1
|
Rauf S, Hanif MB, Tayyab Z, Veis M, Yousaf Shah MAK, Mushtaq N, Medvedev D, Tian Y, Xia C, Motola M, Zhu B. Alternative Strategy for Development of Dielectric Calcium Copper Titanate-Based Electrolytes for Low-Temperature Solid Oxide Fuel Cells. NANO-MICRO LETTERS 2024; 17:13. [PMID: 39325255 PMCID: PMC11427654 DOI: 10.1007/s40820-024-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2-δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450-550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm-2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO-NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm-2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO-NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO-NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.
Collapse
Affiliation(s)
- Sajid Rauf
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - Zuhra Tayyab
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Matej Veis
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - M A K Yousaf Shah
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Naveed Mushtaq
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China
| | - Dmitry Medvedev
- Hydrogen Energy Laboratory, Ural Federal University, 620002, Ekaterinburg, Russia.
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry, 620066, Ekaterinburg, Russia.
| | - Yibin Tian
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Chen Xia
- School of Microelectronics, Hubei University, Wuhan, 430062, People's Republic of China
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova, 684215, Bratislava, Slovakia
| | - Bin Zhu
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
2
|
Kumar A, Sharma M, Vaish R. CaCu 3Ti 4O 12 nanoparticle-loaded cotton fabric for dual photocatalytic antibacterial and dye degradation applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117011-117021. [PMID: 37046162 DOI: 10.1007/s11356-023-26835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
CaCu3Ti4O12 (CCTO) nanoparticles (NPs) were screen printed on pristine cotton fabric. The CCTO-coated fabric was characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), Raman, X-ray diffraction (XRD), x-ray photoelectron spectrometer (XPS), and field emission-scanning electron microscopy (FE-SEM). The modified fabric photocatalytic antibacterial and dye-degradation abilities were assessed. After 2 h of bacterial contact, unwashed CCTO-embedded cotton reduced E. coli and S. aureus by 95.1% and 94.3%, respectively. After 20 washing cycles, the modified fabric was able to eliminate S. aureus and E. coli by more than 85%. The cloth coated with CCTO-NPs degraded the methylene blue (MB) dye by 82% in 4 h, as opposed to the pure cotton's 11% degradation rate. The embedding of CCTO-NPs onto the cotton surface had minimal effect on fabric intrinsic properties like tensile strength, abrasion resistance, and water-vapor permeability.
Collapse
Affiliation(s)
- Amit Kumar
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005
- Department of Textile Engineering, Jawaharlal Nehru Government Engineering College Sundernagar, Himachal Pradesh, Mandi, India, 175018
| | - Moolchand Sharma
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, 160012, Chandigarh, India
| | - Rahul Vaish
- School of Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, Mandi, India, 175005.
| |
Collapse
|
3
|
Yanchevskii O, V'yunov O, Plutenko T, Belous A, Trachevskii V, Matolínová I, Veltruská K, Kalinovych V, Lobko Y. Microstructure, chemical composition, and dielectric response of CaCu 3Ti 4O 12 ceramics doped with F, Al, and Mg ions. Heliyon 2023; 9:e18523. [PMID: 37533983 PMCID: PMC10392100 DOI: 10.1016/j.heliyon.2023.e18523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Ceramics with nominal chemical composition CaCu3Ti4O12 (CCTO), CaCu3Ti3.96Al0.04O11.96F0.04 (CCTOAF), and Ca0.98Mg0.08Cu2.94Ti3.96Al0.04O11.96F0.04 (CCTOMAF) were prepared by the solid-state reactions technique. Using SEM, EDX, XPS, EPR, NMR, and complex impedance spectroscopy, the microstructure, elements distribution, chemical composition of grains and grain boundaries, and the dielectric response of ceramics were investigated. In the ССТО, CCTOAF, and CCTOMAF series, the average grain size increases, the degree of copper segregation at the grain boundaries is inversely related to grain size, and the dielectric loss decreases from 0.071 to 0.047 and 0.030, respectively, while dielectric permittivity ε' at 1 kHz is 5.6 × 104, 7.1 × 104, and 4.3 × 104, respectively. Additives of Al, Mg, F and milled particles (ZrO2, Al2O3, and SiO2) can either partially introduce into the perovskite structure or form low-melting eutectics at the grain boundaries, causing abnormal grain growth. The presence of copper ions in various oxidation states, as well as evidence of exchange spin interactions between them, was confirmed in all samples.
Collapse
Affiliation(s)
- O.Z. Yanchevskii
- Dept. Solid State Chemistry, V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine, Acad. Palladin Ave. 32/34, 03142, Kyiv, Ukraine
| | - O.I. V'yunov
- Dept. Solid State Chemistry, V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine, Acad. Palladin Ave. 32/34, 03142, Kyiv, Ukraine
| | - T.O. Plutenko
- Dept. Solid State Chemistry, V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine, Acad. Palladin Ave. 32/34, 03142, Kyiv, Ukraine
| | - A.G. Belous
- Dept. Solid State Chemistry, V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of Ukraine, Acad. Palladin Ave. 32/34, 03142, Kyiv, Ukraine
| | - V.V. Trachevskii
- G.V. Kurdyumov Institute of Metal Physics of the National Academy of Science of Ukraine, Acad. Vernadskii Ave. 36, 03680, Kyiv, Ukraine
| | - I. Matolínová
- Dept. Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic
| | - K. Veltruská
- Dept. Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic
| | - V. Kalinovych
- Dept. Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic
| | - Ye Lobko
- Dept. Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic
| |
Collapse
|
4
|
Makhoul E, Boulos M, Cretin M, Lesage G, Miele P, Cornu D, Bechelany M. CaCu 3Ti 4O 12 Perovskite Materials for Advanced Oxidation Processes for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2119. [PMID: 37513130 PMCID: PMC10383651 DOI: 10.3390/nano13142119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The many pollutants detected in water represent a global environmental issue. Emerging and persistent organic pollutants are particularly difficult to remove using traditional treatment methods. Electro-oxidation and sulfate-radical-based advanced oxidation processes are innovative removal methods for these contaminants. These approaches rely on the generation of hydroxyl and sulfate radicals during electro-oxidation and sulfate activation, respectively. In addition, hybrid activation, in which these methods are combined, is interesting because of the synergistic effect of hydroxyl and sulfate radicals. Hybrid activation effectiveness in pollutant removal can be influenced by various factors, particularly the materials used for the anode. This review focuses on various organic pollutants. However, it focuses more on pharmaceutical pollutants, particularly paracetamol, as this is the most frequently detected emerging pollutant. It then discusses electro-oxidation, photocatalysis and sulfate radicals, highlighting their unique advantages and their performance for water treatment. It focuses on perovskite oxides as an anode material, with a particular interest in calcium copper titanate (CCTO), due to its unique properties. The review describes different CCTO synthesis techniques, modifications, and applications for water remediation.
Collapse
Affiliation(s)
- Elissa Makhoul
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Madona Boulos
- Laboratoire de Chimie Physique des Matériaux (LCPM/PR2N), EDST, Faculté des Sciences II, Département de Chimie, Université Libanaise, Fanar P.O. Box 90656, Lebanon
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05, 75231 Paris, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
- Gulf University for Science and Technology (GUST), West Mishref, Hawalli 32093, Kuwait
| |
Collapse
|
5
|
Azmal Zaid EH, Sin JC, Lam SM, Mohamed AR. Fabrication of La, Ce co-doped ZnO nanorods for improving photodegradation of methylene blue. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Photocatalytic degradation of organic dye under UV light using CaCu3Ti4O12 nanoparticles synthesized by sol gel route: Effect of calcination temperature. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Khan A, Bhoi RG, Saharan VK, George S. Green calcium-based photocatalyst derived from waste marble powder for environmental sustainability: A review on synthesis and application in photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86439-86467. [PMID: 35688984 DOI: 10.1007/s11356-022-20941-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Calcium, with its excellent adsorptive property and higher permissible limits in the environment, emerges as an effective wastewater treatment earth metal. Most of the catalysts, photocatalysts, and adsorbents reported in the literature have heavy metal complex, which creates a leaching problem. Majorly, precursors used for the synthesis of heterogeneous catalysts for wastewater treatment are costly. Therefore, the use of such precursors would be not suitable and feasible approach from an economic point of view. This review work is focused on giving an overview of the utilisation of calcium-based catalysts (adsorbents and photocatalyst) for the removal/degradation of various types of dye water pollutants and summarises the reported effects of calcium as a base on the removal efficiency of dopants. In this article, an extensive literature survey is presented on the various photocatalysts developed and the different syntheses involved in their preparation. As the utilisation of marble powder is a green sustainable approach, the scope of various calcium-based photocatalysts and their application is presented. This article also aims for the elementary and inclusive determination of the effect of introducing calcium as a base for different catalysts and adsorbents.
Collapse
Affiliation(s)
- Arshia Khan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Rohidas Gangaram Bhoi
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Suja George
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
8
|
T. GE, Annamalai AR, Magdaline TB. Modern Synthesis and Sintering Techniques of Calcium Copper Titanium Oxide (CaCu 3Ti 4O 12) Ceramics and Its Current Trend in Prospective Applications: A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3181. [PMID: 36144969 PMCID: PMC9505766 DOI: 10.3390/nano12183181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Calcium Copper Titanium Oxide (CaCu3Ti4O12/CCTO) has grasped massive attention for its colossal dielectric constant in high operating frequencies and wide temperature range. However, the synthesis and processing of CCTO directly influence the material's properties, imparting the overall performance. Researchers have extensively probed into these downsides, but the need for a new and novel approach has been in high demand. Modern synthesis routes and advanced non-conventional sintering techniques have been employed to curb the drawbacks for better properties and performance. This review provides a short overview of the modern synthesis and sintering methods that utilize direct pulse current and electromagnetic waves to improve the material's electrical, optical, and dielectric properties in the best ways possible. In addition, the current application of CCTO as a photocatalyst under visible light and CuO's role in the efficient degradation of pollutants in replacement for other metal oxides has been reviewed. This research also provides a brief overview of using CCTO as a photoelectrode in zinc-air batteries (ZAB) to improve the Oxidation-reduction and evolution (ORR/OER) reactions.
Collapse
Affiliation(s)
- Gecil Evangeline T.
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - A. Raja Annamalai
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - T. Bonnisa Magdaline
- Center for Nanoscience and Technology, Pondicherry University, Puducherry 605014, India
- Centre for Innovative Manufacturing Research, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
9
|
Saqib NU, Shah I, Adnan R. An emerging photocatalyst for wastewater remediation: a mini-review on CaCu 3Ti 4O 12 photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40403-40414. [PMID: 35347628 DOI: 10.1007/s11356-022-19703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Ceramics-based filter for water treatment is an ancient technology to procure potable water at the household level. The traditional clay pots (vessels or hollow cylindrical container) have been used since long in the developing countries. The ceramic material (CaCu3Ti4O12 or CCTO) is a hetero-junction of titanium oxide, a well-known UV-active photocatalyst, and visible light absorbing CuO materials. This hetero-junction is able to overcome the limitations such as high bandgap, poor stability, low efficiency, and high photo-generated charge (e-/h+) recombination rate, associated with the other commonly used metal oxide semiconductor photocatalysts. Moreover, the low-cost, viable and facile synthesis routes for CCTO triggered its potential applications in photoelectrochemical and photocatalytic processes. This review will elaborate on the available literature demonstrating the visible light activity of CCTO photocatalysts in water treatment technologies. Furthermore, the mechanism of photocatalysis and synthesis routes are presented in this work for broader impact of the CCTO potential applications. The extended porous character and excellent surface texture have made the ceramic materials as an ideal choice to combat the bacteria, pathogens and turbidity in aqueous medium at household level. Specifically, the controlled size and shape make the CaCu3Ti4O12 (CCTO) an excellent visible light-driven photocatalyst, involving highly reactive species such as •OH, •O2- anions, h+, and e-, for the removal of organic and inorganic pollutants from water.
Collapse
Affiliation(s)
- Najm Us Saqib
- Department of Chemistry, University of Buner, Buner, KP, Pakistan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Irfan Shah
- Department of Chemistry, University of Education Faisalabad Campus, Faisalabad, Pakistan
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
10
|
Pratibha, Rajput JK. Synergistically Enhanced Solar‐light Driven Degradation of Hazardous Food Colorants by Ultrasonically Derived MgFe
2
O
4
/S‐doped g‐C
3
N
4
Nanocomposite: A Z‐Scheme System Based Heterojunction Approach. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratibha
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B. R Ambedkar National Institute of Technology Jalandhar Punjab India
| |
Collapse
|
11
|
Saqib NU, Adnan R, Shah I, Arshad M, Inam M. Activated carbon, zeolite, and ceramics immobilized TiO 2 photocatalysts for the enhanced sequential uptake of dyes and Cd 2+ ions. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Najm Us Saqib
- Department of Chemistry, University of Buner, Khyber Pakhtunkhwa, Pakistan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Irfan Shah
- Department of Chemistry, University of Education-Lahore, Lahore, Pakistan
| | - Muhammad Arshad
- Department of Electronics, University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Inam
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
12
|
Ivanov KV, Alekseeva OV. Effect of Cu2+ Doping on the Photocatalytic Properties of Calcium Titanate and the Intermediate Products of Its Synthesis. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Abstract
Nowadays, water pollution is one of the most dangerous environmental problems in the world. The presence of the so-called emerging pollutants in the different water bodies, impossible to eliminate through conventional biological and physical treatments used in wastewater treatment plants due to their persistent and recalcitrant nature, means that pollution continues growing throughout the world. The presence of these emerging pollutants involves serious risks to human and animal health for aquatic and terrestrial organisms. Therefore, in recent years, advanced oxidation processes (AOPs) have been postulated as a viable, innovative and efficient technology for the elimination of these types of compounds from water bodies. The oxidation/reduction reactions triggered in most of these processes require a suitable catalyst. The most recent research focuses on the use and development of different types of heterogeneous catalysts, which are capable of overcoming some of the operational limitations of homogeneous processes such as the generation of metallic sludge, difficult separation of treated water and narrow working pH. This review details the current advances in the field of heterogeneous AOPs, Fenton processes and photocatalysts for the removal of different types of emerging pollutants.
Collapse
|
14
|
Sharma A, Bhardwaj U, Jain D, Kushwaha HS. NaNbO 3 Nanorods: Photopiezocatalysts for Elevated Bacterial Disinfection and Wastewater Treatment. ACS OMEGA 2022; 7:7595-7605. [PMID: 35284758 PMCID: PMC8908499 DOI: 10.1021/acsomega.1c06109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/21/2022] [Indexed: 05/08/2023]
Abstract
In the present work, ferroelectric sodium niobate (NaNbO3) nanorods are formulated to attain photopiezocatalysis for water pollutant degradation and bacterial disinfection. NaNbO3 nanorods, integrating the advantages of photocatalysis (generation of free charge carriers) and piezocatalysis (separation of these charge carriers), possess synergistic effects, which results in a higher catalytic activity than photocatalysis and piezocatalysis alone. Active species that are involved in the catalytic process are found to be •O2 - < OH• < h+, indicating the significance of piezocatalysis and photocatalysis. The degradation efficiency of sodium niobate (NaNbO3) nanorods for Rhodamine B in the presence of both sunlight and ultrasonic vibration is 98.9% within 60 min (k = 7.6 × 10-2 min-1). The piezo potential generated by NaNbO3 nanorods was reported to be 16 V. The antibacterial activity of the produced sample was found to be effective against Escherichia coli. With inhibitory zones of 23 mm, sodium niobate has a greater antibacterial activity.
Collapse
Affiliation(s)
- Aditi Sharma
- Materials
Research Centre, Malaviya National Institute
of Technology Jaipur (MNITJ), Jaipur 302017, India
| | - Upasana Bhardwaj
- Materials
Research Centre, Malaviya National Institute
of Technology Jaipur (MNITJ), Jaipur 302017, India
| | - Devendra Jain
- Department
of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| | - Himmat Singh Kushwaha
- Materials
Research Centre, Malaviya National Institute
of Technology Jaipur (MNITJ), Jaipur 302017, India
| |
Collapse
|
15
|
Bhardwaj U, Sharma A, Gupta V, Batoo KM, Hussain S, Kushwaha HS. High energy storage capabilities of CaCu 3Ti 4O 12 for paper-based zinc-air battery. Sci Rep 2022; 12:3999. [PMID: 35256700 PMCID: PMC8901635 DOI: 10.1038/s41598-022-07858-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Zinc–air batteries proffer high energy density and cyclic stability at low costs but lack disadvantages like sluggish reactions at the cathode and the formation of by-products at the cathode. To resolve these issues, a new perovskite material, CaCu3Ti4O12 (CCTO), is proposed as an efficacious electrocatalyst for oxygen evolution/reduction reactions to develop zinc–air batteries (ZAB). Synthesis of this material adopted an effective oxalate route, which led to the purity in the electrocatalyst composition. The CCTO material is a proven potential candidate for energy applications because of its high dielectric permittivity (ε) and occupies an improved ORR-OER activity with better onset potential, current density, and stability. The Tafel value for CCTO was obtained out to be 80 mV dec−1. The CCTO perovskite was also evaluated for the zinc–air battery as an air electrode, corresponding to the high specific capacitance of 801 mAh g−1 with the greater cyclic efficiency and minimum variations in both charge/discharge processes. The highest power density (Pmax) measured was 127 mW cm−2. Also, the CCTO based paper battery shows an excellent performance achieving a specific capacity of 614 mAh g−1. The obtained results promise CCTO as a potential and cheap electrocatalyst for energy applications.
Collapse
Affiliation(s)
- Upasana Bhardwaj
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Aditi Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Vinay Gupta
- Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Khalid Mujasam Batoo
- College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Sajjad Hussain
- Graphene Research Institute and Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul, 143-747, Republic of Korea
| | - H S Kushwaha
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India.
| |
Collapse
|
16
|
Collivignarelli MC, Abbà A, Carnevale Miino M, Bertanza G, Sorlini S, Damiani S, Arab H, Bestetti M, Franz S. Photoelectrocatalysis on TiO 2 meshes: different applications in the integrated urban water management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59452-59461. [PMID: 33570731 PMCID: PMC8541951 DOI: 10.1007/s11356-021-12606-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Recently, among AOPs, photoelectrocatalysis (PEC) on TiO2 is gaining interest. In this study, five different real waters sampled in four different points of the integrated urban water management (IUWM) system were tested with PEC and UV alone, for comparison. This work aims to verify the effect of the PEC suggesting the optimal position in IUWM system where the PEC should be located to obtain the best performance. In groundwaters (GWs), PEC effectively removed atrazine-based compounds (> 99%), trichloroethylene, and perchloroethylene (96%), after 15 min of reaction time. However, given the low concentrations of emerging compounds, the synergistic effect of UV radiation with the catalyst and with the polarization of the mesh was not visible, with very few differences compared with the results obtained with UV alone. Pharmaceutical industrial wastewater (IWW) showed a significant increase in biodegradability after 2 h, both if subjected to PEC or UV (200%), despite the absence of COD removal. The PEC applied on IWW from a sewage sludge treatment plant allowed to effectively remove the COD (39.6%) and increase the biodegradability (300%). Good results in terms of COD removal (33.9%) and biodegradability increase (+900%) were also achieved testing PEC on wastewater treatment plant effluent. Except for GWs, PEC allowed significant EEO savings respect to UV alone (76.2-99.1%).
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alessandro Abbà
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy
| | - Silvestro Damiani
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Hamed Arab
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Massimiliano Bestetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Silvia Franz
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| |
Collapse
|
17
|
Zhou W, Liu G, Yang B, Ji Q, Xiang W, He H, Xu Z, Qi C, Li S, Yang S, Xu C. Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146483. [PMID: 33773344 DOI: 10.1016/j.scitotenv.2021.146483] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Environment pollution is getting serious and various poisonous contaminants with chemical durability, biotoxicity and bioaccumulation have been widespreadly discovered in municipal wastewaters and surface water. The detection and removal of pollutants show great significance for the protection of human health and other organisms. Due to its distinctive physical and chemical properties, perylene diimide (PDI) has received widespread attention from different research fields, especially in the area of environment. In this review, a comprehensive summary of the development of PDI-based materials in fluorescence detection and advanced oxidation technology for environment was introduced. Firstly, we chiefly presented the recent progress about the synthesis of PDI and PDI-based nanomaterials. Then, their application in fluorescence detection for environment was presented and categorized, principally including the detection of heavy metal ions, harmful anions and organic contaminants in the environment. In addition, the application of PDI and PDI-based materials in different advanced oxidation technologies for environment, such as photocatalysis, photoelectrocatalysis, Fenton and Fenton-like reaction and persulfate activation, was also summarized. At last, the challenges and future prospects of PDI-based materials in environmental applications were discussed. This review focuses on presenting the practical applications of PDI and PDI-based materials as fluorescent probes or catalysts (especially photocatalysts) in the detection of hazardous substances or catalytic elimination of organic contaminants. The contents are aimed at supplying the researchers with a deeper understanding of PDI and PDI-based materials and encouraging their further development in environmental applications.
Collapse
Affiliation(s)
- Wenwu Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Guo Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bing Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiuyi Ji
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Weiming Xiang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chenmin Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
18
|
Escudeiro de Oliveira M, Barroso BL, de Almeida J, Moraes MLL, de Arruda Rodrigues C. Photoelectrocatalytic degradation of 17α-ethinylestradiol and estrone under UV and visible light using nanotubular oxide arrays grown on Ti-0.5wt%W. ENVIRONMENTAL RESEARCH 2020; 191:110044. [PMID: 32818502 DOI: 10.1016/j.envres.2020.110044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Environmental concern with emerging contaminants has increased in recent years, especially with regard to endocrine-disrupting compounds (EDCs), among them hormones. Conventional water treatment processes have been shown to be ineffective in removing these compounds from water and sewage, while heterogeneous photocatalysis has been demonstrated to be a promising technique. However, the catalytic efficiency is strongly related to the choice of the photocatalyst material. In order to obtain a fast and efficient degradation of these endocrine disruptors, nanotubes grown on Ti-0.5wt%W alloy (NT/Ti-0.5W) were used in photocatalytic (PC) and photoelectrocatalytic (PEC) processes for the degradation of estrone (E1) and 17α-ethinylestradiol (EE2) under irradiation with ultraviolet (UV) and visible light. The NT/Ti-0.5W catalysts were synthesized by an anodization process, followed by thermal treatment at 450 °C. Raman, X-ray diffraction and diffuse reflectance spectroscopic analyses indicated that the tungsten doping process had modified the nanotubular TiO2. The doped samples exhibited superior photoactivity compared to un-doped samples and other semiconductors under UV and visible irradiation due to a reduction in the rate of recombination of photogenerated charges and the displacement of the flat-band potential to more negative values. Higher values of the degradation rate constant were found for both hormones in the PEC process using NT/Ti-0.5W under UV radiation; the percentage removals of EE2 and E1 were 66% and 53.4%, respectively, after only 2 min of treatment. With visible light, 1.8 min and 4.6 h were required for the removal of 50% of E1 and EE2, respectively. The degradation of E1 could be fit with a zero-order kinetic model, while a first-order kinetic model was required for EE2 degradation. Degradation routes were suggested for E1 and EE2. The results demonstrate that the combined use of NT/Ti-0.5W and the PEC process provides excellent performance for the degradation of emerging contaminants in wastewater when compared to a NT/TiO2 electrode.
Collapse
Affiliation(s)
- Marizilda Escudeiro de Oliveira
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Bruno Lupi Barroso
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Juliana de Almeida
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil
| | - Maria Lourdes Leite Moraes
- Department of Chemistry, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | - Christiane de Arruda Rodrigues
- Department of Chemical Engineering, Instituto de Ciências Ambientais, Químicas Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil; Unesp, National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
19
|
Ivanov KV, Alekseeva OV, Agafonov AV. Synthesis of CaCu3Ti4O12, Study of Physicochemical and Photocatalytic Properties. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Donga C, Mishra SB, Abd-El-Aziz AS, Mishra AK. Advances in Graphene-Based Magnetic and Graphene-Based/TiO2 Nanoparticles in the Removal of Heavy Metals and Organic Pollutants from Industrial Wastewater. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01679-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Explicating the importance of aeration and pH for Amaranth degradation and electricity generation in a viable hybrid system of photocatalytic fuel cell and electro-Fenton process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Koiki BA, Orimolade BO, Zwane BN, Nkosi D, Mabuba N, Arotiba OA. Cu2O on anodised TiO2 nanotube arrays: A heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135944] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Pal K, Dey A, Jana R, Ray PP, Bera P, Kumar L, Mandal TK, Mohanty P, Seikh MM, Gayen A. Citrate combustion synthesized Al-doped CaCu3Ti4O12 quadruple perovskite: synthesis, characterization and multifunctional properties. Phys Chem Chem Phys 2020; 22:3499-3511. [DOI: 10.1039/c9cp05005a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthesis of Al-doped CaCu3Ti4O12 quadruple perovskite has been reported and it is projected to be a promising candidate for Schottky barrier diode application and a methanol steam reforming catalyst for hydrogen generation.
Collapse
Affiliation(s)
- Kamalesh Pal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Arka Dey
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
- Department of Condensed Matter Physics and Material Sciences
| | - Rajkumar Jana
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | - Partha P. Ray
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | - Parthasarathi Bera
- Surface Engineering Division
- CSIR – National Aerospace Laboratories
- Bengaluru 560017
- India
| | - Lalit Kumar
- Department of Chemistry and Centre of Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Tapas Kumar Mandal
- Department of Chemistry and Centre of Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Paritosh Mohanty
- Department of Chemistry and Centre of Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Md. Motin Seikh
- Department of Chemistry
- Visva-Bharati
- Santiniketan 731235
- India
| | - Arup Gayen
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|
24
|
Das A, Dagar P, Kumar S, Ganguli AK. Effect of Au nanoparticle loading on the photo-electrochemical response of Au–P25–TiO2 catalysts. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Manju P, Ajith M, Jaiswal-Nagar D. Synthesis and characterization of BaZrO3 nanoparticles by citrate-nitrate sol-gel auto-combustion technique: Systematic study for the formation of dense BaZrO3 ceramics. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Kawrani S, Boulos M, Cornu D, Bechelany M. From Synthesis to Applications: Copper Calcium Titanate (CCTO) and its Magnetic and Photocatalytic Properties. ChemistryOpen 2019; 8:922-950. [PMID: 31338276 PMCID: PMC6625108 DOI: 10.1002/open.201900133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Indexed: 11/11/2022] Open
Abstract
Investigations focusing on electrical energy storage capacitors especially the dielectric ceramic capacitors for high energy storage density are attracting more and more attention in the recent years. Ceramic capacitors possess a faster charge‐discharge rate and improved mechanical and thermal properties compared with other energy storage devices such as batteries. The challenge is to obtain ceramic capacitors with outstanding mechanical, thermal and storage properties over large temperature and frequencies ranges. ABO3 as a type of perovskites showed a strong piezoelectric, dielectric, pyroelectric, and electro‐optic properties useful as energy storage and environmental devices. CaCu3Ti4O12 (CCTO) perovskite with cubic lattice (Im3 symmetry) was discovered to have a colossal dielectric constant (104) that is stable over a wide range of frequencies (10 Hz–1 MHz) and temperature independence (100–300 K). The origin of this high dielectric constant is not fully established, specially because it is the same for single crystal and thin films. In this review, the history of CCTO will be introduced. The synthesis and the sintering approaches, the dopant elements used as well as the applications of CCTO will be reported. In addition to dielectrical properties useful to energy storage devices; CCTO could serve as photocatalytic materials with a very good performance in visible light.
Collapse
Affiliation(s)
- Sara Kawrani
- Institut Européen des Membranes ENSCM CNRS Univ Montpellier France.,Laboratoire de Chimie Physique des matériaux Université Libanaise Liban
| | - Madona Boulos
- Laboratoire de Chimie Physique des matériaux Université Libanaise Liban
| | - David Cornu
- Institut Européen des Membranes ENSCM CNRS Univ Montpellier France
| | | |
Collapse
|
27
|
Investigation of electrochemical performances of ceramic oxide CaCu3Ti4O12 nanostructures. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Pal K, Dey A, Ray PP, Mordvinova NE, Lebedev OI, Mandal TK, Seikh MM, Gayen A. Synthesis, Characterization and Catalytic Activity of Quadruple Perovskite: CaCu3-x
Mn
x
Ti4-x
Mn
x
O12
(x
=0, 0.5 and 1.0). ChemistrySelect 2018. [DOI: 10.1002/slct.201703034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kamalesh Pal
- Department of Chemistry; Jadavpur University; Kolkata- 700032 India
| | - Arka Dey
- Department of Physics; Jadavpur University; Kolkata- 700032 India
| | - Partha P. Ray
- Department of Physics; Jadavpur University; Kolkata- 700032 India
| | | | - Oleg I. Lebedev
- Laboratoire CRISMAT, UMR 6508; CNRS-ENSICAEN; Caen 14050 France
| | - Tapas K. Mandal
- Department of Chemistry & Centre of Nanotechnology; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Md Motin Seikh
- Department of Chemistry; Visva-Bharati University; Santiniketan, West Bengal- 731235 India
| | - Arup Gayen
- Department of Chemistry; Jadavpur University; Kolkata- 700032 India
| |
Collapse
|
29
|
Kushwaha H, Halder A, Thomas P, Vaish R. CaCu3Ti4O12: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Singh L, Azad UP, Singh SP, Ganesan V, Rai US, Lee Y. Yttrium Copper Titanate as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Fuel Cells, Synthesized via Ultrafast Automatic Flame Technique. Sci Rep 2017; 7:9407. [PMID: 28839274 PMCID: PMC5571221 DOI: 10.1038/s41598-017-09661-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022] Open
Abstract
Replacing platinum (Pt) metal-based electrocatalysts used in the oxygen reduction reaction (ORR) in fuel cells is an important research topic due to the high cost and scarcity of Pt, which have restricted the commercialization of these clean-energy technologies. The ABO3-type perovskite family of an ACu3Ti4O12 (A = Ca, Y, Bi, and La) polycrystalline material can serve as an alternative electrocatalyst for the ORR in terms of low-cost, activity, and stability. These perovskite materials may be considered the next generation electro-catalyst for the ORR because of their photocatalytic activity and physical and chemical properties capable of containing a wide range of A- and B-site metals. This paper reports the ORR activity of a new Y2/3Cu3Ti4O12 perovskite, synthesized via a rapid and facile automatic flame synthesis technique using rotating disk electrode (RDE) measurements. Y2/3Cu3Ti4O12/C has superior ORR activity, stability, and durability compared to commercial Pt/C. The results presented in this article will provide the future perspectives to research based on ACu3Ti4O12 (A = Ca, Y, Bi, Sm, Cd, and La) perovskite as the next generation electro-catalyst for the ORR in various electrochemical devices, such as fuel cells, metal–air batteries, and electrolysis.
Collapse
Affiliation(s)
- Laxman Singh
- Department of Chemistry, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan, 44610, Republic of Korea
| | - Uday Pratap Azad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Satendra Pal Singh
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - U S Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Youngil Lee
- Department of Chemistry, University of Ulsan, 93 Daehak-ro Nam-gu, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
31
|
Sathe P, Laxman K, Myint MTZ, Dobretsov S, Richter J, Dutta J. Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions. Sci Rep 2017; 7:3624. [PMID: 28620218 PMCID: PMC5472575 DOI: 10.1038/s41598-017-03636-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Aquaculture is a billion dollar industry and biofouling of aquaculture installations has heavy economic penalties. The natural antifouling (AF) defence mechanism of some seaweed that inhibits biofouling by production of reactive oxygen species (ROS) inspired us to mimic this process by fabricating ZnO photocatalytic nanocoating. AF activity of fishing nets modified with ZnO nanocoating was compared with uncoated nets (control) and nets painted with copper-based AF paint. One month experiment in tropical waters showed that nanocoatings reduce abundances of microfouling organisms by 3-fold compared to the control and had higher antifouling performance over AF paint. Metagenomic analysis of prokaryotic and eukaryotic fouling organisms using next generation sequencing platform proved that nanocoatings compared to AF paint were not selectively enriching communities with the resistant and pathogenic species. The proposed bio-inspired nanocoating is an important contribution towards environmentally friendly AF technologies for aquaculture.
Collapse
Affiliation(s)
- Priyanka Sathe
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman
- Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, Al Khoud, 123, Sultanate of Oman
| | - Karthik Laxman
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al Khoudh, Muscat, 123, Sultanate of Oman
| | - Sergey Dobretsov
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman.
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, P.O. Box, 50 Al Khoud, 123, Sultanate of Oman.
| | - Jutta Richter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Ammerländer Heerstraße 114, 26129, Oldenburg, Germany
| | - Joydeep Dutta
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden.
| |
Collapse
|
32
|
Garcia-Segura S, Brillas E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.005] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Stülp S, Cardoso JC, de Brito JF, Flor JBS, Frem RCG, Sayão FA, Zanoni MVB. An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0367-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Mathur A, Kushwaha HS, Vaish R, Halder A. Enhanced electrocatalytic performance of perovskite supported iron oxide nanoparticles for oxygen reduction reaction. RSC Adv 2016. [DOI: 10.1039/c6ra20002h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perovskite oxide based materials have drawn considerable amount of attention as non-precious, non-noble cathode catalysts in oxygen reduction reactions for fuel cell and battery applications.
Collapse
Affiliation(s)
- Ankita Mathur
- School of Engineering
- Indian Institute of Technology Mandi
- India
| | - H. S. Kushwaha
- School of Engineering
- Indian Institute of Technology Mandi
- India
| | - Rahul Vaish
- School of Engineering
- Indian Institute of Technology Mandi
- India
| | - Aditi Halder
- School of Basic Sciences
- Indian Institute of Technology Mandi
- India
| |
Collapse
|