this study we investigated effects of the APOE ε4 allele (which confers an enhanced risk of poorer cognitive ageing, and Alzheimer’s Disease) on sustained attention (vigilance) performance in young adults using the Rapid Visual Information Processing (RVIP) task and event-related fMRI. Previous fMRI work with this task has used block designs: this study is the first to image an extended (6-minute) RVIP task. Participants were 26 carriers of the APOE ε4 allele, and 26 non carriers (aged 18–28). Pupil diameter was measured throughout, as an index of cognitive effort. We compared activity to RVIP task hits to hits on a control task (with similar visual parameters and response requirements but no working memory load): this contrast showed activity in medial frontal, inferior and superior parietal, temporal and visual cortices, consistent with previous work, demonstrating that meaningful neural data can be extracted from the RVIP task over an extended interval and using an event-related design. Behavioural performance was not affected by genotype; however, a genotype by condition (experimental task/control task) interaction on pupil diameter suggested that ε4 carriers deployed more effort to the experimental compared to the control task. fMRI results showed a condition by genotype interaction in the right hippocampal formation: only ε4 carriers showed downregulation of this region to experimental task hits versus control task hits. Experimental task beta values were correlated against hit rate: parietal correlations were seen in ε4 carriers only, frontal correlations in non-carriers only. The data indicate that, in the absence of behavioural differences, young adult ε4 carriers already show a different linkage between functional brain activity and behaviour, as well as aberrant hippocampal recruitment patterns. This may have relevance for genotype differences in cognitive ageing trajectories.
Collapse
Affiliation(s)
- Simon Evans
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
- School of Psychology, University of Surrey, Guildford, Surrey, United Kingdom
| | - Devin Clarke
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
| | - Nicholas G. Dowell
- Brighton and Sussex Medical School (BSMS), Brighton, East Sussex, United Kingdom
| | - Naji Tabet
- Brighton and Sussex Medical School (BSMS), Brighton, East Sussex, United Kingdom
| | - Sarah L. King
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
| | - Samuel B. Hutton
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
| | - Jennifer M. Rusted
- School of Psychology, University of Sussex, Brighton, East Sussex, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM, Franco-Restrepo JE. APOE gene and neuropsychiatric disorders and endophenotypes: A comprehensive review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:126-142. [PMID: 27943569 DOI: 10.1002/ajmg.b.32516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The Apolipoprotein E (APOE) gene is one of the main candidates in neuropsychiatric genetics, with hundreds of studies carried out in order to explore the possible role of polymorphisms in the APOE gene in a large number of neurological diseases, psychiatric disorders, and related endophenotypes. In the current article, we provide a comprehensive review of the structural and functional aspects of the APOE gene and its relationship with brain disorders. Evidence from genome-wide association studies and meta-analyses shows that the APOE gene has been significantly associated with several neurodegenerative disorders. Cellular and animal models show growing evidence of the key role of APOE in mechanisms of brain plasticity and behavior. Future analyses of the APOE gene might find a possible role in other neurological diseases and psychiatric disorders and related endophenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel R Dries
- Chemistry Department, Juniata College, Huntingdon, Pennsylvania
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Juan E Franco-Restrepo
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
20
|
Differential Aging Trajectories of Modulation of Activation to Cognitive Challenge in APOE ε4 Groups: Reduced Modulation Predicts Poorer Cognitive Performance. J Neurosci 2017; 37:6894-6901. [PMID: 28652414 DOI: 10.1523/jneurosci.3900-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023] Open
Abstract
The present study was designed to investigate the effect of a genetic risk factor for Alzheimer's disease (AD), ApolipoproteinE ε4 (APOEε4), on the ability of the brain to modulate activation in response to cognitive challenge in a lifespan sample of healthy human adults. A community-based sample of 181 cognitively intact, healthy adults were recruited from the Dallas-Fort Worth metroplex. Thirty-one APOEε4+ individuals (48% women), derived from the parent sample, were matched based on sex, age, and years of education to 31 individuals who were APOEε4-negative (APOEε4-). Ages ranged from 20 to 86 years of age. Blood oxygen level-dependent functional magnetic resonance imaging was collected during the performance of a visuospatial distance judgment task with three parametric levels of difficulty. Multiple regression was used in a whole-brain analysis with age, APOE group, and their interaction predicting functional brain modulation in response to difficulty. Results revealed an interaction between age and APOE in a large cluster localized primarily to the bilateral precuneus. APOEε4- individuals exhibited age-invariant modulation in response to task difficulty, whereas APOEε4+ individuals showed age-related reduction of modulation in response to increasing task difficulty compared with ε4- individuals. Decreased modulation in response to cognitive challenge was associated with reduced task accuracy as well as poorer name-face associative memory performance. Findings suggest that APOEε4 is associated with a reduction in the ability of the brain to dynamically modulate in response to cognitive challenge. Coupled with a significant genetic risk factor for AD, changes in modulation may provide additional information toward identifying individuals potentially at risk for cognitive decline associated with preclinical AD.SIGNIFICANCE STATEMENT Understanding how risk factors for Alzheimer's disease (AD) affect brain function and cognition in healthy adult samples may help to identify the biomarkers needed to detect nonsymptomatic, preclinical phases of the disease. Findings from the current study show that ApolipoproteinE ε4-positive (APOEε4+) individuals exhibit an altered lifespan trajectory in the ability of the brain to dynamically modulate function to cognitive challenge compared with APOEε4- individuals. This effect manifests in otherwise healthy individuals who are at increased risk for AD in the precuneus, a salient region for early AD changes. Notably, these functional alterations are detrimental to performance, and thus, the combination of a genetic risk factor and altered modulation may provide important information for identifying individuals who are at increased risk for AD.
Collapse
|
21
|
Chan ES, Shetty MS, Sajikumar S, Chen C, Soong TW, Wong BS. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep 2016; 6:26119. [PMID: 27189808 PMCID: PMC4870502 DOI: 10.1038/srep26119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/27/2016] [Indexed: 02/01/2023] Open
Abstract
The apolipoprotein E4 (ApoE4) is the strongest genetic risk factor for Alzheimer's disease (AD). The AD brain was shown to be insulin resistant at end stage, but the interplay between insulin signaling, ApoE4 and Aβ across time, and their involvement in memory decline is unclear. To investigate insulin response in the ageing mouse hippocampus, we crossed the human ApoE-targeted replacement mice with the mutant human amyloid precursor protein (APP) mice (ApoExAPP). While hippocampal Aβ levels were comparable between ApoE3xAPP and ApoE4xAPP mice at 26 weeks, insulin response was impaired in the ApoE4xAPP hippocampus. Insulin treatment was only able to stimulate insulin signaling and increased AMPA-GluR1 phosphorylation in forskolin pre-treated hippocampal slices from ApoE3xAPP mice. In ApoE4xAPP mice, insulin dysfunction was also associated with poorer spatial memory performance. Using dissociated hippocampal neuron in vitro, we showed that insulin response in ApoE3 and ApoE4 neurons increased AMPA receptor-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes and GluR1-subunit insertion. Pre-treatment of ApoE3 neurons with Aβ42 did not affect insulin-mediated GluR1 subunit insertion. However, impaired insulin sensitivity observed only in the presence of ApoE4 and Aβ42, attenuated GluR1-subunit insertion. Taken together, our results suggest that ApoE4 enhances Aβ inhibition of insulin-stimulated AMPA receptor function, which accelerates memory impairment in ApoE4xAPP mice.
Collapse
Affiliation(s)
- Elizabeth S Chan
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Mahesh Shivarama Shetty
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Sreedharan Sajikumar
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Christopher Chen
- Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,Memory Ageing and Cognition Centre (MACC), National University Health System (NUHS) 117599, Singapore
| | - Tuck Wah Soong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.,Memory Networks Program, Neurobiology and Ageing Program, Life Sciences Institute, National University of Singapore 117456, Singapore
| | - Boon-Seng Wong
- Departments of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| |
Collapse
|