1
|
Navarrete-León C, Patrick PS, Doherty A, Allan H, Cipiccia S, Marathe S, Wanelik K, Esposito M, Hagen CK, Olivo A, Endrizzi M. High-angular-sensitivity X-ray phase-contrast microtomography of soft tissue through a two-directional beam-tracking synchrotron set-up. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1293-1298. [PMID: 39007822 PMCID: PMC11371031 DOI: 10.1107/s1600577524005034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024]
Abstract
Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, μ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.
Collapse
Affiliation(s)
- Carlos Navarrete-León
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - P. Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, Paul O’Gorman Building, 72 Huntley Street, LondonWC1E 6DD, United Kingdom
| | - Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Harry Allan
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Silvia Cipiccia
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Shashidhara Marathe
- Diamond Light SourceHarwell Science and Innovation Campus, Fermi AvenueDidcotOX11 0DEUnited Kingdom
| | - Kaz Wanelik
- Diamond Light SourceHarwell Science and Innovation Campus, Fermi AvenueDidcotOX11 0DEUnited Kingdom
| | - Michela Esposito
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Charlotte K. Hagen
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place, Gower Street, LondonWC1E 6BT, United Kingdom
| |
Collapse
|
2
|
Sunaguchi N, Huang Z, Shimao D, Ichihara S, Nishimura R, Iwakoshi A, Yuasa T, Ando M. Crystal optics simulations for delineation of the three-dimensional cellular nuclear distribution using analyzer-based refraction-contrast computed tomography. Sci Rep 2022; 12:19595. [PMID: 36380223 PMCID: PMC9666655 DOI: 10.1038/s41598-022-24249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Refraction-contrast computed tomography (RCT) using a refractive angle analyzer of Si perfect crystal can reconstruct the three-dimensional structure of biological soft tissue with contrast comparable to that of stained two-dimensional pathological images. However, the blurring of X-ray beam by the analyzer has prevented improvement of the spatial resolution of RCT, and the currently possible observation of tissue structure at a scale of approximately 20 µm provides only limited medical information. As in pathology, to differentiate between benign and malignant forms of cancer, it is necessary to observe the distribution of the cell nucleus, which is approximately 5-10 µm in diameter. In this study, based on the X-ray dynamical diffraction theory using the Takagi-Taupin equation, which calculates the propagation of X-ray energy in crystals, an analyzer crystal optical system depicting the distribution of cell nuclei was investigated by RCT imaging simulation experiments in terms of the thickness of the Laue-case analyzer, the camera pixel size and the difference in spatial resolution between the Bragg-case and Laue-case analyzers.
Collapse
Affiliation(s)
- Naoki Sunaguchi
- grid.27476.300000 0001 0943 978XDepartment of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Zhuoran Huang
- grid.27476.300000 0001 0943 978XDepartment of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Shimao
- grid.444700.30000 0001 2176 3638Department of Radiological Technology, Hokkaido University of Science, Sapporo, Japan
| | - Shu Ichihara
- grid.410840.90000 0004 0378 7902Department of Pathology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Rieko Nishimura
- grid.410840.90000 0004 0378 7902Department of Pathology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Akari Iwakoshi
- grid.410840.90000 0004 0378 7902Department of Pathology, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Tetsuya Yuasa
- grid.268394.20000 0001 0674 7277Graduate School of Engineering and Science, Yamagata University, Yonezawa, Japan
| | - Masami Ando
- grid.410794.f0000 0001 2155 959XHigh Energy Accelerator Research Organization, Tsukuba, Japan
| |
Collapse
|
3
|
Barbon S, Biccari A, Stocco E, Capovilla G, D’Angelo E, Todesco M, Sandrin D, Bagno A, Romanato F, Macchi V, De Caro R, Agostini M, Merigliano S, Valmasoni M, Porzionato A. Bio-Engineered Scaffolds Derived from Decellularized Human Esophagus for Functional Organ Reconstruction. Cells 2022; 11:cells11192945. [PMID: 36230907 PMCID: PMC9563623 DOI: 10.3390/cells11192945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70–98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix–cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2–6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Andrea Biccari
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Giovanni Capovilla
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Deborah Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| | - Marco Agostini
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-96-40-160
| | - Stefano Merigliano
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Michele Valmasoni
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, 35128 Padova, Italy
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, 35128 Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35136 Padova, Italy
| |
Collapse
|
4
|
Zhao Y, Zheng M, Li Y, Han S, Li F, Qi B, Liu D, Hu C. Suppressing multi-material and streak artifacts with an accelerated 3D iterative image reconstruction algorithm for in-line X-ray phase-contrast computed tomography. OPTICS EXPRESS 2022; 30:19684-19704. [PMID: 36221738 DOI: 10.1364/oe.459924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 06/16/2023]
Abstract
In-line X-ray phase-contrast computed tomography typically contains two independent procedures: phase retrieval and computed tomography reconstruction, in which multi-material and streak artifacts are two important problems. To address these problems simultaneously, an accelerated 3D iterative image reconstruction algorithm is proposed. It merges the above-mentioned two procedures into one step, and establishes the data fidelity term in raw projection domain while introducing 3D total variation regularization term in image domain. Specifically, a transport-of-intensity equation (TIE)-based phase retrieval method is updated alternately for different areas of the multi-material sample. Simulation and experimental results validate the effectiveness and efficiency of the proposed algorithm.
Collapse
|
5
|
Savvidis S, Gerli MF, Pellegrini M, Massimi L, Hagen CK, Endrizzi M, Atzeni A, Ogunbiyi OK, Turmaine M, Smith ES, Fagiani C, Selmin G, Urbani L, Durkin N, Shibuya S, De Coppi P, Olivo A. Monitoring tissue engineered constructs and protocols with laboratory-based x-ray phase contrast tomography. Acta Biomater 2022; 141:290-299. [PMID: 35051630 DOI: 10.1016/j.actbio.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering (TE) aims to generate bioengineered constructs which can offer a surgical treatment for many conditions involving tissue or organ loss. Construct generation must be guided by suitable assessment tools. However, most current tools (e.g. histology) are destructive, which restricts evaluation to a single-2D anatomical plane, and has no potential for assessing constructs prior to or following their implantation. An alternative can be provided by laboratory-based x-ray phase contrast computed tomography (PC-CT), which enables the extraction of 3D density maps of an organ's anatomy. In this work, we developed a semi-automated image processing pipeline dedicated to the analysis of PC-CT slices of oesophageal constructs. Visual and quantitative (density and morphological) information is extracted on a volumetric basis, enabling a comprehensive evaluation of the regenerated constructs. We believe the presented tools can enable the successful regeneration of patient-specific oesophagus, and bring comparable benefit to a wide range of TE applications. STATEMENT OF SIGNIFICANCE: Phase contrast computed tomography (PC-CT) is an imaging modality which generates high resolution volumetric density maps of biological tissue. In this work, we demonstrate the use of PC-CT as a new tool for guiding the progression of an oesophageal tissue engineering (TE) protocol. Specifically, we developed a semi-automated image-processing pipeline which analyses the oesophageal PC-CT slices, extracting visual and quantitative (density and morphological) information. This information was proven key for performing a comprehensive evaluation of the regenerated constructs, and cannot be obtained through existing assessment tools primarily due to their destructive nature (e.g. histology). This work paves the way for using PC-CT in a wide range of TE applications which can be pivotal for unlocking the potential of this field.
Collapse
|
6
|
Barbulescu GI, Buica TP, Goje ID, Bojin FM, Ordodi VL, Olteanu GE, Heredea RE, Paunescu V. Optimization of Complete Rat Heart Decellularization Using Artificial Neural Networks. MICROMACHINES 2022; 13:mi13010079. [PMID: 35056244 PMCID: PMC8778756 DOI: 10.3390/mi13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023]
Abstract
Whole organ decellularization techniques have facilitated the fabrication of extracellular matrices (ECMs) for engineering new organs. Unfortunately, there is no objective gold standard evaluation of the scaffold without applying a destructive method such as histological analysis or DNA removal quantification of the dry tissue. Our proposal is a software application using deep convolutional neural networks (DCNN) to distinguish between different stages of decellularization, determining the exact moment of completion. Hearts from male Sprague Dawley rats (n = 10) were decellularized using 1% sodium dodecyl sulfate (SDS) in a modified Langendorff device in the presence of an alternating rectangular electric field. Spectrophotometric measurements of deoxyribonucleic acid (DNA) and total proteins concentration from the decellularization solution were taken every 30 min. A monitoring system supervised the sessions, collecting a large number of photos saved in corresponding folders. This system aimed to prove a strong correlation between the data gathered by spectrophotometry and the state of the heart that could be visualized with an OpenCV-based spectrometer. A decellularization completion metric was built using a DCNN based classifier model trained using an image set comprising thousands of photos. Optimizing the decellularization process using a machine learning approach launches exponential progress in tissue bioengineering research.
Collapse
Affiliation(s)
- Greta Ionela Barbulescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (F.M.B.); (V.P.)
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania; (T.P.B.); (V.L.O.)
- Correspondence: (G.I.B.); (I.D.G.); Tel.: +40-733177583 (G.-I.B.)
| | - Taddeus Paul Buica
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania; (T.P.B.); (V.L.O.)
| | - Iacob Daniel Goje
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Correspondence: (G.I.B.); (I.D.G.); Tel.: +40-733177583 (G.-I.B.)
| | - Florina Maria Bojin
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (F.M.B.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania; (T.P.B.); (V.L.O.)
| | - Valentin Laurentiu Ordodi
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania; (T.P.B.); (V.L.O.)
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Faculty of Industrial Chemistry and Environmental Engineering, “Politehnica” University Timisoara, No. 2 Victoriei Square, 300006 Timisoara, Romania
| | - Gheorghe Emilian Olteanu
- Department of Pathology, “Dr Victor Babes” Clinical Hospital of Infectious Disease and Pneumophysiology, 300041 Timisoara, Romania;
| | - Rodica Elena Heredea
- Department of Clinical Practical Skills, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Advanced Cardiology and Hemostaseology Research Center, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Department of Pathology, “Louis Turcanu” Children’s Clinical Emergency Hospital, 300041 Timisoara, Romania
| | - Virgil Paunescu
- Immuno-Physiology and Biotechnologies Center (CIFBIOTEH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, No. 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (F.M.B.); (V.P.)
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, No. 156 Liviu Rebreanu, 300723 Timisoara, Romania; (T.P.B.); (V.L.O.)
| |
Collapse
|
7
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Olivo A. Edge-illumination x-ray phase-contrast imaging. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:363002. [PMID: 34167096 PMCID: PMC8276004 DOI: 10.1088/1361-648x/ac0e6e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 05/08/2023]
Abstract
Although early demonstration dates back to the mid-sixties, x-ray phase-contrast imaging (XPCI) became hugely popular in the mid-90s, thanks to the advent of 3rd generation synchrotron facilities. Its ability to reveal object features that had so far been considered invisible to x-rays immediately suggested great potential for applications across the life and the physical sciences, and an increasing number of groups worldwide started experimenting with it. At that time, it looked like a synchrotron facility was strictly necessary to perform XPCI with some degree of efficiency-the only alternative being micro-focal sources, the limited flux of which imposed excessively long exposure times. However, new approaches emerged in the mid-00s that overcame this limitation, and allowed XPCI implementations with conventional, non-micro-focal x-ray sources. One of these approaches showing particular promise for 'real-world' applications is edge-illumination XPCI: this article describes the key steps in its evolution in the context of contemporary developments in XPCI research, and presents its current state-of-the-art, especially in terms of transition towards practical applications.
Collapse
Affiliation(s)
- Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| |
Collapse
|
9
|
Modregger P, Meganck J, Hagen CK, Massimi L, Olivo A, Endrizzi M. Improved iterative tomographic reconstruction for x-ray imaging with edge-illumination. Phys Med Biol 2019; 64:205008. [PMID: 31509810 DOI: 10.1088/1361-6560/ab439d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Iterative tomographic reconstruction has been established as a viable alternative for data analysis in phase-sensitive x-ray imaging based on the edge-illumination principle. However, previously published approaches did not account for drifts of optical elements during a scan, which can lead to artefacts. Up to now, the strategy to reduce these artefacts was to acquire additional intermediate flat field images, which were used to correct the sinograms. Here, we expand the theoretical model to take these effects into account and demonstrate a significant reduction of (ring)-artefacts in the final reconstructions, while allowing for a significant reduction of scan time and dose. We further improve the model by including the capability to reconstruct combined absorption and phase contrast slices, which we experimentally demonstrate to deliver improved contrast to noise ratios compared to previously employed single shot approaches.
Collapse
Affiliation(s)
- Peter Modregger
- Department of Medical Physics and Bioengineering, University College London, Gower Street, WC1E 6BT London, United Kingdom. Author to whom correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
10
|
Pereira RHA, Prado AR, Caro LFCD, Zanardo TÉC, Alencar AP, Nogueira BV. A non-linear mathematical model using optical sensor to predict heart decellularization efficacy. Sci Rep 2019; 9:12211. [PMID: 31434981 PMCID: PMC6704168 DOI: 10.1038/s41598-019-48659-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
One of the main problems of the decellularization technique is the subjectivity of the final evaluation of its efficacy in individual organs. This problem can result in restricted cell repopulation reproducibility and worse responses to transplant tissues. Our proposal is to analyze the optical profiles produced by hearts during perfusion decellularization, as an additional method for evaluating the decellularization process of each individual organ. An apparatus comprised of a structured LED source and photo detector on an adjustable base was developed to capture the relationship between transmitted light during the perfusion of murine hearts, and residual DNA content. Voltage-time graphic records were used to identify a nonlinear mathematical model to discriminate between decellularizations with remaining DNA above (Incomplete Decellularization) and below (Complete Decellularization) the standardized limits. The results indicate that temporal optical evaluation of the process enables inefficient cell removal to be predicted in the initial stages, regardless of the apparent transparency of the organ. Our open system also creates new possibilities to add distinct photo detectors, such as for specific wavelengths, image acquisition, and physical-chemical evaluation of the scaffold, in order to collect different kinds of information, from dozens of studies. These data, when compiled and submitted to machine learning techniques, have the potential to initiate an exponential advance in tissue bioengineering research.
Collapse
Affiliation(s)
- Rayssa Helena Arruda Pereira
- Carlos Alberto Redins Cell Ultrastructure Laboratory (LUCCAR) and Tissue Engineering Core, Department of Morphology - Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
- Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Vitória, ES, Brazil
| | - Adilson Ribeiro Prado
- Department of Control Engineering and Automation, Federal Institute of Espírito Santo, Serra, ES, Brazil
| | | | - Tadeu Ériton Caliman Zanardo
- Carlos Alberto Redins Cell Ultrastructure Laboratory (LUCCAR) and Tissue Engineering Core, Department of Morphology - Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
- Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Vitória, ES, Brazil
| | - Airlane Pereira Alencar
- Department of Statistic, Institute of Mathematics and Statics, São Paulo University, São Paulo, SP, Brazil
| | - Breno Valentim Nogueira
- Carlos Alberto Redins Cell Ultrastructure Laboratory (LUCCAR) and Tissue Engineering Core, Department of Morphology - Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil.
- Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Vitória, ES, Brazil.
| |
Collapse
|
11
|
Cao Y, Zhang M, Ding H, Chen Z, Tang B, Wu T, Xiao B, Duan C, Ni S, Jiang L, Luo Z, Li C, Zhao J, Liao S, Yin X, Fu Y, Xiao T, Lu H, Hu J. Synchrotron radiation micro-tomography for high-resolution neurovascular network morphology investigation. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:607-618. [PMID: 31074423 DOI: 10.1107/s1600577519003060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.
Collapse
Affiliation(s)
- Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Jinyun Zhao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Shenghui Liao
- School of Information Science and Engineering, Central South University, Changsha 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 20203, People's Republic of China
| | - Yalan Fu
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility/Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 21204, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan 410008, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| |
Collapse
|
12
|
Peña-Solórzano CA, Albrecht DW, Paganin DM, Harris PC, Hall CJ, Bassed RB, Dimmock MR. Development of a simple numerical model for trabecular bone structures. Med Phys 2019; 46:1766-1776. [PMID: 30740701 DOI: 10.1002/mp.13435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Advances in additive manufacturing processes are enabling the fabrication of surrogate bone structures for applications including use in high-resolution anthropomorphic phantoms. In this research, a simple numerical model is proposed that enables the generation of microarchitecture with similar statistical distribution to trabecular bone. METHODS A human humerus, radius, ulna, and several vertebrae were scanned on the Imaging and Medical beamline at the Australian Synchrotron and the proposed numerical model was developed through the definition of two complex functions that encode the trabecular thickness and position-dependant spacing to generate volumetric surrogate trabecular structures. The structures reproduced those observed at 19 separate axial locations through the experimental bone volumes. The applicability of the model when incorporating a two-material approximation to absorption- and phase-contrast CT was also investigated through simulation. RESULTS The synthetic structures, when compared with the real trabecular microarchitecture, yielded an average mean thickness error of 2 μm, and a mean difference in standard deviation of 33 μm for the humerus, 24 μm for the ulna and radius, and 15 μm for the vertebrae. Simulated absorption- and propagation-based phase contrast CT projection data were generated and reconstructed using the derived mathematical simplifications from the two-material approximation, and the phase-contrast effects were successfully demonstrated. CONCLUSIONS The presented model reproduced trabecular distributions that could be used to generate phantoms for quality assurance and validation processes. The implication of utilizing a two-material approximation results in simplification of the additive manufacturing process and the generation of synthetic data that could be used for training of machine learning applications.
Collapse
Affiliation(s)
- Carlos A Peña-Solórzano
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - David W Albrecht
- Faculty of Information Technology, Monash University, Melbourne, Vic., 3800, Australia
| | - David M Paganin
- School of Physics and Astronomy, Monash University, Melbourne, Vic., 3800, Australia
| | - Peter C Harris
- Department of Orthopaedic Surgery, Western Health, Footscray Hospital, Melbourne, Vic., 3011, Australia.,The Royal Children's Hospital Melbourne, Melbourne, Vic., 3052, Australia
| | - Chris J Hall
- Imaging and Medical Beam Line, ANSTO Australian Synchrotron, Melbourne, Vic., 3168, Australia
| | - Richard B Bassed
- Victorian Institute of Forensic Medicine, Melbourne, Vic., 3006, Australia.,Department of Forensic Medicine, Monash University, Melbourne, Vic., 3800, Australia
| | - Matthew R Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
13
|
Yu B, Weber L, Pacureanu A, Langer M, Olivier C, Cloetens P, Peyrin F. Evaluation of phase retrieval approaches in magnified X-ray phase nano computerized tomography applied to bone tissue. OPTICS EXPRESS 2018; 26:11110-11124. [PMID: 29716036 DOI: 10.1364/oe.26.011110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
X-ray phase contrast imaging offers higher sensitivity compared to conventional X-ray attenuation imaging and can be simply implemented by propagation when using a partially coherent synchrotron beam. We address the phase retrieval in in-line phase nano-CT using multiple propagation distances. We derive a method which extends Paganin's single distance method and compare it to the contrast transfer function (CTF) approach in the case of a homogeneous object. The methods are applied to phase nano-CT data acquired at the voxel size of 30 nm (ID16A, ESRF, Grenoble, France). Our results show a gain in image quality in terms of the signal-to-noise ratio and spatial resolution when using four distances instead of one. The extended Paganin's method followed by an iterative refinement step provides the best reconstructions while the homogeneous CTF method delivers quasi comparable results for our data, even without refinement step.
Collapse
|
14
|
Abstract
Unlike conventional x-ray attenuation one of the advantages of phase contrast x-ray imaging is its capability of extracting useful physical properties of the sample. In particular the possibility to obtain information from small angle scattering about unresolvable structures with sub-pixel resolution sensitivity has drawn attention for both medical and material science applications. We report on a novel algorithm for the analyzer based x-ray phase contrast imaging modality, which allows the robust separation of absorption, refraction and scattering effects from three measured x-ray images. This analytical approach is based on a simple Gaussian description of the analyzer transmission function and this method is capable of retrieving refraction and small angle scattering angles in the full angular range typical of biological samples. After a validation of the algorithm with a simulation code, which demonstrated the potential of this highly sensitive method, we have applied this theoretical framework to experimental data on a phantom and biological tissues obtained with synchrotron radiation. Owing to its extended angular acceptance range the algorithm allows precise assessment of local scattering distributions at biocompatible radiation doses, which in turn might yield a quantitative characterization tool with sufficient structural sensitivity on a submicron length scale.
Collapse
|
15
|
Zamir A, Hagen C, Diemoz PC, Endrizzi M, Vittoria F, Chen Y, Anastasio MA, Olivo A. Recent advances in edge illumination x-ray phase-contrast tomography. J Med Imaging (Bellingham) 2017; 4:040901. [PMID: 29057286 PMCID: PMC5641577 DOI: 10.1117/1.jmi.4.4.040901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/21/2017] [Indexed: 11/14/2022] Open
Abstract
Edge illumination (EI) is an x-ray phase-contrast imaging technique, exploiting sensitivity to x-ray refraction to visualize features, which are often not detected by conventional absorption-based radiography. The method does not require a high degree of spatial coherence and is achromatic and, therefore, can be implemented with both synchrotron radiation and commercial x-ray tubes. Using different retrieval algorithms, information about an object's attenuation, refraction, and scattering properties can be obtained. In recent years, a theoretical framework has been developed that enables EI computed tomography (CT) and, hence, three-dimensional imaging. This review provides a summary of these advances, covering the development of different image acquisition schemes, retrieval approaches, and applications. These developments constitute an integral part in the transformation of EI CT into a widely spread imaging tool for use in a range of fields.
Collapse
Affiliation(s)
- Anna Zamir
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Charlotte Hagen
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Paul C Diemoz
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Marco Endrizzi
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Fabio Vittoria
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yujia Chen
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Mark A Anastasio
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Alessandro Olivo
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| |
Collapse
|
16
|
Timchenko EV, Timchenko PE, Lichtenberg A, Assmann A, Aubin H, Akhyari P, Volova LT, Pershutkina SV. Assessment of decellularization of heart bioimplants using a Raman spectroscopy method. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:91511. [PMID: 28418537 DOI: 10.1117/1.jbo.22.9.091511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
We report the results of experimental studies on cardiac implants using a Raman spectroscopy method (RS). Raman spectra characteristics of leaves and walls of cardiac implants were obtained; the implants were manufactured by protocols of detergent-enzymatic technique (DET) and biological, detergent-free (BIO) decellularization, using detergents (group DET) or a detergent-free, nonproteolytic, actin-disassembling regimen (BIO). There were input optical coefficients that allowed us to carry out evaluation of the protocols of DET and BIO decellularization on the basis of the concentrations of glycosaminoglycans, proteins, amides, and DNA. It was shown that during DET and BIO decellularization, composition aberrations of proteins and lipids do not occur and the integrity of the collagenous structures is preserved. It was found that during the DET decellularization, preservation of glycosaminoglycans is better than during BIO decellularization.
Collapse
Affiliation(s)
| | | | - Artur Lichtenberg
- Heinrich Heine University, Clinic of Cardiovascular Surgery, Dusseldorf, Germany
| | - Alexander Assmann
- Heinrich Heine University, Clinic of Cardiovascular Surgery, Dusseldorf, Germany
| | - Hug Aubin
- Heinrich Heine University, Clinic of Cardiovascular Surgery, Dusseldorf, Germany
| | - Payam Akhyari
- Heinrich Heine University, Clinic of Cardiovascular Surgery, Dusseldorf, Germany
| | - Larisa T Volova
- Experimental Medicine and Biotechnologies Institute of the Samara State Medical University, Samara, Russia
| | | |
Collapse
|
17
|
Urbani L, Maghsoudlou P, Milan A, Menikou M, Hagen CK, Totonelli G, Camilli C, Eaton S, Burns A, Olivo A, De Coppi P. Long-term cryopreservation of decellularised oesophagi for tissue engineering clinical application. PLoS One 2017; 12:e0179341. [PMID: 28599006 PMCID: PMC5466304 DOI: 10.1371/journal.pone.0179341] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Oesophageal tissue engineering is a therapeutic alternative when oesophageal replacement is required. Decellularised scaffolds are ideal as they are derived from tissue-specific extracellular matrix and are non-immunogenic. However, appropriate preservation may significantly affect scaffold behaviour. Here we aim to prove that an effective method for short- and long-term preservation can be applied to tissue engineered products allowing their translation to clinical application. Rabbit oesophagi were decellularised using the detergent-enzymatic treatment (DET), a combination of deionised water, sodium deoxycholate and DNase-I. Samples were stored in phosphate-buffered saline solution at 4°C (4°C) or slow cooled in medium with 10% Me2SO at -1°C/min followed by storage in liquid nitrogen (SCM). Structural and functional analyses were performed prior to and after 2 and 4 weeks and 3 and 6 months of storage under each condition. Efficient decellularisation was achieved after 2 cycles of DET as determined with histology and DNA quantification, with preservation of the ECM. Only the SCM method, commonly used for cell storage, maintained the architecture and biomechanical properties of the scaffold up to 6 months. On the contrary, 4°C method was effective for short-term storage but led to a progressive distortion and degradation of the tissue architecture at the following time points. Efficient storage allows a timely use of decellularised oesophagi, essential for clinical translation. Here we describe that slow cooling with cryoprotectant solution in liquid nitrogen vapour leads to reliable long-term storage of decellularised oesophageal scaffolds for tissue engineering purposes.
Collapse
Affiliation(s)
- Luca Urbani
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| | | | - Anna Milan
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Maria Menikou
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Charlotte Klara Hagen
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Giorgia Totonelli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Carlotta Camilli
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Alan Burns
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
- * E-mail: (LU); (PDC)
| |
Collapse
|
18
|
Lee E, Milan A, Urbani L, De Coppi P, Lowdell MW. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opin Biol Ther 2017; 17:573-584. [PMID: 28303723 DOI: 10.1080/14712598.2017.1308482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
Collapse
Affiliation(s)
- Esmond Lee
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK.,b Institute for Stem Cell Biology and Regenerative Medicine , Stanford University , Stanford , CA , USA.,c Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR) , Singapore
| | - Anna Milan
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Luca Urbani
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Paolo De Coppi
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Mark W Lowdell
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK
| |
Collapse
|
19
|
Perin S, McCann CJ, Borrelli O, De Coppi P, Thapar N. Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies. Front Pediatr 2017; 5:91. [PMID: 28503544 PMCID: PMC5408018 DOI: 10.3389/fped.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.
Collapse
Affiliation(s)
- Silvia Perin
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Osvaldo Borrelli
- Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Specialist Neonatal and Paediatric Surgery (SNAPS) Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Bradley RS, Robinson IK, Yusuf M. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Robert S. Bradley
- Henry Moseley X-ray Imaging Facility; The University of Manchester; Oxford Road Manchester M13 9PL UK
| | - Ian K. Robinson
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| | - Mohammed Yusuf
- London Centre for Nanotechnology; University College London; Gower Street London WC1E 6BT UK
- Rutherford Appleton Laboratory; Didcot OX11 0FA UK
| |
Collapse
|
21
|
High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector. Sci Rep 2016; 6:30385. [PMID: 27461900 PMCID: PMC4961961 DOI: 10.1038/srep30385] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023] Open
Abstract
Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation.
Collapse
|