1
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
2
|
Yaneva Z, Ivanova D, Nikolova N, Toneva M. Organic dyes in contemporary medicinal chemistry and biomedicine. I. From the chromophore to the bioimaging/bioassay agent. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2039077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Donika Ivanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Nevena Nikolova
- Ecology Unit, Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Monika Toneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
3
|
Yao D, Bao L, Li F, Liu B, Wu X, Hu Z, Xu J, Wang W, Zhang X. H1N1 influenza virus dose dependent induction of dysregulated innate immune responses and STAT1/3 activation are associated with pulmonary immunopathological damage. Virulence 2022; 13:1558-1572. [PMID: 36082929 PMCID: PMC9467583 DOI: 10.1080/21505594.2022.2120951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Influenza A virus (IAV) infection poses a substantial challenge and causes high morbidity and mortality. Exacerbated pulmonary inflammatory responses are the major causes of extensive diffuse alveolar immunopathological damage. However, the relationship between the extent of cytokine storm, neutrophils/macrophages infiltration, and different IAV infection dose and time still needs to be further elucidated, and it is still unclear whether the signal transduction and transcriptional activator 1/3 (STAT1/3) signalling pathway plays a beneficial or detrimental role. Here, we established a mouse model of high- and low-dose pH1N1 infection. We found that pH1N1 infection induced robust and early pathological damage and cytokine storm in an infection dose- and time-dependent manner. High-dose pH1N1 infection induced massive and sustained recruitment of neutrophils as well as a higher ratio of M1:M2, which may contribute to severe lung immunopathological damage. pH1N1 infection activated dose- and time-dependent STAT1 and STAT3. Inhibition of STAT1 and/or STAT3 aggravated low-dose pH1N1 infection, induced lung damage, and decreased survival rate. Appropriate activation of STAT1/3 provided survival benefits and pathological improvement during low-dose pH1N1 infection. These results demonstrate that high-dose pH1N1 infection induces robust and sustained neutrophil infiltration, imbalanced macrophage polarization, excessive and earlier cytokine storm, and STAT1/3 activation, which are associated with pulmonary dysregulated proinflammatory responses and progress of acute lung injury. The severe innate immune responses may be the threshold at which protective functions give way to immunopathology, and assessing the magnitude of host innate immune responses is necessary in adjunctive immunomodulatory therapy for alleviating influenza-induced pneumonia.
Collapse
Affiliation(s)
- Duoduo Yao
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linlin Bao
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Fengdi Li
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infection, Beijing, China
| | - Bo Liu
- Department of Pulmonary and Critical Care Medicine, Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, China
| | - Xu Wu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Ziqi Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiangnan Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Do T, Synan L, Ali G, Gappa-Fahlenkamp H. 3D tissue-engineered lung models to study immune responses following viral infections of the small airways. Stem Cell Res Ther 2022; 13:464. [PMID: 36071442 PMCID: PMC9449944 DOI: 10.1186/s13287-022-03134-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Small airway infections caused by respiratory viruses are some of the most prevalent causes of illness and death. With the recent worldwide pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is currently a push in developing models to better understand respiratory diseases. Recent advancements have made it possible to create three-dimensional (3D) tissue-engineered models of different organs. The 3D environment is crucial to study physiological, pathophysiological, and immunomodulatory responses against different respiratory conditions. A 3D human tissue-engineered lung model that exhibits a normal immunological response against infectious agents could elucidate viral and host determinants. To create 3D small airway lung models in vitro, resident epithelial cells at the air-liquid interface are co-cultured with fibroblasts, myeloid cells, and endothelial cells. The air-liquid interface is a key culture condition to develop and differentiate airway epithelial cells in vitro. Primary human epithelial and myeloid cells are considered the best 3D model for studying viral immune responses including migration, differentiation, and the release of cytokines. Future studies may focus on utilizing bioreactors to scale up the production of 3D human tissue-engineered lung models. This review outlines the use of various cell types, scaffolds, and culture conditions for creating 3D human tissue-engineered lung models. Further, several models used to study immune responses against respiratory viruses, such as the respiratory syncytial virus, are analyzed, showing how the microenvironment aids in understanding immune responses elicited after viral infections.
Collapse
Affiliation(s)
- Taylor Do
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Lilly Synan
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Gibran Ali
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Heather Gappa-Fahlenkamp
- Edward Bartlett Chair, School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA.
| |
Collapse
|
5
|
Likońska A, Gawrysiak M, Gajewski A, Klimczak K, Michlewska S, Szewczyk R, Gulbas I, Chałubiński M. Human lung vascular endothelium may limit viral replication and recover in time upon the infection with rhinovirus HRV16. APMIS 2022; 130:678-685. [PMID: 35959516 DOI: 10.1111/apm.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Vascular endothelium is a semi-permeable barrier that regulates the flow of nutrients, ions, cytokines, and immune cells between blood and tissues. Barrier properties of endothelium, its ability to regenerate, and the potential for secretion of inflammatory mediators play a crucial role in maintaining local tissue homeostasis. The lung vascular endothelial cells was shown to be infected by human rhinovirus and generate antiviral, inflammatory and cytopathic responses. The current study reveals that in the long-time manner the lung vascular endothelium may efficiently limit the HRV replication via the IFN-dependent 2'-5'-oligoadenylate synthetase 1 (OAS1) activation. This leads to the restoration of integrity accompanied by the up-regulation of adherens and tight junctions, increase of metabolic activity, and proliferation rate. Secondly, HRV16-infected cells show delayed and transient up-regulation of the expression of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin 1 and 2, and neurophilin-1 (NRP-1), as well as VEGF receptors. The lung vascular endothelium infected with HRV may limit the infection, recover in time, and regain barrier properties and metabolic functions, thus leading to the restoration of integrated barrier tissue.
Collapse
Affiliation(s)
- Aleksandra Likońska
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Kinga Klimczak
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland;Banacha12/16, 90-237 Lodz, Poland
| | - Robert Szewczyk
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Izabela Gulbas
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| | - Maciej Chałubiński
- Department of Immunology and Allergy, Chair of Pulmonology, Rheumatology and Clinical Immunology, Medical University of Lodz, Poland;Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
6
|
Functional foods with antiviral activity. Food Sci Biotechnol 2022; 31:527-538. [PMID: 35437360 PMCID: PMC9007579 DOI: 10.1007/s10068-022-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are known to cause a variety of diseases, ranging from mild respiratory diseases, such as the common cold, to fatal illnesses. Although the development of vaccines and targeted drugs have significantly improved the mortality rate and disease severity against a number of viral infections, there are still many viruses without proper treatment/prevention options and newly emerging viruses can pose serious health threats. For instance, the coronavirus disease 2019 (COVID-19) pandemic is producing significant healthcare and socio-economic burden worldwide, which may jeopardize the lives and livelihoods for years to come. Studies have identified functional foods with antiviral activity. Certain foods may target the viral life cycle or modulate the host immune system to enhance defense against viral infections. In this review, we will discuss some of the food products reported to display protective effects against viruses including the influenza virus, human immunodeficiency virus, and severe acute respiratory syndrome coronavirus 2.
Collapse
|
7
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
8
|
Wang Z, Guo K, Gao P, Pu Q, Li C, Hur J, Wu M. Repurposable drugs for SARS-CoV-2 and influenza sepsis with scRNA-seq data targeting post-transcription modifications. PRECISION CLINICAL MEDICINE 2021; 4:215-230. [PMID: 34993416 PMCID: PMC8694063 DOI: 10.1093/pcmedi/pbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. The lack of time for new drug discovery and the urgent need for rapid disease control to reduce mortality have led to a search for quick and effective alternatives to novel therapeutics, for example drug repurposing. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from patients with mild and severe COVID-19 (GEO: GSE145926, public data available and accessed on 22 April 2020). We identified 281 FDA-approved drugs that have the potential to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested and demonstrated the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a, two chemical inhibitors of glycosylation (a post-translational modification) on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus as well as on the transcription and translation of host cell cytokines and their regulators (IFNs and ISGs). In conclusion, we have identified and experimentally validated repurposable anti-SARS-CoV-2 and IAV drugs using a systems biology approach, which may have the potential for treating these viral infections and their complications (sepsis).
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
9
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Yu B, Lin F, Ning H, Ling B. Network pharmacology study on the mechanism of the Chinese medicine Radix Isatidis (Banlangen) for COVID-19. Medicine (Baltimore) 2021; 100:e26881. [PMID: 34397905 PMCID: PMC8360416 DOI: 10.1097/md.0000000000026881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023] Open
Abstract
Radix Isatidis (Banlangen) is a well-known traditional Chinese medicine for the treatment of different diseases and prevention of many body disorders. Besides, it also plays a pivotal role in novel coronavirus pneumonia, coronavirus disease 2019 (COVID-19). However, few researchers know its active ingredients and mechanism of action for COVID-19. To find whether Banlangen has a pharmacological effect on COVID-19. In this research, we systematically analyze Banlangen and COVID-19 through network pharmacology technology. A total of 33 active ingredients in Banlangen, 92 targets of the active ingredients, and 259 appropriate targets of COVID-19 were obtained, with 11 common targets. The analysis of the biological process of gene ontology and the enrichment of Kyoto Encyclopedia of Genes and Genomes signaling pathway suggests that Banlangen participated in the biological processes of protein phosphatase binding, tetrapyrrole binding, the apoptotic process involving cysteine-type endopeptidase activity, etc. The COVID-19 may be treated by regulating advanced glycation end products/a receptor for advanced glycation end products signaling pathway, interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, sphingolipid signaling pathway, and p53 signaling pathway. Banlangen has a potential pharmacological effect on COVID-19, which has the value of further exploration in the following experiment and clinical application.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Fei Lin
- Department of Pharmacy, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Baodong Ling
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Majnooni MB, Fakhri S, Bahrami G, Naseri M, Farzaei MH, Echeverría J. Alkaloids as Potential Phytochemicals against SARS-CoV-2: Approaches to the Associated Pivotal Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6632623. [PMID: 34104202 PMCID: PMC8159655 DOI: 10.1155/2021/6632623] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Since its inception, the coronavirus disease 2019 (COVID-19) pandemic has infected millions of people around the world. Therefore, it is necessary to find effective treatments against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), as it is the viral source of COVID-19. Alkaloids are one of the most widespread plant-derived natural compounds with prominent antiviral effects. Accordingly, these phytochemicals have been promising candidates towards discovering effective treatments for COVID-19. Alkaloids have shown potential anti-SARS-CoV activities via inhibiting pathogenesis-associated targets of the Coronaviridae family that are required for the virus life cycle. In the current study, the chemistry, plant sources, and antiviral effects of alkaloids, as well as their anti-SARS-CoV-2 effect with related mechanisms, are reviewed towards discovering an effective treatment against COVID-19.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
12
|
Chałubiński M, Szulc A, Pawełczyk M, Gajewski A, Gawrysiak M, Likońska A, Kowalski ML. Human rhinovirus 16 induces antiviral and inflammatory response in the human vascular endothelium. APMIS 2021; 129:143-151. [PMID: 33230840 DOI: 10.1111/apm.13103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Abstract
The effect of rhinovirus on airway epithelium is very well described. However, its influence on the vascular endothelium is unknown. The current study assesses the effect of rhinovirus HRV16 on the antiviral and inflammatory response in the human vascular endothelial cells (ECs). HRV16 increased IFN-β, RANTES, and IP-10 mRNA expression and protein release. HRV16 copy number in ECs reached maximal value 10 h after incubation. Increase in virus copies was accompanied by the enhancement of Toll- and RIG-I-like receptors: TLR3, RIG-I, and MDA5. Additionally, HRV16 increased OAS-1 and PKR mRNA expression, enzymes responsible for virus degradation and inhibition of replication. ICAM-1 blockade decreased HRV16 copy number in ECs and inhibited IFN-β, RANTES, IP-10, OAS1, PKR, TLR3, RIG-I, and MDA5 mRNA expression increase upon subsequent induction with HRV16. The vascular endothelium may be infected by human rhinovirus and generate antiviral and inflammatory innate response. Results of the study indicate the possible involvement of the vascular endothelium in the immunopathology of rhinoviral airway infections.
Collapse
Affiliation(s)
- Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Szulc
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | | | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Likońska
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Wang S, Liang T, Luo Q, Li P, Zhang R, Xu M, Su J, Xu T, Wu Q. H9N2 swine influenza virus infection-induced damage is mediated by TRPM2 channels in mouse pulmonary microvascular endothelial cells. Microb Pathog 2020; 148:104408. [PMID: 32707310 DOI: 10.1016/j.micpath.2020.104408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023]
Abstract
Oxidative stress is implicated in the pathogenesis of influenza virus infection. Increasing evidences show that transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable non-selective cation channel, plays an important role in the pathomechanism of reactive oxygen species (ROS)-coupled diseases. The present study investigated the role of TRPM2 in pulmonary microvascular endothelial cells (PMVECs) during H9N2 influenza virus infection. We knocked down TRPM2 in PMVECs using TRPM2 shRNA lentiviral particles. Subsequently, we utilized enzyme-linked immunosorbent assay and flow cytometry to compare ROS levels, DNA damage, mitochondrial integrity, apoptosis, and inflammatory factors between control and TRPM2-knockdown PMVECs following H9N2 influenza virus infection. Inhibition of TRPM2 channels reduced H9N2 virus-induced intracellular ROS production, decreased DNA damage, and inhibited H9N2-induced cellular apoptosis. This study shows that the inhibition of TRPM2 channels may protect PMVECs from the damage caused by H9N2 virus infection. Our results highlight the importance of TRPM2 in modulating ROS production, apoptosis, mitochondrial dysfunction, cytokine expression, and DNA damage in H9N2 virus-infected PMVECs, and suggest that TRPM2 may be a potential antiviral target.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Ting Liang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Qiang Luo
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Peiyao Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Mingju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China.
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
14
|
Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. J Clin Med 2020; 9:jcm9061770. [PMID: 32517353 PMCID: PMC7356916 DOI: 10.3390/jcm9061770] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19, the illness caused by infection with the novel coronavirus SARS-CoV-2, is a rapidly spreading global pandemic in urgent need of effective treatments. Here we present a comprehensive examination of the host- and virus-targeted functions of the flavonolignan silibinin, a potential drug candidate against COVID-19/SARS-CoV-2. As a direct inhibitor of STAT3—a master checkpoint regulator of inflammatory cytokine signaling and immune response—silibinin might be expected to phenotypically integrate the mechanisms of action of IL-6-targeted monoclonal antibodies and pan-JAK1/2 inhibitors to limit the cytokine storm and T-cell lymphopenia in the clinical setting of severe COVID-19. As a computationally predicted, remdesivir-like inhibitor of RNA-dependent RNA polymerase (RdRp)—the central component of the replication/transcription machinery of SARS-CoV-2—silibinin is expected to reduce viral load and impede delayed interferon responses. The dual ability of silibinin to target both the host cytokine storm and the virus replication machinery provides a strong rationale for the clinical testing of silibinin against the COVID-19 global public health emergency. A randomized, open-label, phase II multicentric clinical trial (SIL-COVID19) will evaluate the therapeutic efficacy of silibinin in the prevention of acute respiratory distress syndrome in moderate-to-severe COVID-19-positive onco-hematological patients at the Catalan Institute of Oncology in Catalonia, Spain.
Collapse
|
15
|
Wang Z, Guo K, Gao P, Pu Q, Wu M, Li C, Hur J. Identification of Repurposable Drugs and Adverse Drug Reactions for Various Courses of COVID-19 Based on Single-Cell RNA Sequencing Data. ARXIV 2020:arXiv:2005.07856v2. [PMID: 33299905 PMCID: PMC7724679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/04/2020] [Indexed: 10/26/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. There is no specific drug for COVID-19, highlighting the urgent need for the development of effective therapeutics. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating the gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from mild and severe COVID-19 patients. We identified 281 FDA-approved drugs that have the potential to be effective against SARS-CoV-2 infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus. In conclusion, we have identified a list of repurposable anti-SARS-CoV-2 drugs using a systems biology approach.
Collapse
Affiliation(s)
- Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
16
|
Wang R, Liu K, Zhang Y, Chen X, Wang X. Evaluation of the Developmental Toxicity Induced by E804 in Zebrafish Embryos. Front Pharmacol 2020; 11:32. [PMID: 32116709 PMCID: PMC7033426 DOI: 10.3389/fphar.2020.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
E804, a derivative of indirubin, have multi-biological activities such as anticancer and anti-inflammatory activities, but little is known about its developmental toxicity. In this study, we investigated the toxicity of E804 on the developments of zebrafish embryos. Our results showed that E804 treatment caused a significant increase of the malformation rate compared with the control groups. Pericardial edema and curved body shape were the most morphological abnormalities observed in E804-treated group. The hatching rates and body length of the zebrafish larvae was significantly decreased in E804-treated groups. E804 also affect the development of heart, liver, phagocytes and vascular formation. Further studies showed that the level of reactive oxygen species was significantly increased. The activity of total superoxide dismutase decreased and the concentration of malondialdehyde were increased. Much more apoptotic cells were detected in E804-treated group, compared with the control. In addition, gene-expression results showed that the pathways of oxidative stress and apoptosis were provoked in E804 treated groups. Taken together, our findings will be helpful to understanding E804-induced developmental toxicity and the underlying mechanism.
Collapse
Affiliation(s)
- Rongchun Wang
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kechun Liu
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yun Zhang
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiqiang Chen
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xue Wang
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
17
|
Zhao Y, Han P, Liu L, Wang X, Xu P, Wang H, Yu T, Sun Y, Li L, Sun T, Liu X, Zhou H, Qiu J, Wang L, Peng J, Xu S, Hou M. Indirubin modulates CD4 + T-cell homeostasis via PD1/PTEN/AKT signalling pathway in immune thrombocytopenia. J Cell Mol Med 2019; 23:1885-1898. [PMID: 30609280 PMCID: PMC6378207 DOI: 10.1111/jcmm.14089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by an immune mediated decrease in platelet number. Disturbance of CD4+ T-cell homeostasis with simultaneous decrease of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) as well as unrestricted proliferation and activation of peripheral CD4+ effector T cells underpin the pathophysiology of ITP. Indirubin is an active ingredient of a traditional Chinese herb called Indigofera tinctoria L. which is clinically used for the treatment of ITP patients. Whether indirubin targets the Tregs/effector T cell-axis to restore platelet number is unknown. In our in vitro studies, Indirubin could significantly enhance the number and function of Tregs and meanwhile dampen the activation of effector T cells in a dose-dependent manner. Indirubin was observed to restore the expression of programmed cell-death 1 (PD1) and phosphatase and tensin homolog (PTEN) on the CD4+ T cells of ITP patients, leading to the subsequent attenuation of the AKT/mTOR pathway. Furthermore, these observations were recapitulated in an active murine model of ITP with a prominent platelet response. Thus, our results identified a potentially novel mechanism of the therapeutic action of indirubin in the treatment of ITP through regulating the homeostasis of CD4+ T cells in a PD1/PTEN/AKT signalling pathway.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Panpan Han
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Pengcheng Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haoyi Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tianshu Yu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yunqi Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhen Li
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xinguang Liu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hai Zhou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liang Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqian Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Smirnova SS, Pisareva MM, Smirnova TD, Sivak KV, Vorobiev KV. Long-Term Maintenance of the Functional Changes Induced by Influenza A Virus and/or LPS in Human Endothelial ECV-304 Cell Sublines. ACTA ACUST UNITED AC 2019; 13:283-291. [PMID: 32288938 PMCID: PMC7101551 DOI: 10.1134/s1990519x19040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/16/2018] [Accepted: 12/25/2018] [Indexed: 11/23/2022]
Abstract
Influenza A virus and secondary bacterial infection may have remote effects in the form of cardiovascular complications or fibrosis in different organs. However, the mechanisms governing the development of complications remain poorly studied. The present work reports the comparative assessment of the functional changes which take place in human ECV-304 endothelial cell sublines obtained previously by the long-term culturing of cells after exposure to varying infectious doses (IDs) of influenza A virus, and/or bacterial lipopolysaccharide (LPS). It has been demonstrated that, in the course of long-term culturing (six passages) after exposure to pathogenic agents (influenza virus and/or LPS), endothelial cells maintain changes in their migratory activity, permeability, and expression of mRNA for cytokines TNFα and TGFβ (along with the changes in their proliferation activity, which has been demonstrated earlier). The pattern of changes depended on the type of the agent (agents) to which the cells were exposed. The differences in migratory activity (which was at its maximum 4 h after wounding) between the cell sublines at the sixth passage correlated with the differences in their proliferation activity at the first passage (proliferation data were obtained previously). In particular, an increase in migration and proliferation was observed in the sublines exposed to low virus doses (ECV-1ID), as well as exposed to LPS (ECV-LPS), while the suppression of migration and proliferation was observed in the subline exposed to high virus doses (ECV-1000ID). In the ECV-1ID, ECV-LPS, and most notably in ECV-1ID + LPS sublines, we detected an increase in the expression of mRNA for cytokines TNFα and TGFβ, which, however, didn’t lead to the induction of apoptosis. We have also demonstrated an increase in cell permeability in the analyzed sublines, which was indicated by a decrease in the expression of the mRNAs for the genes encoding occludin and ZO-1, the tight junctions proteins . This paper also reports an evaluation of the effects of the antiviral preparations rimantadine and alpisarin on the functional state of cell sublines. As a result, it has been demonstrated that these drugs may be able to prevent the development of the pathological changes caused by influenza A virus and/or LPS in endothelial cells. The results obtained in the present work may be of use when studying the mechanisms of development of the influenza A virus and secondary bacterial infection complications.
Collapse
Affiliation(s)
- S S Smirnova
- 1Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - M M Pisareva
- 2Smorodintsev Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, 197376 St. Petersburg, Russia
| | - T D Smirnova
- 2Smorodintsev Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, 197376 St. Petersburg, Russia
| | - K V Sivak
- 2Smorodintsev Research Institute of Influenza, Ministry of Healthcare of the Russian Federation, 197376 St. Petersburg, Russia
| | - K V Vorobiev
- 1Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
19
|
Ding Z, Sun G, Zhu Z. Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir Ther 2018; 23:611-615. [PMID: 29623897 DOI: 10.3851/imp3235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND Influenza A viruses (IAV) can cause pandemics and are big threats to human health. Inflammation is the main pathological process in the lungs after IAV infection. We aimed to investigate whether hesperidin, a well-known anti-inflammatory compound, could be effective in improving IAV-induced lung injury. METHODS We generated a rat model using H1N1 virus infection, and intraperitoneally injected different doses of hesperidin for 5 days. Pulmonary function was analysed. Local inflammatory state was profiled by immune cells and cytokines. Pulmonary microvascular endothelial cells were isolated from rats and used to test the effects of hesperidin in vitro. RESULTS Hesperidin showed efficacy in improving H1N1-induced impairment of pulmonary function in a dose-dependent manner. Local numbers of immune cells and concentrations of cytokines were significantly limited by hesperidin. However, we found that hesperidin neither inhibited virus replication, nor rescued infected pulmonary microvascular endothelial cells. Rather, we observed that hesperidin reduced pro-inflammatory cytokine production by suppressing mitogen-activated protein kinase (MAPK) signalling pathways. CONCLUSIONS Hesperidin could alleviate H1N1-induced impairment of pulmonary function by inhibiting cytokine production in pulmonary microvascular endothelial cells through MAPK signalling pathways.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Respiratory Medicine, Hefei 1st People's Hospital, Hefei, China
| | - Gengyun Sun
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongming Zhu
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Khalili N, Karimi A, Moradi MT, Shirzad H. In vitro immunomodulatory activity of celastrol against influenza A virus infection. Immunopharmacol Immunotoxicol 2018; 40:250-255. [DOI: 10.1080/08923973.2018.1440591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Niloofar Khalili
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Karimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
21
|
Wu X, Chen X, Dan J, Cao Y, Gao S, Guo Z, Zerbe P, Chai Y, Diao Y, Zhang L. Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification. Sci Rep 2016; 6:25491. [PMID: 27150638 PMCID: PMC4858665 DOI: 10.1038/srep25491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/18/2016] [Indexed: 12/30/2022] Open
Abstract
Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines.
Collapse
Affiliation(s)
- Xunxun Wu
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiaofei Chen
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jia Dan
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yan Cao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shouhong Gao
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Zhiying Guo
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China.,School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yifeng Chai
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Yong Diao
- School of Biomedical Science, Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, PR China
| | - Lei Zhang
- School of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|