1
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
2
|
Guo Y, Liang J, Liu B, Jin Y. Molecular Mechanism of Food-Derived Polyphenols on PD-L1 Dimerization: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms222010924. [PMID: 34681584 PMCID: PMC8535905 DOI: 10.3390/ijms222010924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/18/2023] Open
Abstract
In cancer immunotherapy, an emerging approach is to block the interactions of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) using small-molecule inhibitors. The food-derived polyphenols curcumin (CC), resveratrol (RSV) and epigallocatechin gallate (EGCG) have anticancer immunologic functions, which, recently, have been proposed to act via the downregulation of PD-L1 expression. However, it remains unclear whether they can directly target PD-L1 dimerization and, thus, interrupt the PD-1/PD-L1 pathway. To elucidate the molecular mechanism of such compounds on PD-L1 dimerization, molecular docking and nanosecond molecular dynamics simulations were performed. Binding free energy calculations show that the affinities of CC, RSV and EGCG to the PD-L1 dimer follow a trend of CC > RSV > EGCG. Hence, CC is the most effective inhibitor of the PD-1/PD-L1 pathway. Analysis on contact numbers, nonbonded interactions and residue energy decomposition indicate that such compounds mainly interact with the C-, F- and G-sheet fragments of the PD-L1 dimer, which are involved in interactions with PD-1. More importantly, nonpolar interactions between these compounds and the key residues Ile54, Tyr56, Met115, Ala121 and Tyr123 play a dominant role in binding. Free energy landscape and secondary structure analyses further demonstrate that such compounds can stably interact with the binding domain of the PD-L1 dimer. The results provide evidence that CC, RSV and EGCG can inhibit PD-1/PD-L1 interactions by directly targeting PD-L1 dimerization. This provides a novel approach to discovering food-derived small-molecule inhibitors of the PD-1/PD-L1 pathway with potential applications in cancer immunotherapy.
Collapse
|
3
|
Lewis-Atwell T, Townsend PA, Grayson MN. Comparisons of different force fields in conformational analysis and searching of organic molecules: A review. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Tryptophan Trimers and Tetramers Inhibit Dengue and Zika Virus Replication by Interfering with Viral Attachment Processes. Antimicrob Agents Chemother 2020; 64:AAC.02130-19. [PMID: 31932383 DOI: 10.1128/aac.02130-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Here, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection in vitro These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines. Moreover, they were active against laboratory and clinical strains of all four serotypes of dengue virus as well as a selected group of Zika virus strains. Additional mechanistic studies performed with the two most potent compounds (AL439 and AL440) demonstrated an interaction with the viral envelope glycoprotein (domain III) of dengue 2 virus, preventing virus attachment to the host cell membrane. Since no antiviral agent is approved at the moment against these two flaviviruses, further pharmacokinetic studies with these molecules are needed for their development as future therapeutic/prophylactic drugs.
Collapse
|
5
|
Matsudaira PT, Verma CS. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 143:1-4. [PMID: 30951764 DOI: 10.1016/j.pbiomolbio.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul T Matsudaira
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| | - Chandra S Verma
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
6
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
7
|
Fox SJ, Lakshminarayanan R, Beuerman RW, Li J, Verma CS. Conformational Transitions of Melittin between Aqueous and Lipid Phases: Comparison of Simulations with Experiments. J Phys Chem B 2018; 122:8698-8705. [DOI: 10.1021/acs.jpcb.8b06781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephen J. Fox
- Bioinformatics Institute (A*Star), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Rajamani Lakshminarayanan
- Eye ACP, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Jianguo Li
- Bioinformatics Institute (A*Star), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Eye ACP, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 168751, Singapore
| | - Chandra S. Verma
- Bioinformatics Institute (A*Star), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 4 Singapore 637551, Singapore
| |
Collapse
|
8
|
Marzinek JK, Bag N, Huber RG, Holdbrook DA, Wohland T, Verma CS, Bond PJ. A Funneled Conformational Landscape Governs Flavivirus Fusion Peptide Interaction with Lipid Membranes. J Chem Theory Comput 2018; 14:3920-3932. [DOI: 10.1021/acs.jctc.8b00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan K. Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Roland G. Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Daniel A. Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 63755
| | - Peter J. Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| |
Collapse
|
9
|
Peptides P4 and P7 derived from E protein inhibit entry of dengue virus serotype 2 via interacting with β3 integrin. Antiviral Res 2018; 155:20-27. [PMID: 29709564 DOI: 10.1016/j.antiviral.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/28/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022]
Abstract
Dengue virus (DENV) infection has become a severe public health problem worldwide. However, there is no specific antiviral drug available yet. In this study, we found that DENV serotype 2 (DENV2) infection enhanced the expression of β3 integrin on human umbilical vein endothelial cells (HUVECs) and that DENV2 antigens co-localized with β3 integrin. DENV2 envelope protein (E) directly interacted with β3 integrin, and their interacting sites were located at domain III of E protein (EDIII). Several synthetic peptides were designed based on the amino acid sequence of EDIII, and peptides P4 and P7 could inhibit DENV2 entry into HUVECs in a dose-dependent manner. The inhibitory concentration (IC50) of the two peptides was 19.08 ± 2.52 μM for P4 and 12.86 ± 5.96 μM for P7. Moreover, P7 containing an FG-loop, but not P4, could also inhibit DENV1 entry into HUVECs. Our results suggest a novel mechanism in which interaction between β3 integrin and EDIII is involved in DENV entry. The findings on the inhibitory effect of the peptides on viral entry have significance for anti-DENV drug design.
Collapse
|
10
|
Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections. Viruses 2017; 9:v9110338. [PMID: 29137162 PMCID: PMC5707545 DOI: 10.3390/v9110338] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/26/2022] Open
Abstract
Flaviviruses are enveloped, single-stranded RNA viruses that widely infect many animal species. The envelope protein, a structural protein of flavivirus, plays an important role in host cell viral infections. It is composed of three separate structural envelope domains I, II, and III (EDI, EDII, and EDIII). EDI is a structurally central domain of the envelope protein which stabilizes the overall orientation of the protein, and the glycosylation sites in EDI are related to virus production, pH sensitivity, and neuroinvasiveness. EDII plays an important role in membrane fusion because of the immunodominance of the fusion loop epitope and the envelope dimer epitope. Additionally, EDIII is the major target of neutralization antibodies. The envelope protein is an important target for research to develop vaccine candidates and antiviral therapeutics. This review summarizes the structures and functions of ED I/II/III, and provides practical applications for the three domains, with the ultimate goal of implementing strategies to utilize the envelope protein against flavivirus infections, thus achieving better diagnostics and developing potential flavivirus therapeutics and vaccines.
Collapse
|
11
|
New insights into flavivirus biology: the influence of pH over interactions between prM and E proteins. J Comput Aided Mol Des 2017; 31:1009-1019. [DOI: 10.1007/s10822-017-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
12
|
Kharche S, Joshi M, Sengupta D, Chattopadhyay A. Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR1: insights from atomistic simulations. Chem Phys Lipids 2017; 210:142-148. [PMID: 28939366 DOI: 10.1016/j.chemphyslip.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
The CXC chemokine receptor 1 (CXCR1) is an important member of the G protein-coupled receptor (GPCR) family in which the extracellular N-terminal domain has been implicated in ligand binding and selectivity. The structure of this domain has not yet been elucidated due to its inherent dynamics, but experimental evidence points toward membrane-dependent organization and dynamics. To gain molecular insight into the interaction of the N-terminal domain with the membrane bilayer, we performed a series of microsecond time scale atomistic simulations of the N-terminal domain of CXCR1 in the presence and absence of POPC bilayers. Our results show that the peptide displays a high propensity to adopt a β-sheet conformation in the presence of the membrane bilayer. The interaction of the peptide with the membrane bilayer was found to be transient in our simulations. Interestingly, a scrambled peptide, containing the same residues in a randomly varying sequence, did not exhibit membrane-modulated structural dynamics. These results suggest that sequence-dependent electrostatics, modulated by the membrane, could play an important role in folding of the N-terminal domain. We believe that our results reinforce the emerging paradigm that cellular membranes could be important modulators of function of G protein-coupled receptors such as CXCR1.
Collapse
Affiliation(s)
- Shalmali Kharche
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Manali Joshi
- Bioinformatics Center, S.P. Pune University, Ganeshkhind Road, Pune 411 007, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | | |
Collapse
|
13
|
Huber RG, Marzinek JK, Holdbrook DA, Bond PJ. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:121-132. [DOI: 10.1016/j.pbiomolbio.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
14
|
Shuaib S, Saini RK, Goyal D, Goyal B. Insights into the Inhibitory Mechanism of Dicyanovinyl-Substituted J147 Derivative against Aβ42
Aggregation and Protofibril Destabilization: A Molecular Dynamics Simulation Study. ChemistrySelect 2017. [DOI: 10.1002/slct.201601970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suniba Shuaib
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Rajneet Kaur Saini
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Deepti Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| | - Bhupesh Goyal
- Department of Chemistry; School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib- 140406, Punjab India
| |
Collapse
|
15
|
Understanding the molecular mechanism for the differential inhibitory activities of compounds against MTH1. Sci Rep 2017; 7:40557. [PMID: 28074893 PMCID: PMC5225434 DOI: 10.1038/srep40557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
MTH1 can hydrolyze oxidized nucleotides and is required for cancer survival. The IC50 values were 0.8 nM for TH287 with a methyl substitution, 5.0 nM for TH588 with a cyclopropyl substitution, and 2.1 μM for TH650 with an oxetanyl substitution. Thus, it is very significant to understand inhibitory mechanisms of these structurally similar compounds against MTH1 and influences of the substituent on the bioactivities. Our MD researches indicate that TH287 maintains significant hydrogen bonds with Asn33 and Asp119, stabilizes the binding site, and induces MTH1 adopt a closed motion, leading to a high inhibitory activity. When bound with TH588, the binding site can be partially stabilized and take a semi-closed state, which is because the cyclopropyl group in TH588 has larger steric hindrance than a methyl group in TH287. So TH588 has a slightly reduced inhibitory activity compared to TH287. TH650 induces greater conformation fluctuations than TH588 and the binding site adopts an opening state, which is caused by the large bulk of oxetanyl group and the interference of solvent on the oxetanyl substituent, leading to the lowest inhibitory activity. Thus, the inhibitory activity follows a TH287 > TH588 > TH650 trend, which well matches with the experimental finding.
Collapse
|
16
|
Goyal B, Kumar A, Srivastava KR, Durani S. Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides. J Biomol Struct Dyn 2016; 35:1923-1935. [DOI: 10.1080/07391102.2016.1199972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Chemistry, School of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Kinshuk Raj Srivastava
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Susheel Durani
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Goyal B, Kumar A, Srivastava KR, Durani S. Computational scrutiny of the effect of N-terminal proline and residue stereochemistry in the nucleation of α-helix fold. RSC Adv 2016. [DOI: 10.1039/c6ra10934a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
N-Terminal l- to d-residue mutation nucleate helical fold in Ac–DAla–LAla3–NHMe (Ib, m2), Ac–DPro–LAla3–NHMe (IIb, m1), and Ac–DPro–LPro–LAla2–NHMe (IIIb, m2) peptides.
Collapse
Affiliation(s)
- Bhupesh Goyal
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | | | - Susheel Durani
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|