1
|
Arora S, Goralczyk A, Andra S, Lim SYJ, Toh YC. Development of a Probability-Based In Vitro Eye Irritation Screening Platform. Bioengineering (Basel) 2024; 11:315. [PMID: 38671735 PMCID: PMC11047661 DOI: 10.3390/bioengineering11040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional eye irritation assessments, which rely on animal models or ex vivo tissues, face limitations due to ethical concerns, costs, and low throughput. Although numerous in vitro tests have been developed, none have successfully reconciled the need for high experimental throughput with the accurate prediction of irritation potential, attributable to the complexity of irritation mechanisms. Simple cell models, while suitable for high-throughput screening, offer limited mechanistic insights, contrasting with more physiologically relevant but less scalable complex organotypic corneal tissue constructs. This study presents a novel strategy to enhance the predictive accuracy of screening-compatible simple cell models in eye irritation testing. Our method combines the results of two in vitro assays-cell apoptosis and nociceptor (TRPV1) activation-using micropatterned chips to partition human corneal epithelial cells into numerous discrete small populations. Following exposure to test compounds, we measure apoptosis and nociceptor activation responses. The large datasets collected from the cell micropatterns facilitate binarization and statistical fitting to calculate a mathematical probability, which assesses the compound's potential to cause eye irritation. This method potentially enables the amalgamation of multiple mechanistic readouts into a singular index, providing a more accurate and reliable prediction of eye irritation potential in a format amenable to high-throughput screening.
Collapse
Affiliation(s)
- Seep Arora
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (S.A.); (A.G.); (S.A.)
| | - Anna Goralczyk
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (S.A.); (A.G.); (S.A.)
| | - Sujana Andra
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (S.A.); (A.G.); (S.A.)
| | - Soon Yew John Lim
- A*STAR Microscopy Platform, 61 Biopolis Drive, #06-20 Proteos, Singapore 138673, Singapore;
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore; (S.A.); (A.G.); (S.A.)
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
2
|
Lippert AH, Paluch C, Gaglioni M, Vuong MT, McColl J, Jenkins E, Fellermeyer M, Clarke J, Sharma S, Moreira da Silva S, Akkaya B, Anzilotti C, Morgan SH, Jessup CF, Körbel M, Gileadi U, Leitner J, Knox R, Chirifu M, Huo J, Yu S, Ashman N, Lui Y, Wilkinson I, Attfield KE, Fugger L, Robertson NJ, Lynch CJ, Murray L, Steinberger P, Santos AM, Lee SF, Cornall RJ, Klenerman D, Davis SJ. Antibody agonists trigger immune receptor signaling through local exclusion of receptor-type protein tyrosine phosphatases. Immunity 2024; 57:256-270.e10. [PMID: 38354703 DOI: 10.1016/j.immuni.2024.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Christopher Paluch
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK; MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Meike Gaglioni
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mai T Vuong
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Edward Jenkins
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Martin Fellermeyer
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joseph Clarke
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sumana Sharma
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Billur Akkaya
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara H Morgan
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claire F Jessup
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Markus Körbel
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rachel Knox
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mami Chirifu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jiandong Huo
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Susan Yu
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Nicole Ashman
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yuan Lui
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Kathrine E Attfield
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lars Fugger
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | - Lynne Murray
- MiroBio Ltd, Winchester House, Oxford Science Park, Oxford, UK
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ana Mafalda Santos
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Guo WB, Wu C, Yang L, Pan K, Miao AJ. Nanoparticle pre- or co-exposure affects bacterial ingestion by the protozoan Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128268. [PMID: 35101755 DOI: 10.1016/j.jhazmat.2022.128268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Although nanoparticles' (NPs) toxicity has been intensively studied, their effects on bacterial ingestion by protozoans (as an important component of the microbial loop) is unknown. This study investigated the effects of NPs of different chemical composition [hematite (HemNPs), anatase (AnaNPs), and silica (SiNPs) NPs] and size [SiNPs with particle size of 20 (Si-20), 100 (Si-100), and 500 (Si-500) nm] on the ingestion of Escherichia coli by the protozoan Tetrahymena thermophila. Potential differences between pre- vs. co-exposure were also assessed. Pre-exposure to HemNPs had no effects on bacterial ingestion but the other NPs caused a significant inhibition, due to their inhibition of ATP synthesis and the down-regulation of phagocytosis-related genes (ACT1 and CTHB). Contrastively, co-exposure to HemNPs and Si-20 didn't affect bacterial ingestion while co-exposure to AnaNPs (Si-100 and Si-500) induced (inhibited) ingestion. The stimulatory effect of AnaNPs was due to their induction of an increase in the intracellular Ca concentration of T. thermophila whereas the inhibitory effects of Si-100 and Si-500 were attributable to ATP synthesis reduction, enhanced bacterial cell aggregation, and competition between the bacterial cells and the NPs. These findings provide insights into the mechanisms underlying the environmental risks of NPs.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Ke Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
4
|
Colin-York H, Kumari S, Barbieri L, Cords L, Fritzsche M. Distinct actin cytoskeleton behaviour in primary and immortalised T-cells. J Cell Sci 2019; 133:jcs.232322. [PMID: 31413071 PMCID: PMC6898998 DOI: 10.1242/jcs.232322] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022] Open
Abstract
Cytoskeletal actin dynamics are crucial for the activation of T-cells. Immortalised Jurkat T-cells have been the model system of choice to examine and correlate the dynamics of the actin cytoskeleton and the immunological synapse leading to T-cell activation. However, it has remained unclear whether immortalised cellular systems, such as Jurkat T-cells can recapitulate the cytoskeletal behaviour of primary T-cells. Studies delineating the cytoskeletal behaviour of Jurkat T-cells in comparison to primary T-cells are lacking. Here, we employ live-cell super-resolution microscopy to investigate the cytoskeletal actin organisation and dynamics of living primary and immortalised Jurkat T-cells at the appropriate spatiotemporal resolution. Under comparable activation conditions, we found differences in the architectural organisation and dynamics of Jurkat and primary mouse and human T-cells. Although the three main actin network architectures in Jurkat T-cells were reminiscent of primary T-cells, there were differences in the organisation and molecular mechanisms underlying these networks. Our results highlight mechanistic distinctions in the T-cell model system most utilised to study cytoskeletal actin dynamics. Summary: The emerging idea that the cytoskeletal and biophysical principles are preserved in primary cells and transformed cell lines, and the two can be used to interchangeably examine synaptic actin characteristics, needs careful reconsideration.
Collapse
Affiliation(s)
- Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Sudha Kumari
- Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | - Liliana Barbieri
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Lena Cords
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK .,Kennedy Institute for Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7LF, UK
| |
Collapse
|
5
|
Halaidych OV, Mummery CL, Orlova VV. Quantifying Ca 2+ signaling and contraction in vascular pericytes and smooth muscle cells. Biochem Biophys Res Commun 2019; 513:112-118. [PMID: 30940350 DOI: 10.1016/j.bbrc.2019.03.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 02/08/2023]
Abstract
Vascular pericytes and smooth muscle cells surround many blood vessels of the body. Their primary roles include vessel stabilization and regulation of the blood flow. The high degree of heterogeneity among these cells is dictated by (1) differences in their developmental origin and (2) their location in the vascular bed. Phenotype switching contributes to this heterogeneity especially following in vitro culture. In the absence of distinguishing molecular markers, functional assays that capture their heterogeneity in vitro are needed. Spatiotemporal changes in intracellular Ca2+ levels and contraction in response to vasoconstrictors reflect the differences between vascular pericyte and smooth muscle cell. In order to capture this heterogeneity in vitro, large ensembles of cells need to be analyzed. Here we developed an automated image processing method to measure intracellular Ca2+ and contraction in large cell groups which in combination with a computational approach for integrative analysis allowed vascular pericytes and smooth muscle cells to be distinguished without knowledge of their anatomical origin.
Collapse
Affiliation(s)
- Oleh V Halaidych
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZC, the Netherlands.
| |
Collapse
|
6
|
Felce JH, Sezgin E, Wane M, Brouwer H, Dustin ML, Eggeling C, Davis SJ. CD45 exclusion- and cross-linking-based receptor signaling together broaden FcεRI reactivity. Sci Signal 2018; 11:11/561/eaat0756. [PMID: 30563863 DOI: 10.1126/scisignal.aat0756] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For many years, the high-affinity receptor for immunoglobulin E (IgE) FcεRI, which is expressed by mast cells and basophils, has been widely held to be the exemplar of cross-linking (that is, aggregation dependent) signaling receptors. We found, however, that FcεRI signaling could occur in the presence or absence of receptor cross-linking. Using both cell and cell-free systems, we showed that FcεRI signaling was stimulated by surface-associated monovalent ligands through the passive, size-dependent exclusion of the receptor-type tyrosine phosphatase CD45 from plasma membrane regions of FcεRI-ligand engagement. Similarly to the T cell receptor, FcεRI signaling could also be initiated in a ligand-independent manner. These data suggest that a simple mechanism of CD45 exclusion-based receptor triggering could function together with cross-linking-based FcεRI signaling, broadening mast cell and basophil reactivity by enabling these cells to respond to both multivalent and surface-presented monovalent antigens. These findings also strengthen the case that a size-dependent, phosphatase exclusion-based receptor triggering mechanism might serve generally to facilitate signaling by noncatalytic immune receptors.
Collapse
Affiliation(s)
- James H Felce
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Madina Wane
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Heather Brouwer
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Simon J Davis
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK. .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
7
|
Ponjavic A, McColl J, Carr AR, Santos AM, Kulenkampff K, Lippert A, Davis SJ, Klenerman D, Lee SF. Single-Molecule Light-Sheet Imaging of Suspended T Cells. Biophys J 2018; 114:2200-2211. [PMID: 29742413 PMCID: PMC5961759 DOI: 10.1016/j.bpj.2018.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/26/2022] Open
Abstract
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose.
Collapse
Affiliation(s)
- Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexander R Carr
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Klara Kulenkampff
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Anna Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Lee AM, Colin-York H, Fritzsche M. CalQuo 2 : Automated Fourier-space, population-level quantification of global intracellular calcium responses. Sci Rep 2017; 7:5416. [PMID: 28710416 PMCID: PMC5511169 DOI: 10.1038/s41598-017-05322-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium acts as a secondary messenger in a wide variety of crucial biological signaling processes. Advances in fluorescence microscopy and calcium sensitive dyes has led to the routine quantification of calcium responses in non-excitable cells. However, the automatization of global intracellular calcium analysis at the single-cell level within a large population simultaneously remains challenging. One software, CalQuo (Calcium Quantification), offers some automatic features in calcium analysis. Here, we present an advanced version of the software package: CalQuo 2 . CalQuo 2 analyzes the calcium response in the Fourier-domain, allowing the number of user-defined filtering parameters to be reduced to one and a greater diversity of calcium responses to be recognized, compared to CalQuo that directly interprets the calcium intensity signal. CalQuo 2 differentiates cells that release a single calcium response and those that release oscillatory calcium fluxes. We have demonstrated the use of CalQuo 2 by measuring the calcium response in genetically modified Jurkat T-cells under varying ligand conditions, in which we show that peptide:MHCs and anti-CD3 antibodies trigger a fraction of T cells to release oscillatory calcium fluxes that increase with increasing koff rates. These results show that CalQuo 2 is a robust and user-friendly tool for characterizing global, single cell calcium responses.
Collapse
Affiliation(s)
- Angela M Lee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom.
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
9
|
Fritzsche M, Fernandes RA, Chang VT, Colin-York H, Clausen MP, Felce JH, Galiani S, Erlenkämper C, Santos AM, Heddleston JM, Pedroza-Pacheco I, Waithe D, de la Serna JB, Lagerholm BC, Liu TL, Chew TL, Betzig E, Davis SJ, Eggeling C. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. SCIENCE ADVANCES 2017; 3:e1603032. [PMID: 28691087 PMCID: PMC5479650 DOI: 10.1126/sciadv.1603032] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions.
Collapse
Affiliation(s)
- Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Ricardo A. Fernandes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica T. Chang
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Huw Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Mathias P. Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Center for Biomembrane Physics (MEMPHYS), University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - James H. Felce
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | | | - Ana M. Santos
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - John M. Heddleston
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Dominic Waithe
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Jorge Bernardino de la Serna
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford Campus, Didcot OX11 0FA, UK
- Department of Physics, King’s College London, London WC2R 2LS, UK
| | - B. Christoffer Lagerholm
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Tsung-li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
- Vertex Pharmaceuticals, 11010 Torreyana Road, San Diego, CA 92121, USA
| | - Teng-Leong Chew
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Simon J. Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
10
|
Clausen MP, Colin-York H, Schneider F, Eggeling C, Fritzsche M. Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:064002. [PMID: 28458398 PMCID: PMC5390943 DOI: 10.1088/1361-6463/aa52a1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 05/30/2023]
Abstract
Nanoscale spacing between the plasma membrane and the underlying cortical actin cytoskeleton profoundly modulates cellular morphology, mechanics, and function. Measuring this distance has been a key challenge in cell biology. Current methods for dissecting the nanoscale spacing either limit themselves to complex survey design using fixed samples or rely on diffraction-limited fluorescence imaging whose spatial resolution is insufficient to quantify distances on the nanoscale. Using dual-color super-resolution STED (stimulated-emission-depletion) microscopy, we here overcome this challenge and accurately measure the density distribution of the cortical actin cytoskeleton and the distance between the actin cortex and the membrane in live Jurkat T-cells. We found an asymmetric cortical actin density distribution with a mean width of 230 (+105/-125) nm. The spatial distances measured between the maximum density peaks of the cortex and the membrane were bi-modally distributed with mean values of 50 ± 15 nm and 120 ± 40 nm, respectively. Taken together with the finite width of the cortex, our results suggest that in some regions the cortical actin is closer than 10 nm to the membrane and a maximum of 20 nm in others.
Collapse
Affiliation(s)
- M P Clausen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, UK
- Department of Physics, Chemistry, and Pharmacy, MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, UK
| | - F Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, UK
| | - C Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, UK
| | - M Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, UK
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford OX3 7LF Oxford, UK
| |
Collapse
|
11
|
Mackay L, Mikolajewicz N, Komarova SV, Khadra A. Systematic Characterization of Dynamic Parameters of Intracellular Calcium Signals. Front Physiol 2016; 7:525. [PMID: 27891096 PMCID: PMC5102910 DOI: 10.3389/fphys.2016.00525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
Dynamic processes, such as intracellular calcium signaling, are hallmark of cellular biology. As real-time imaging modalities become widespread, a need for analytical tools to reliably characterize time-series data without prior knowledge of the nature of the recordings becomes more pressing. The goal of this study is to develop a signal-processing algorithm for MATLAB that autonomously computes the parameters characterizing prominent single transient responses (TR) and/or multi-peaks responses (MPR). The algorithm corrects for signal contamination and decomposes experimental recordings into contributions from drift, TRs, and MPRs. It subsequently provides numerical estimates for the following parameters: time of onset after stimulus application, activation time (time for signal to increase from 10 to 90% of peak), and amplitude of response. It also provides characterization of the (i) TRs by quantifying their area under the curve (AUC), response duration (time between 1/2 amplitude on ascent and descent of the transient), and decay constant of the exponential decay region of the deactivation phase of the response, and (ii) MPRs by quantifying the number of peaks, mean peak magnitude, mean periodicity, standard deviation of periodicity, oscillatory persistence (time between first and last discernable peak), and duty cycle (fraction of period during which system is active) for all the peaks in the signal, as well as coherent oscillations (i.e., deterministic spikes). We demonstrate that the signal detection performance of this algorithm is in agreement with user-mediated detection and that parameter estimates obtained manually and algorithmically are correlated. We then apply this algorithm to study how metabolic acidosis affects purinergic (P2) receptor-mediated calcium signaling in osteoclast precursor cells. Our results reveal that acidosis significantly attenuates the amplitude and AUC calcium responses at high ATP concentrations. Collectively, our data validated this algorithm as a general framework for comprehensively analyzing dynamic time-series.
Collapse
Affiliation(s)
- Laurent Mackay
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Nicholas Mikolajewicz
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|