1
|
Abd El-Aziz MA, Saeed AM, Ibrahim MK, El-Sayed WS. Impact of TiO 2, ZnO, and Ag nanoparticles on anammox activity in enriched river Nile sediment cultures: unveiling differential effects and environmental implications. BMC Microbiol 2024; 24:468. [PMID: 39528915 PMCID: PMC11552349 DOI: 10.1186/s12866-024-03603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The increasing use of nanoparticles (NPs) necessitates investigation of their impact on wastewater treatment processes, particularly anammox, a critical biological nitrogen removal pathway. This study explored the effects of short-term exposure to TiO2, ZnO, and Ag-NPs on anammox activity in enriched cultures derived from River Nile sediments. MATERIALS AND METHODS Anammox bacteria were identified and enriched, with activity confirmed through 16S rRNA and hydrazine oxidoreductase (hzo) gene amplification and sequencing. Activity assays demonstrated efficient ammonium removal by the enriched culture. Subsequently, the impact of different sized and concentrated NPs on anammox activity was assessed. RESULTS XRD analysis confirmed NP behavior within the microcosms: TiO2 transformed, ZnO partially dissolved, and Ag remained ionic. hzo gene expression served as a biomarker for anammox bacterial activity. Interestingly, 100 nm TiO2-NPs up-regulated hzo expression, potentially indicating a non-inhibitory transformed phase. Conversely, ZnO and Ag-NPs across all sizes and concentrations significantly down-regulated hzo expression, suggesting detrimental effects. Ag-NPs amended microcosms showed a significant reduction (79%) in hzo gene expression and a detrimental effect on bacterial populations. Overall, anammox activity mirrored hzo expression patterns, with TiO2 (21 and 25 nm, respectively) exhibiting the least inhibition, followed by ZnO and Ag-NPs. CONCLUSION This study highlights the differential effects of NPs on anammox, with the order of impact being Ag > ZnO > TiO2. These findings provide valuable insights into the potential environmental risks of NPs on anammox-mediated nitrogen cycling in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Ali M Saeed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Mohamed K Ibrahim
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael S El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Wang Y, Cao X, Yu H, Xu Y, Peng J, Qu J. Nitrate with enriched heavy oxygen isotope linked to changes in nitrogen source and transformation as groundwater table rises. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131527. [PMID: 37163892 DOI: 10.1016/j.jhazmat.2023.131527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Xu
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Zhu G, Wang X, Wang S, Yu L, Armanbek G, Yu J, Jiang L, Yuan D, Guo Z, Zhang H, Zheng L, Schwark L, Jetten MSM, Yadav AK, Zhu YG. Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154590. [PMID: 35306060 DOI: 10.1016/j.scitotenv.2022.154590] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In the Anthropocene, nitrogen pollution is becoming an increasing challenge for both mankind and the Earth system. Microbial nitrogen cycling begins with aerobic nitrification, which is also the key rate-limiting step. For over a century, it has been accepted that nitrification occurs sequentially involving ammonia oxidation, which produces nitrite followed by nitrite oxidation, generating nitrate. This perception was changed by the discovery of comammox Nitrospira bacteria and their metabolic pathway. In addition, this also provided us with new knowledge concerning the complex nitrogen cycle network. In the comammox process, ammonia can be completely oxidized to nitrate in one cell via the subsequent activity of the enzyme complexes, ammonia monooxygenase, hydroxylamine dehydrogenase, and nitrite oxidodreductase. Over the past five years, research on comammox made great progress. However, there still exist a lot of questions, including how much does comammox contribute to nitrification? How large is the diversity and are there new strains to be discovered? Do comammox bacteria produce the greenhouse gas N2O, and how or to which extent may they contribute to global climate change? The above four aspects are of great significance on the farmland nitrogen management, aquatic environment restoration, and mitigation of global climate change. As large number of comammox bacteria and pathways have been detected in various terrestrial and aquatic ecosystems, indicating that the comammox process may exert an important role in the global nitrogen cycle.
Collapse
Affiliation(s)
- Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhongrui Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hanrui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, 24118 Kiel, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, 36525 AJ Nijmegen, the Netherlands
| | - Asheesh Kumar Yadav
- Department of Environment and Sustainability, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
An Underestimated Contribution of Deltaic Denitrification in Reducing Nitrate Export to the Coastal Zone (Po River–Adriatic Sea, Northern Italy). WATER 2022. [DOI: 10.3390/w14030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In transitional environments, the role of sediments biogeochemistry and denitrification is crucial for establishing their buffer potential against nitrate (NO3−) pollution. The Po River (Northern Italy) is a worldwide hotspot of eutrophication. However, benthic N dynamics and the relevance of denitrification in its delta have not yet been described. The aim of the present study was to quantify the contribution of denitrification in attenuating the NO3− loading transported to the sea during summer. Benthic fluxes of dissolved inorganic nitrogen (N) and denitrification rates were measured in laboratory incubations of intact sediment cores collected, along a salinity gradient, at three sections of the Po di Goro, the southernmost arm of the Po Delta. The correlation between NO3− consumption and N2 production rates demonstrated that denitrification was the main process responsible for reactive N removal. Denitrification was stimulated by both NO3− availability in the Po River water and organic enrichment of sediment likely determined by salinity-induced flocculation of particulate organic load, and inhibited by increasing salinity, along the river–sea gradient. Overall, denitrification represented a sink of approximately 30% of the daily N loading transported in middle summer, highlighting a previously underestimated role of the Po River Delta.
Collapse
|
5
|
Ding B, Zhang H, Luo W, Sun S, Cheng F, Li Z. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145601. [PMID: 33588220 DOI: 10.1016/j.scitotenv.2021.145601] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 05/22/2023]
Abstract
Since the process of anaerobic ammonium oxidation (anammox) coupled with ferric iron reduction (termed Feammox) was discovered, it has been observed in various natural environments. However, besides the vertical distribution of Feammox in paddy soils, its differences and relationships with traditional nitrogen loss processes, including denitrification and anammox, remain unclear. Here, we studied the distribution of nitrogen loss pathways in different layers (0-50 cm) of paddy soil in southeastern China using 15N isotope tracer technology and molecular analysis. Our study showed that denitrification had a rate of 2.19 ± 0.39 mg N·kg-1·d-1, which was the highest activity in the surface layer (0-10 cm). The activities of anammox and Feammox reached peak values in the 10-20 cm (1.13 ± 0.16 mg N·kg-1·d-1) and 20-30 cm (0.23 ± 0.02 mg N·kg-1·d-1) soil layer, respectively. The nitrogen loss in the surface layer was more serious than that in the deep layer under paddy cultivation. In this study, denitrification was the main nitrogen loss pathway in the surface soil, but Feammox became an important nitrogen loss pathway (up to 26.1%) in the 20-40 cm depth. Overall, our research could improve and perfect the nitrogen cycle pathways in paddy soil.
Collapse
Affiliation(s)
- Bangjing Ding
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenqi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fan Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Mishra R, Koay TB, Chitre M, Swarup S. Multi-USV Adaptive Exploration Using Kernel Information and Residual Variance. Front Robot AI 2021; 8:572243. [PMID: 34124169 PMCID: PMC8194496 DOI: 10.3389/frobt.2021.572243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Using a team of robots for estimating scalar environmental fields is an emerging approach. The aim of such an approach is to reduce the mission time for collecting informative data as compared to a single robot. However, increasing the number of robots requires coordination and efficient use of the mission time to provide a good approximation of the scalar field. We suggest an online multi-robot framework m-AdaPP to handle this coordination. We test our framework for estimating a scalar environmental field with no prior information and benchmark the performance via field experiments against conventional approaches such as lawn mower patterns. We demonstrated that our framework is capable of handling a team of robots for estimating a scalar field and outperforms conventional approaches used for approximating water quality parameters. The suggested framework can be used for estimating other scalar functions such as air temperature or vegetative index using land or aerial robots as well. Finally, we show an example use case of our adaptive algorithm in a scientific study for understanding micro-level interactions.
Collapse
Affiliation(s)
- Rajat Mishra
- Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Teong Beng Koay
- Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mandar Chitre
- Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Department of Electrical & Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Sanjay Swarup
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Zhang H, Sun L, Li Y, Zhang W, Niu L, Wang L. The bacterial community structure and N-cycling gene abundance in response to dam construction in a riparian zone. ENVIRONMENTAL RESEARCH 2021; 194:110717. [PMID: 33421430 DOI: 10.1016/j.envres.2021.110717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Dam construction has significantly altered riparian hydrological regime and environmental conditions in the reservoir region, yet knowledge concerning how bacterial community and N-cycling genes respond to these changes remains limited. In this study, we investigated the bacterial community composition, network structure and N-cycling genes in the water level fluctuation zones (WLFZs) of the Three Gorges Reservoir (TGR). Here, samples collected from five different water levels were divided into three groups: waterward sediments, interface sediments, and landward soils. Our results show that higher contents of NO2--N, SOC, DOC, NH4+-N, and TP were characterized in waterward and interface sediments whereas higherNO3--N content was observed in landward soils. The α-diversity of bacterial community decreased gradually from waterward sediments to landward soils. Compared with waterward sediments and landward soils, the interface sediments showed a unique bacterial community pattern with diverse primary producers as well as N-cycling microbes. The interface sediments also had a much more complex co-occurrence network and a higher possible community stability. Among all of N-cycling genes, higher abundances of nrfA and AOA amoA genes were observed in interface sediments. The dissimilarity in bacterial community composition and N-cycling gene abundance was mainly driven by water-level. Moreover, random forest model revealed that AOA amoA and nirS genes were the most sensitive indicators in response to water level fluctuations. Overall, this study suggests distinct abundance, diversity, and network structure of microbes in riparian sediments and soils across the gradient of water levels and enhances our understanding with respect to comprehensive effects of dam construction on nitrogen cycle.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Liwei Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
8
|
Liu X, Wu J, Hong Y, Li Y, Hu Y, Wang L, Wang Y, Long A. Wide distribution of anaerobic ammonium‐oxidizing bacteria in the water column of the South China Sea: Implications for their survival strategies. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xiaohan Liu
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Yiben Li
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Yaohao Hu
- State Key Laboratory of Tropical Oceanography (LTO) South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Limei Wang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Guangzhou University Guangzhou China
- School of Environmental Science and Engineering Guangzhou University Guangzhou China
| | - Aimin Long
- State Key Laboratory of Tropical Oceanography (LTO) South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
9
|
Yu L, Liu S, Jiang L, Wang X, Xiao L. Insight into the nitrogen accumulation in urban center river from functional genes and bacterial community. PLoS One 2020; 15:e0238531. [PMID: 32877444 PMCID: PMC7467313 DOI: 10.1371/journal.pone.0238531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Along with urbanization, the intensified nitrogen pollution in urban rivers and the form of black-odor rivers has become one of the biggest concerns. Better understanding of the nitrogen transformations and microbial mechanisms occurring within urban rivers could help to manage their water quality. In this study, pollution characteristics, potential nitrogen removal rate, composition and function of bacterial community, and abundance of functional genes associated with nitrogen transformation were comparatively investigated in a typical urban river (FC) and a suburban river (LH). Compared with LH, FC was characterized by higher content of nutrients, lower potential nitrogen removal rate and lower abundance of functional genes associated with nitrogen transformation in both overlying water and sediment, especially in summer. Sediment dissolved organic matter characterized by excitation−emission matrix (EEM) showed that FC was more severely polluted by high nitrogen organic matter. Our results revealed that anammox was the main nitrogen removal pathway in both rivers and potential nitrogen removal rates decreased significantly in summer. Bacterial community analysis showed that the benthic communities were more severely influenced by the pollutant than aquatic ones in both rivers. Furthermore, the FC benthic community was dominated by anaerobic respiring, fermentative, sulfate reduction bacteria. Quantitatively, the denitrification rate showed a significant positive correlation with the abundance of denitrification genes, whilst the anammox rate was significantly negatively correlated with bacterial diversity. Meanwhile, NH4+-N had a significant negative correlation to both denitrification and anammox in sediment. Taken together, the results indicated that the increased nitrogen pollutants in an urban river altered nitrogen removal pathways and bacterial communities, which could in turn exacerbate the nitrogen pollution to this river.
Collapse
Affiliation(s)
- Lei Yu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - ShuLei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - LiJuan Jiang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - XiaoLin Wang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
10
|
Wang X, Wang S, Jiang Y, Zhou J, Han C, Zhu G. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138563. [PMID: 32334221 DOI: 10.1016/j.scitotenv.2020.138563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 05/27/2023]
Abstract
The newly identified complete ammonia oxidation (comammox), which is capable of oxidizing ammonia directly to nitrate, has complemented our knowledge of nitrification in the global nitrogen (N) cycle. However, understanding the contribution and ecological roles of comammox in complex soil environments is still in its infancy. Here, the community structure and function of comammox and the interactions with other ammonia oxidation processes in rhizosphere and non-rhizosphere soils of four different crop fields (maize, cotton, soybean, and millet) were investigated in summer and winter. The only identified comammox species Candidatus Nitrospira nitrificans was widely distributed in all sampled soils. Comammox bacterial abundance was lower than that of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). The measured comammox potential rate ranged from 0.01 ± 0.002 to 0.40 ± 0.02 mg N kg-1 d-1, contributing <19.2 and 22.1% to ammonia oxidation in summer and winter, the remainder being due to AOA and AOB. The potential rate and community composition of comammox bacteria were significantly different on a temporal scale, while crop species and soil types (rhizosphere and non-rhizosphere) showed no obvious influences. In terms of oxidation rates, AOA (1.2 ± 0.7 mg N kg-1 d-1) dominated the ammonia oxidation in agricultural soils over AOB (0.31 ± 0.1 mg N kg-1 d-1) and comammox (0.2 ± 0.1 mg N kg-1 d-1). Both anammox bacterial abundance and activity were below the detection limits, indicating a negligible contribution of anammox in agricultural rhizosphere soils. The identification of comammox bacterial abundance and activity in situ enriches our knowledge of nitrification in agricultural systems.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Pan H, Qin Y, Wang Y, Liu S, Yu B, Song Y, Wang X, Zhu G. Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil. ENVIRONMENTAL RESEARCH 2020; 186:109612. [PMID: 32668552 DOI: 10.1016/j.envres.2020.109612] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Nitrate (NO3-) reduction partitioning between denitrification, anaerobic ammonium oxidation (anammox), denitrifying anaerobic methane oxidation (DAMO), and dissimilatory nitrate reduction to ammonium (DNRA), can influence the nitrogen (N) use efficiency and crop production in arid farmland. The microbial structure, function and potential rates of denitrification, anammox, DAMO and DNRA, and their respective contributions to total NO3- reduction were investigated in rhizosphere and non-rhizosphere soil of four typical crops in north China by functional gene amplification, high-throughput sequencing, network analysis and isotopic tracing technique. The measured denitrification and DNRA rate varied from 0.0294 to 20.769 nmol N g-1 h-1and 2.4125-58.682 nmol N g-1 h-1, respectively, based on which DNRA pathway contributed to 84.44 ± 14.40% of dissimilatory NO3- reduction, hence dominated NO3- reduction processes compared to denitrification. Anammox and DAMO were not detected. High-throughput sequencing analysis on DNRA nrfA gene, and denitrification nirS and nirK genes demonstrated that these two processes did not correlate to corresponding gene abundance or dominant genus. RDA and Pearson's correlation analysis illustrated that DNRA rate was significantly correlated with the abundance of Chthiniobacter, as well as total organic matter (TOM); denitrification rate was significantly correlated with the abundance of Lautropia, so did TOM. Network analysis showed that the genus performed DNRA was the key connector in the microbial community of dissimilatory nitrate reducers. This study simultaneously investigated the dissimilatory nitrate reduction processes in rhizosphere and non-rhizosphere soils in arid farmland, highlighting that DNRA dominated NO3- reduction processes against denitrification. As denitrification results in N loss, whereas DNRA contributes to N retention, the relative contributions of DNRA versus denitrification activities should be considered appropriately when assessing N transformation processes and N fertilizer management in arid farmland fields.
Collapse
Affiliation(s)
- Huawei Pan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Qin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuantao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shiguang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Gao Y, Zhou F, Ciais P, Miao C, Yang T, Jia Y, Zhou X, Klaus BB, Yang T, Yu G. Human activities aggravate nitrogen-deposition pollution to inland water over China. Natl Sci Rev 2020; 7:430-440. [PMID: 34692058 PMCID: PMC8288964 DOI: 10.1093/nsr/nwz073] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
In the past three decades, China has built more than 87 000 dams with a storage capacity of ≈6560 km3 and the total surface area of inland water has increased by 6672 km2. Leaching of N from fertilized soils to rivers is the main source of N pollution in China, but the exposure of a growing inland water area to direct atmospheric N deposition and N leaching caused by N deposition on the terrestrial ecosystem, together with increased N deposition and decreased N flow, also tends to raise N concentrations in most inland waters. The contribution of this previously ignored source of N deposition to freshwaters is estimated in this study, as well as mitigation strategies. The results show that the annual amounts of N depositions ranged from 4.9 to 16.6 kg · ha-1 · yr-1 in the 1990s to exceeding 20 kg · ha-1 · yr-1 in the 2010s over most of regions in China, so the total mass of ΔN (the net contribution of N deposition to the increase in N concentration) for lakes, rivers and reservoirs change from 122.26 Gg N · yr-1 in the 1990s to 237.75 Gg N · yr-1 in the 2010s. It is suggested that reducing the N deposition from various sources, shortening the water-retention time in dams and decreasing the degree of regulation for rivers are three main measures for preventing a continuous increase in the N-deposition pollution to inland water in China.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feng Zhou
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Philippe Ciais
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Laboratoire des Sciences du Climat et de l’Environnement, CEA CNRS UVSQ, Gif-sur-Yvette 91191, France
| | - Chiyuan Miao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Center for Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Yanlong Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhou
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Center for Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Butterbach-Bahl Klaus
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
| | - Tiantian Yang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Wang S, Pi Y, Jiang Y, Pan H, Wang X, Wang X, Zhou J, Zhu G. Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution. ENVIRONMENTAL RESEARCH 2020; 180:108867. [PMID: 31708170 DOI: 10.1016/j.envres.2019.108867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/27/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The increased nitrogen (N) fertilizer usage caused substantial nitrate (NO3-) leaching into groundwater and eutrophication in downstream aquatic systems. Riparian zones positioned as the link interfaces of terrestrial and aquatic environments are effective in NO3- removal. However, the microbial mechanisms regulating NO3- reduction in riparian zones are still unclear. In this study, four microbial NO3- reduction processes were explored in fine-scale riparian soil horizons by isotopic tracing technique, qPCR of functional gene, high-throughput amplicon sequencing, and phylogenetic molecular ecological network analysis. Interestingly, anaerobic ammonium oxidation (anammox) contributed to NO3- removal of up to 48.2% only in waterward sediments but not in landward soil. Denitrification was still the most significant contributor to NO3- reduction (32.0-91.8%) and N-losses (51.7-100%). Additionally, dissimilatory nitrate reduction to ammonium (DNRA) played a key role in NO3- reduction (4.4-67.5%) and was even comparable to denitrification. Community structure analysis of denitrifying, anammox, and DNRA bacterial communities targeting the related functional gene showed that spatial heterogeneity played a greater role than both temporal and soil type (rhizosphere and non-rhizosphere soil) variability in microbial community structuring. Denitrification and DNRA communities were diverse, and their activities did not depend on gene abundance but were significantly related to organic matter, suggesting that gene abundance alone was insufficient in assessing their activity in riparian zones. Based on networks, DNRA plays a keystone role among the microbial NO3- reducers. As the last line of defense in the interception of terrestrial NO3-, these findings contribute to our understanding of NO3- removal mechanisms in riparian zones, and could potentially be exploited to reduce the diffusion of NO3- pollution.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanxia Pi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yingying Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Huawei Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxia Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiemin Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Wang S, Liu W, Zhao S, Wang C, Zhuang L, Liu L, Wang W, Lu Y, Li F, Zhu G. Denitrification is the main microbial N loss pathway on the Qinghai-Tibet Plateau above an elevation of 5000 m. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133852. [PMID: 31442722 DOI: 10.1016/j.scitotenv.2019.133852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Soil nitrogen (N) deficiency is the major factor contributing to low primary productivity on the Qinghai-Tibet Plateau. However, most of our understanding of N cycling is still based on human disturbed environments, and the microbial mechanisms governing N loss in low primary productivity environment remain unclear. This study explores three microbial N loss pathways in eight wetland and dryland soil profiles from the Qinghai-Tibet Plateau, at an elevation of above 5000 m with little human activity, using 15N isotopic tracing slurry technology, quantitative PCR, and high-throughput sequencing. No denitrifying anaerobic methane oxidation was detected. Anammox occurred in two of the wetland (n = 4) and dryland (n = 4) soil profiles, while denitrification widely occurred and was the dominant N loss pathway in all samples. Where denitrification and anammox co-occurred, both abundance and activity were higher in wetland than in dryland soils and higher in surface than in subsurface soils. In comparison with non-anammox sites, nitrate levels initiate anammox-related N cycling. High-throughput sequencing and network analysis of nirK, nirS, nosZ, and hzsB gene communities showed that Bradyrhizobiaceae (a family of rhizobia) may play a dominant role in N loss pathways in this region. Given the geological evolution and relatively undisturbed habitat, these findings strongly suggest that denitrification is the dominant N loss pathway in terrestrial habitats of the Qing-Tibet Plateau with minimal anthropogenic activity.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiyue Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siyan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linjie Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weidong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yonglong Lu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Sciences and Technology, Guangzhou 510650, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Wang Y, Xu L, Wang S, Ye F, Zhu G. Global Distribution of Anaerobic Ammonia Oxidation (Anammox) Bacteria - Field Surveys in Wetland, Dryland, Groundwater Aquifer and Snow. Front Microbiol 2019; 10:2583. [PMID: 31798550 PMCID: PMC6861858 DOI: 10.3389/fmicb.2019.02583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
The discovery of anaerobic ammonia oxidation (anammox) expanded our knowledge on the microbial nitrogen cycle. Previous studies report that anammox bacteria are distributed in a wide range of habitats and plays significant roles in the global nitrogen cycle. However, most studies focus only on individual ecosystems or datasets from public databases. To date, our understanding of how anammox bacteria respond to environmental properties and are distributed in different habitats on a global scale, remain unclear. To explore the global distribution of anammox bacteria, samples were collected from different habitats at different locations globally, including wetlands, drylands, groundwater aquifers and snow from 10 countries across six continents. We then used high-throughput amplicon sequencing targeting the functional gene hydrazine synthase (HZS) and generated community profiles. Results showed that Candidatus Brocadia is detected as the dominant genus on a global scale, accounting for 80.0% to 99.9% of the retrieved sequences in different habitats. The Jettenia-like sequences were the second most abundant group, accounting for no more than 19.9% of the retrieved sequences in all sites. The samples in drylands, wetlands and groundwater aquifers showed similar community composition and diversity, with the snow samples being the most different. Deterministic processes seem stronger in regulating the community composition of anammox bacteria, which is supported by the higher proportion explained by local-scale factors. Groundwater aquifers showed high gene abundance and the most complex co-occurrence network among the four habitat types, suggesting that it might be the preferred habitat of anammox bacteria. There is little competition between anammox bacterial species based on co-occurrence analysis. Hence, we could infer that environmental factors such as anaerobic and stable conditions, instead of substrate limitations, may be vital factors determining the anammox bacteria community. These results provide a better understanding of the global distribution of anammox bacteria and the ecological factors that affect their community structuring in diverse habitats.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, China
| | - Liya Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zheng Y, Hou L, Liu M, Yin G. Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112998. [PMID: 31422342 DOI: 10.1016/j.envpol.2019.112998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is recognized as an important bioprocess for nitrogen removal, yet little is known about the associated microbial communities in urban river networks which are intensively disturbed by human activity. In the present study, we investigated the community composition and abundance of anammox bacteria in the urban river network of Shanghai, and explored their potential correlations with nitrogen removal activities and the environmental parameters. High biodiversity of anammox bacteria was detected in the sediment of urban river networks, including Candidatus Brocadia, Scalindua, Jettenia, and Kuenenia. Anammox bacterial abundance ranged from 3.7 × 106 to 3.9 × 107 copies g-1 dry sediment based on 16S rRNA gene, which was strongly correlated to the metabolic activity of anammox bacteria (P < 0.01). A strong linkage between anammox bacteria and denitrifiers was detected (P < 0.05), implying a potential metabolic interdependence between these two nitrogen-removing microbes was existed in urban river networks. Sediment ammonium (NH4+) made a significant contribution to the anammox bacterial community-environment relationship, while anammox bacterial abundance related significantly with sediment total organic carbon (TOC) and silt contents (P < 0.05). However, no statistically significant correlation was observed between cell-specific anammox rate and the measured environmental factors (P > 0.05). In general, the community composition and abundance of anammox bacteria in different hierarchies of the river network was homogeneous, without significant spatial variations (P > 0.05). These results provided an opportunity to further understand the microbial mechanism of nitrogen removal bioprocesses in urban river networks.
Collapse
Affiliation(s)
- Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Pang Y, Ji G. Biotic factors drive distinct DNRA potential rates and contributions in typical Chinese shallow lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112903. [PMID: 31362259 DOI: 10.1016/j.envpol.2019.07.071] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) is an important nitrate reduction pathway in lake sediments; however, little is known about the biotic factors driving the DNRA potential rates and contributions to the fate of nitrate. This study reports the first investigation of DNRA potential rates and contributions in lake sediments linked to DNRA community structures. The results of 15N isotope-tracing incubation experiments showed that 12 lakes had distinct DNRA potentials, which could be clustered into 2 groups, one with higher DNRA potentials (rates varied from 2.7 to 5.0 nmol N g-1 h-1 and contributions varied from 27.5% to 35.4%) and another with lower potentials (rates varied from 0.6 to 2.3 nmol N g-1 h-1 and contributions varied from 8.1% to 22.8%). Sediment C/N and the abundance of the nrfA gene were the key abiotic and biotic factors accounting for the distinct DNRA potential rates, respectively. A high-throughput sequencing analysis of the nrfA gene revealed that the sediment C/N could also affect the DNRA potential rates by altering the ecological patterns of the DNRA community composition. In addition, the interactions between the DNRA community and the denitrifying community were found to be obviously different in the two groups. In the higher DNRA potential group, the DNRA community mainly interacted with heterotrophic denitrifiers, while in the lower DNRA potential group, both heterotrophic and sulfur-driven autotrophic denitrifiers might cooperate with the DNRA community. The present study highlighted the role of the sulfur-driven nitrate reduction pathway in C-limited sediments, which has always been overlooked in freshwater environments, and gave new insights into the molecular mechanism influencing the fate of nitrate.
Collapse
Affiliation(s)
- Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
Wang S, Zhu G, Zhuang L, Li Y, Liu L, Lavik G, Berg M, Liu S, Long XE, Guo J, Jetten MSM, Kuypers MMM, Li F, Schwark L, Yin C. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME JOURNAL 2019; 14:151-163. [PMID: 31595050 DOI: 10.1038/s41396-019-0513-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
Global-scale N-oxide contamination of groundwater within aquifers occurs due to the widespread use of N-bearing fertilizers and chemicals, threatening both human and environmental health. However, the conversion of these pollutants in active nitrogen (N) cycling processes in the subsurface biosphere still remains unclear. This study investigates the global occurrence of anaerobic ammonium oxidation (anammox) in aquifers, where anammox was found to be turned on and off between saturated and unsaturated soil horizons, and contributed 36.8-79.5% to N loss in saturated soil horizons, the remainder being due to denitrification which has traditionally been considered the main pathway for removal of N-pollutants from aquifers. Although anammox activity was undetectable in the unsaturated soil horizons, it could potentially be activated by contact with ascending groundwater. High-throughput pyrosequencing analysis identified Candidatus Brocadia anammoxidans as being the most abundant anammox bacterium in the saturated soils investigated. However, the anammox bacterial abundance was determined by the relative richness of Candidatus Jettenia asiatica. Isotopic pairing experiments revealed that coupling anammox with ammonium oxidation and respiratory ammonification enabled the formation of a revised N cycle in aquifer systems, in which respiratory ammonification acted as an important coordinator. Anammox can therefore contribute substantially to aquifer N cycling and its role in remediation of aquifers contaminated with N-oxides may be of global importance.
Collapse
Affiliation(s)
- Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linjie Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yixiao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lu Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gaute Lavik
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, 226007, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Sciences and Technology, Guangzhou, 510650, China
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, D-24098, Kiel, Germany
| | - Chengqing Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
19
|
Wang S, Wang W, Zhao S, Wang X, Hefting MM, Schwark L, Zhu G. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones. WATER RESEARCH 2019; 162:139-150. [PMID: 31260829 DOI: 10.1016/j.watres.2019.06.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Fertilized agroecosystems may show considerable leaching of the mobile nitrogen (N) compound NO3-, which pollutes groundwater and causes eutrophication of downstream waterbodies. Riparian buffer zones, positioned between terrestrial and aquatic environments, effectively remove NO3- and serve as a hotspot for N2O emissions. However, microbial processes governing NO3- reduction in riparian zones still remain largely unclear. This study explored the underlying mechanisms of various N-loss processes in riparian soil horizons using isotopic tracing techniques, molecular assays, and high-throughput sequencing. Both anaerobic ammonium oxidation (anammox) and denitrification activity were maximized in the riparian fringe rather than in the central zones. Denitrifying anaerobic methane oxidation (damo) process was not detected. Interestingly, both contrasting microbial habitats were separated by a groundwater table, which forms an important biogeochemical interface. Denitrification dominated cumulative N-losses in the upper unsaturated soil, while anammox dominated the lower oxic saturated soil horizons. Archaeal and bacterial ammonium oxidation that couple dissimilatory nitrate reduction to ammonium (DNRA) with a high cell-specific rate promoted anammox even further in oxic subsurface horizons. High-throughput sequencing and network analysis showed that the anammox rate positively correlated with Candidatus 'Kuenenia' (4%), rather than with the dominant Candidatus 'Brocadia'. The contribution to N-loss via anammox increased significantly with the water level, which was accompanied by a significant reduction of N2O emission (∼39.3 ± 10.6%) since N-loss by anammox does not cause N2O emissions. Hence, water table management in riparian ecotones can be optimized to reduce NO3- pollution by shifting from denitrification to the environmentally friendly anammox pathway to mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Weidong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, Kiel, Germany
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Abbas T, Zhang Q, Jin H, Li Y, Liang Y, Di H, Zhao Y. Anammox microbial community and activity changes in response to water and dissolved oxygen managements in a paddy-wheat soil of Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:305-313. [PMID: 30959297 DOI: 10.1016/j.scitotenv.2019.03.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Anammox are unusual members of the microbial community contributing to N losses via anaerobic ammonium oxidation. Anammox use nitrite as a substrate and produce hydrazine as an intermediate product. Up to date, the effects of dissolved oxygen and moisture dynamics on anammox potential and microbial community in agricultural soils were poorly understood. In this study, we investigated the interaction of dissolved oxygen and moisture contents as factors affecting the soil anammox process. The experiment had four fertilization treatments i.e. Control (CK), Chemical fertilizer (CF), Pig composted manure plus chemical fertilizer (PMCF), and Straw returned to soil plus chemical fertilizer (SRCF) with different water contents, 70%-FC, Alternate wetting and drying (AWD), Flooding I (D.O 5.8 mg L-1), and Flooding II (D.O 2.6 mg L-1). 15N-isotopic tracer technique was used to evaluate the anammox and denitrification rates. The results showed that the anammox rate ranged from the lowest 0.56 nmol N2·g-1·h-1 in CF (with 70% FC water) to the highest rate of 1.47 nmol N2·g-1·h-1 in SRCF (with flooding II). In water treatments, the average lowest and highest anammox rates were in the 70% FC (0.61 nmol N2·g-1·h-1) and Flooding II (1.14 nmol N2·g-1·h-1), respectively. Moreover, under soil treatments, the minimum average anammox rate was found in the PMCF (0.76 nmol N2·g-1·h-1) and maximum in the SRCF (1.01 nmol N2·g-1·h-1). Interestingly, anammox genes copy numbers were highest in alternate wetting and drying conditions under all fertilizer treatments rather than in continuous flooding. The phylogenetic analysis showed that Ca. Brocadia was dominating while some of Ca. Jettenia was also present. In conclusion, alternate wetting and drying could increase the number of anammox bacteria and microbial diversity.
Collapse
Affiliation(s)
- Touqeer Abbas
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China.
| | - Hua Jin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China
| | - Yongchao Liang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, PR China
| | - Yuhua Zhao
- College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
21
|
Chen L, Liu S, Chen Q, Zhu G, Wu X, Wang J, Li X, Hou L, Ni J. Anammox response to natural and anthropogenic impacts over the Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:171-180. [PMID: 30772546 DOI: 10.1016/j.scitotenv.2019.02.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Increasing attention has been paid to anaerobic ammonium oxidation (anammox) in river ecosystems due to their special role in the global nitrogen cycle from land to the ocean. This study have revealed the spatial patterns of anammox bacterial response to geographic characteristics and dam operation along the Yangtze River, using 15N tracers and molecular analyses of microbial communities in sediment samples over a 4300 km continuum. Here we found a significant temperature-related increase in anammox bacterial abundance and alpha diversity from mountainous area in the upper, fluvial plain area in the middle and lower reach, to the river mouth. In contrast, an opposite trend in anammox contribution to N2 production (ra) was observed down the Yangtze River due to enhanced denitrification induced by spatial heterogeneity of total organic carbon. Interestingly, the Three Gorges Dam resulted in an intensive erosion and thus a change from muddy to sandy sediments within 400 km downstream the dam, which readjusted the anammox community characterized with a decreased bacterial diversity and enhanced anammox contribution to nitrogen loss. Our study highlights the importance of natural and anthropogenic impacts on anammox bacterial community and function in a complex large river ecosystem.
Collapse
Affiliation(s)
- Liming Chen
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sitong Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Qian Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
| | - Guibing Zhu
- State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuan Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiawen Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Li
- East China Normal University, State Key Lab Estuarine & Coastal Research, Shanghai 200062, China
| | - Lijun Hou
- East China Normal University, State Key Lab Estuarine & Coastal Research, Shanghai 200062, China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Hoagland B, Schmidt C, Russo TA, Adams R, Kaye J. Controls on nitrogen transformation rates on restored floodplains along the Cosumnes River, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:979-994. [PMID: 30179826 DOI: 10.1016/j.scitotenv.2018.08.379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Levee construction results in the systematic replumbing of river systems and reduces the frequency of floodplain inundation, which impacts nutrient delivery and transformations in floodplains. Floodplain restoration via levee removal affects downstream water quality by restoring soil microbial metabolic pathways such as denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA). Although these metabolisms are important for the nitrogen cycle, few studies have quantified the contribution of all three pathways to nitrate retention or loss in restored floodplains. The objectives of this study were to quantify the relevance of denitrification, anammox and DNRA to nitrogen retention, characterize the hydrologic conditions most favorable to each pathway, and estimate the potential for floodplain restoration to improve nitrogen cycling in the Cosumnes River watershed. To address these goals, we simulated flood conditions in soil mesocosms collected from two floodplains where levees were breached in 1997 and 2014 along the Lower Cosumnes River in the San Joaquin Basin of California. River water enriched with K15NO3 tracer was pumped into each mesocosm at a constant rate for a period of 3 months. Samples were collected from the surface water and soil pore water for measurements of NO3-, NO2-, and NH4+ concentrations, and δ15N of dissolved gases (N2 and N2O). To the best of our knowledge, this study reports the highest relative contribution to N2 production due to anammox for freshwater systems (41 to 84%) to date. High anammox rates were associated with heterogeneous grain size distribution across depth and high nitrification rates. We quantify the capacity of restored floodplain soils with distinct textural and chemical characteristics to retain or release nitrogen during large and small floods in a particular water year.
Collapse
Affiliation(s)
- B Hoagland
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA.
| | - C Schmidt
- Department of Environmental Sciences, University of San Francisco, San Francisco, CA, USA
| | - T A Russo
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA; Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - R Adams
- Department of Environmental Sciences, University of San Francisco, San Francisco, CA, USA
| | - J Kaye
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Nie S, Zhu GB, Singh B, Zhu YG. Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:127-134. [PMID: 30321707 DOI: 10.1016/j.envpol.2018.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/19/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Denitrification is considered as the dominant nitrogen (N) removing pathway, however, anaerobic oxidation of ammonium (anammox) also plays a significant part in N loss in agricultural ecosystems. Large N inputs into agricultural soils may stimulate the growth of anammox bacteria, resulting in high activity and diversity of anammox bacteria and subsequent more N loss. In some specific niches, like oxic-anoxic interface, three processes, nitrification, anammox and denitrification couple with each other, and significant anammox reaction could be observed. Soil parameters like pH, dissolved oxygen, salinity, oxidation-reduction potential (ORP), and substrate concentrations impact the anammox process. Here we summarize the current knowledge on anammox activity and contribution to N loss, abundance and diversity of anammox bacteria, factors affecting anammox, and the relationship between anammox and other N loss pathways in agricultural soils. We propose that more investigations are required for (1) the role of anammox to N loss with different agricultural management strategies; (2) microscale research on the coupling of nitrification-anammox-denitrification, that might be a very complex process but ideal model for further studies responsible for N cycling in terrestrial ecosystems; and (3) new methods to estimate differential contributions of anammox, codenitrification and denitrification in total N loss in agricultural ecosystems. New research will provide much needed information to quantify the contribution of anammox in N loss from soils at landscape, ecosystem and global scales.
Collapse
Affiliation(s)
- San'an Nie
- College of Life Sciences, Fujian Agriculture and Forest University, Fuzhou, 350002, China
| | - Gui-Bing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith South, NSW, 2751, Australia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
24
|
Zhu G, Wang S, Ma B, Wang X, Zhou J, Zhao S, Liu R. Anammox granular sludge in low-ammonium sewage treatment: Not bigger size driving better performance. WATER RESEARCH 2018; 142:147-158. [PMID: 29864650 DOI: 10.1016/j.watres.2018.05.048] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 05/26/2023]
Abstract
An integrated investigation to document high anammox abundance, activity and diversity in upflow anaerobic sludge blanket (UASB) reactor treating low-strength ammonium loading sewage was performed and showed that the optimal anammox granular sludge sizes could mitigate undesirable N2O emission. The enhanced anammox bacterial abundance, activity and specific anammox rate were achieved with optimal granules sludge sizes of 0.5-0.9 mm with multiple "Jettenia", "Brocadia", and "Anammoxoglobus" species. The tightly-bound extracellular polymeric substance (TB-EPS) was the main EPS layer found in anammox granular sludge, in which polysaccharides play an important structural role. Over this granular sludge sizes, the anammox bacterial abundance and activity did not significantly decrease, but N2O emission significantly increased. High throughput sequencing and ecological networks demonstrated the patterns of anammox and their co-occurring bacteria, with availability N2O-producer and N2O-reducer functional genes. Incomplete denitrification and insufficient carbon source mainly contributed to N2O production in granular sludge, as supported by results of stratification analysis.
Collapse
Affiliation(s)
- Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bin Ma
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xiaoxia Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; Shandong Provincial Key Lab of Environmental Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyan Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruiping Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Shen LD, Liu X, Wu HS. Importance of anaerobic ammonium oxidation as a nitrogen removal pathway in freshwater marsh sediments. J Appl Microbiol 2018; 125:1423-1434. [DOI: 10.1111/jam.14042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/04/2018] [Accepted: 07/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- L.-D. Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - X. Liu
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| | - H.-S. Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters; Jiangsu Key Laboratory of Agricultural Meteorology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
- Department of Ecology; School of Applied Meteorology; Nanjing University of Information Science and Technology; Nanjing China
| |
Collapse
|
26
|
Zhu G, Wang S, Li Y, Zhuang L, Zhao S, Wang C, Kuypers MMM, Jetten MSM, Zhu Y. Microbial pathways for nitrogen loss in an upland soil. Environ Microbiol 2018. [PMID: 29528547 DOI: 10.1111/1462-2920.14098] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The distribution and importance of anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) have been identified in aquatic ecosystems; their role in agricultural upland soils however has not yet been well investigated. In this study, we examined spatio-temporal distributions of anammox and n-damo bacteria in soil profiles (300 cm depth) from an agricultural upland. Monitoring nitrogen (N) conversion activity using isotope-tracing techniques over the course of one year showed denitrification (99.0% N-loss in the winter and 85.0% N-loss in the summer) predominated over anammox (1.0% N-loss in the winter and 14.4% N-loss in the summer) and n-damo (0.6% N-loss in the winter) in surface soils (0-20 cm). While below 20 cm depth, N-loss was dominated by anammox (79.4 ± 14.3% in the winter and 65.4 ± 12.5% in the summer) and n-damo was not detected. Phylogenetic analysis showed that Candidatus Brocadia anammoxidans dominated the anammox community in the surface soil and Candidatus Brocadia fulgida dominated below 20 cm depth. Dissimilatory nitrate reduction to ammonium (DNRA), another nitrite reduction process, was found to play a limited role (4.9 ± 3.5%) in the surface soil compared with denitrification; below 80 cm DNRA rates were much higher than rates of anammox and denitrification. Ammonium oxidation was the main source of NO2- above 80 cm (70.9 ± 23.3%), the key influencing factor on anammox rates, and nitrate reduction (100%) was the main NO2- source below 80 cm. Considering the anammox, n-damo and denitrification rates as a whole in the sampled soil profile, denitrification is still the main N-loss process in upland soils.
Collapse
Affiliation(s)
- Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yixiao Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Linjie Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Siyan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, the Netherlands
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
27
|
Sun H, Liu F, Xu S, Wu S, Zhuang G, Deng Y, Wu J, Zhuang X. Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater. Front Microbiol 2017; 8:1932. [PMID: 29056931 PMCID: PMC5635519 DOI: 10.3389/fmicb.2017.01932] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022] Open
Abstract
Removal of nitrogen (N) is a critical aspect in the functioning of constructed wetlands (CWs), and the N treatment in CWs depends largely on the presence and activity of macrophytes and microorganisms. However, the effects of plants on microorganisms responsible for N removal are poorly understood. In this study, a three-stage surface flow CW was constructed in a pilot-scale within monospecies stands of Myriophyllum aquaticum to treat swine wastewater. Steady-state conditions were achieved throughout the 600-day operating period, and a high (98.3%) average ammonia removal efficiency under a N loading rate of 9 kg ha-1 d-1 was observed. To determine whether this high efficiency was associated with the performance of active microbes, the abundance, structure, and interactions of microbial community were compared in the unvegetated and vegetated samples. Real-time quantitative polymerase chain reactions showed the abundances of nitrifying genes (archaeal and bacterial amoA) and denitrifying genes (nirS, nirK, and nosZ) were increased significantly by M. aquaticum in the sediments, and the strongest effects were observed for the archaeal amoA (218-fold) and nirS genes (4620-fold). High-throughput sequencing of microbial 16S rRNA gene amplicons showed that M. aquaticum greatly changed the microbial community, and ammonium oxidizers (Nitrosospira and Nitrososphaera), nitrite-oxidizing bacteria (Nitrospira), and abundant denitrifiers including Rhodoplanes, Bradyrhizobium, and Hyphomicrobium, were enriched significantly in the sediments. The results of a canonical correspondence analysis and Mantle tests indicated that M. aquaticum may shift the sediment microbial community by changing the sediment chemical properties. The enriched nitrifiers and denitrifiers were distributed widely in the vegetated sediments, showing positive ecological associations among themselves and other bacteria based on phylogenetic molecular ecological networks.
Collapse
Affiliation(s)
- Haishu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Shen LD, Cheng HX, Liu X, Li JH, Liu Y. Potential role of anammox in nitrogen removal in a freshwater reservoir, Jiulonghu Reservoir (China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3890-3899. [PMID: 27905043 DOI: 10.1007/s11356-016-8126-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Currently, the nitrogen removal potential of anaerobic ammonium oxidation (anammox) and its regulating factors in reservoir systems remain uncertain. Here, we provided the molecular and isotopic evidence for anammox in the freshwater sediment of Jiulonghu Reservoir that is located in Quzhou, Zhejiang Province, China. Diverse 16S rRNA gene sequences related to Candidatus Kuenenia and Candidatus Brocadia were detected by using high-throughput (Illumina MiSeq) sequencing of total bacterial 16S rRNA genes, and the Candidatus Brocadia was the most frequently detected anammox bacterial genus. The anammox bacterial abundance was determined based on quantitative PCR on hzsA (the alpha subunit of the hydrazine synthase) genes and varied from 3.1 × 105 to 1.1 × 106 copies g-1 dry sediment. Homogenized sediments were further incubated with 15NO3- amendments to measure the potential anammox rates and determine the contribution of this process to dinitrogen gas (N2) production. The potential rates of anammox ranged between 8.1 and 30.8 nmol N2 g-1 dry sediment day-1, and anammox accounted for 7.7-20.5% of total N2 production in sediment. Higher levels of anammox bacterial diversity, abundance, and activity were observed in the downstream with greater human disturbance than those in the upstream with less human disturbance. Correlation analyses suggested that the inorganic nitrogen level in sediment could be a key factor for the anammox bacterial abundance and activity. The results showed that the nitrogen removal via anammox may not be negligible in the examined reservoir and indicated that human activities could influence the anammox process in reservoir systems.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hai-Xiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China.
| | - Xu Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jian-Hui Li
- Quzhou Academy of Agricultural Sciences, Quzhou, 324000, China
| | - Yan Liu
- Wuxijiang National Wetland Park Service, Quzhou, 324000, China
| |
Collapse
|
29
|
Wang S, Radny D, Huang S, Zhuang L, Zhao S, Berg M, Jetten MSM, Zhu G. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Sci Rep 2017; 7:40173. [PMID: 28071702 PMCID: PMC5223210 DOI: 10.1038/srep40173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) is recognized as an important process for nitrogen cycling, yet little is known about its role in the subsurface biosphere. In this study, we investigated the presence, abundance, and role of anammox bacteria in upland soil cores from Tianjin, China (20 m depth) and Basel, Switzerland (10 m depth), using isotope-tracing techniques, (q)PCR assays, and 16 S rRNA &hzsB gene clone libraries, along with nutrient profiles of soil core samples. Anammox in the phreatic (water-saturated) zone contributed to 37.5-67.6% of the N-loss (up to 0.675 gN m-2 d-1), with anammox activities of 0.005-0.74 nmolN g-1 soil h-1, which were even higher than the denitrification rates. By contrast, no significant anammox was measured in the vadose zone. Higher anammox bacterial cell densities were observed (0.75-1.4 × 107 copies g-1 soil) in the phreatic zone, where ammonia-oxidizing bacteria (AOB) maybe the major source of nitrite for anammox bacteria. The anammox bacterial cells in soils of the vadose zone were all <103 copies g-1 soil. We suggest that the subsurface provides a favorable niche for anammox bacteria whose contribution to N cycling and groundwater nitrate removal seems considerably larger than previously known.
Collapse
Affiliation(s)
- Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dirk Radny
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - Shuangbing Huang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Linjie Zhuang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyan Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
30
|
Shan J, Zhao X, Sheng R, Xia Y, Ti C, Quan X, Wang S, Wei W, Yan X. Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9972-9980. [PMID: 27499451 DOI: 10.1021/acs.est.6b01765] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using soil slurry-based (15)N tracer combined with N2/Ar technique, the potential rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), and their respective contributions to total nitrate reduction were investigated in 11 typical paddy soils across China. The measured rates of denitrification, anammox, and DNRA varied from 2.37 to 8.31 nmol N g(-1) h(-1), 0.15 to 0.77 nmol N g(-1) h(-1) and 0.03 to 0.54 nmol N g(-1) h(-1), respectively. The denitrification and anammox rates were significantly correlated with the soil organic carbon content, nitrate concentration, and the abundance of nosZ genes. The DNRA rates were significantly correlated with the soil C/N, extractable organic carbon (EOC)/NO3(-) ratio, and sulfate concentration. Denitrification was the dominant pathway (76.75-92.47%), and anammox (4.48-9.23%) and DNRA (0.54-17.63%) also contributed substantially to total nitrate reduction. The N loss or N conservation attributed to anammox and DNRA was 4.06-21.24 and 0.89-15.01 g N m(-2) y(-1), respectively. This study reports the first simultaneous investigation of the dissimilatory nitrate reduction processes in paddy soils, highlighting that anammox and DNRA play important roles in removing nitrate and should be considered when evaluating N transformation processes in paddy fields.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
| | - Xu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
| | - Rong Sheng
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Agro-ecosystem Research Station, Soil Molecular Ecology Section, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
| | - Chaopu Ti
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
| | - Xiaofei Quan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shuwei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenxue Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Taoyuan Agro-ecosystem Research Station, Soil Molecular Ecology Section, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008, China
| |
Collapse
|