1
|
Hou Y, Zhou H, Wang C, Xie C, Tian T, Li Y, Wang W, Yu Y, Zhou T. Identification of a Flavanone 2-Hydroxylase Involved in Flavone C-Glycoside Biosynthesis from Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27417-27428. [PMID: 39620353 DOI: 10.1021/acs.jafc.4c07456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Tea contains a variety of flavone C-glycosides, which are important compounds that distinguish tea cultivars and tea categories. However, the biosynthesis pathway of flavone C-glycosides in tea plant remains unknown, and the key enzymes involved have not been characterized. In this study, a liquid chromatography-mass spectrometry method to determine 9 flavone C-glycosides was developed, and the accumulation patterns of 9 flavone C-glycosides in tea plants were examined first. Then, an entry enzyme CsF2H for flavone C-glycoside biosynthesis was identified, which had four cytochrome P450-specific conserved motifs and was targeted to the endoplasmic reticulum. Correlation analysis indicated that the expression level of CsF2H was positively correlated with all contents of 9 flavone C-glycosides. The recombinant CsF2H could convert flavanone (naringenin) into the corresponding 2-hydroxyflavonone (2-hydroxynaringenin), rather than into flavone (apigenin). Heterologous coexpression of CsF2H and CsCGT1 in yeast revealed that the substrate naringenin could be enzymatically converted to flavone mono-C-glycosides vitexin and isovitexin under the catalytic control of CsF2H and CsCGT1 following dehydration. Gene-specific antisense oligonucleotide analysis suggested that suppressing CsF2H significantly reduced the levels of 9 flavone C-glycosides. Together, CsF2H is the first key enzyme that generates flavone C-glycosides through the 2-hydroxyflavanone biosynthesis pathway in tea plants.
Collapse
Affiliation(s)
- Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyang Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Ma Q, Wang S, Tan H, Sun Z, Li C, Zhang G. Tissue-specific transcriptome analyses unveils candidate genes for flavonoid biosynthesis, regulation and transport in the medicinal plant Ilex asprella. Sci Rep 2024; 14:29999. [PMID: 39622925 PMCID: PMC11612459 DOI: 10.1038/s41598-024-81319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
It is not clear that the genes involved with flavonoids synthesis, regulation and transport in Ilex asprella. Transcriptome analysis of leaf, stem and root has uncovered 28,478 differentially expressed genes (DEGs) that are involved in various biological processes. Among these, the expression of 31 candidate synthetase genes, 19 transcription factors, and 5 transporters associated with flavonoid biosynthesis varies across tissues, encompassing seven complete biosynthetic pathways (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, and anthocyanin) and one partial pathway (proanthocyanidin). Tissue-specific expression patterns suggest that the stilbenes, aurones, flavones and anthocyanin branches are more prominent in roots, as indicated by key genes such as STS(Ilex_044726), CH4'GT(Ilex_047989), FNS(Ilex_043640) and UFGT(Ilex_014720). In leaves, the phlobaphenes and flavonols branches are dominant, determined by CHI(Ilex_005941), FNR(Ilex_039777) and FLS(Ilex_046424). The isoflavone pathway appears to be more active in stems due to the presence of IFS(Ilex_029360), mirroring the accumulation of the intermediate metabolite chalcone, which is regulated by CHS(Ilex_047537). The absence of LAR genes implies that gallocatechin, and catechin liked proanthocyanidins cannot be synthesized in I. asprella. Meanwhile, the general phenylpropanoid pathway is more active in roots, stems than in leaves, as evidenced by the expression of PAL(Ilex_042231, Ilex_014816), C4H(Ilex_017598), and 4CL(Ilex_042033). Flavanone, dihydroflavonol and leucoanthocyanidin, key intermediates, accumulate more rapidly in stem, stem and root, respectively, regulated by CHI(Ilex_005941), F3H(Ilex_004635) and DFR(Ilex_004771). Correlation and network analyses reveal that candidate regulators and transporters are closely associated with the synthesis genes. The study provides profound snoop into flavonoids metabolism in I. asprella and offers valuable refer for medicinal plant.
Collapse
Affiliation(s)
- Qing Ma
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, 518000, People's Republic of China
- Shenzhen Traditional Chinese Medicine Manufacturing, Innovation Center Co., Ltd., Shenzhen, 518110, People's Republic of China
| | - Saidi Wang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China
| | - Haitao Tan
- Shanghai Origingene Bio-Pharm Technology Co. Ltd., Shanghai, 200241, People's Republic of China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Gaoyang Zhang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
3
|
Mou Z, Yuan Y, Wei W, Zhao Y, Wu B, Chen J. Integrative Metabolomic and Transcriptomic Analysis Provides Novel Insights into the Effects of SO 2 on the Postharvest Quality of 'Munage' Table Grapes. Foods 2024; 13:3494. [PMID: 39517277 PMCID: PMC11545366 DOI: 10.3390/foods13213494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Postharvest grapes exhibit a limited shelf life due to susceptibility to rot and deterioration, significantly reducing their nutritional and economic value. Sulfur dioxide (SO2) is a widely recognized preservative for extending grape storage life. This study performed a detailed analysis of 'Munage' table grapes treated with SO2 fumigation, employing transcriptomic and metabolomic approaches. Results indicate that SO2 fumigation significantly extends the shelf life of grapes, as demonstrated by improved visual quality, reduced decay rates, and increased fruit firmness. We identified 309 differentially accumulated metabolites (DAMs) and 1906 differentially expressed genes (DEGs), including 135 transcription factors (TFs). Both DEGs and DAMs showed significant enrichment of flavonoid-related metabolism compared with the control, and the relative content of four flavonoid metabolites (Wogonin-7-O-glucuronide, Acacetin-7-O-glucuronide, Apigenin-7-O-glucuronide, and Baicalein 7-O-glucuronide) were significantly increased in grapes upon SO2 treatment, suggesting that SO2 treatment had a substantial regulatory effect on grape flavonoid metabolism. Importantly, we constructed complex regulatory networks by screening key enzyme genes (e.g., PAL, 4CLs, CHS, CHI2, and UGT88F3) related to the metabolism of target flavonoid, as well as potential regulatory transcription factors (TFs). Overall, our findings offer new insights into the regulatory mechanisms by which SO2 maintains the postharvest quality of table grapes.
Collapse
Affiliation(s)
- Zhenliang Mou
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| | - Yuyao Yuan
- Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| | - Yating Zhao
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Bin Wu
- Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Z.M.); (W.W.)
| |
Collapse
|
4
|
Maiti S, Banik A. Strategies to fortify the nutritional values of polished rice by implanting selective traits from brown rice: A nutrigenomics-based approach. Food Res Int 2023; 173:113271. [PMID: 37803581 DOI: 10.1016/j.foodres.2023.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Whole-grain cereals are important components of a healthy diet. It reduces the risk of many deadly diseases like cardiovascular diseases, diabetes, cancer, etc. Brown rice is an example of whole grain food, which is highly nutritious due to the presence of various bioactive compounds (flavonoids, phenolics, vitamins, phytosterols, oils, etc.) associated with the rice bran layer of brown rice. White rice is devoid of the nutritious rice bran layer and thus lacks the bioactive compounds which are the major attractants of brown rice. Therefore, to confer health benefits to the public at large, the nutrigenomic potential of white rice may be improved by integrating the phytochemicals associated with the rice bran layer of brown rice into it via biofortification processes like conventional breeding, agronomic practices, metabolic engineering, CRISPR/Cas9 technology, and RNAi techniques. Thus, this review article focuses on improving the nutritional qualities of white/polished rice through biofortification processes, utilizing new breeding technologies (NBTs).
Collapse
Affiliation(s)
- Somdatta Maiti
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Yiakoumetti A, Hanko EKR, Zou Y, Chua J, Chromy J, Stoney RA, Valdehuesa KNG, Connolly JA, Yan C, Hollywood KA, Takano E, Breitling R. Expanding flavone and flavonol production capabilities in Escherichia coli. Front Bioeng Biotechnol 2023; 11:1275651. [PMID: 37920246 PMCID: PMC10619664 DOI: 10.3389/fbioe.2023.1275651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Flavones and flavonols are important classes of flavonoids with nutraceutical and pharmacological value, and their production by fermentation with recombinant microorganisms promises to be a scalable and economically favorable alternative to extraction from plant sources. Flavones and flavonols have been produced recombinantly in a number of microorganisms, with Saccharomyces cerevisiae typically being a preferred production host for these compounds due to higher yields and titers of precursor compounds, as well as generally improved ability to functionally express cytochrome P450 enzymes without requiring modification to improve their solubility. Recently, a rapid prototyping platform has been developed for high-value compounds in E. coli, and a number of gatekeeper (2S)-flavanones, from which flavones and flavonols can be derived, have been produced to high titers in E. coli using this platform. In this study, we extended these metabolic pathways using the previously reported platform to produce apigenin, chrysin, luteolin and kaempferol from the gatekeeper flavonoids naringenin, pinocembrin and eriodictyol by the expression of either type-I flavone synthases (FNS-I) or type-II flavone synthases (FNS-II) for flavone biosynthesis, and by the expression of flavanone 3-dioxygenases (F3H) and flavonol synthases (FLS) for the production of the flavonol kaempferol. In our best-performing strains, titers of apigenin and kaempferol reached 128 mg L-1 and 151 mg L-1 in 96-DeepWell plates in cultures supplemented with an additional 3 mM tyrosine, though titers for chrysin (6.8 mg L-1) from phenylalanine, and luteolin (5.0 mg L-1) from caffeic acid were considerably lower. In strains with upregulated tyrosine production, apigenin and kaempferol titers reached 80.2 mg L-1 and 42.4 mg L-1 respectively, without the further supplementation of tyrosine beyond the amount present in the rich medium. Notably, the highest apigenin, chrysin and luteolin titers were achieved with FNS-II enzymes, suggesting that cytochrome P450s can show competitive performance compared with non-cytochrome P450 enzymes in prokaryotes for the production of flavones.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Rainer Breitling
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Jiang T, Cui A, Cui Y, Cui R, Han M, Zhang Y, Fan Y, Huang H, Feng X, Lei Y, Liu X, Ni K, Zhang H, Xu N, Wang J, Sun L, Rui C, Wang J, Wang S, Chen X, Lu X, Wang D, Guo L, Zhao L, Hao F, Ye W. Systematic analysis and expression of Gossypium 2ODD superfamily highlight the roles of GhLDOXs responding to alkali and other abiotic stress in cotton. BMC PLANT BIOLOGY 2023; 23:124. [PMID: 36869319 PMCID: PMC9985220 DOI: 10.1186/s12870-023-04133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND 2-oxoglutarate-dependent dioxygenase (2ODD) is the second largest family of oxidases involved in various oxygenation/hydroxylation reactions in plants. Many members in the family regulate gene transcription, nucleic acid modification/repair and secondary metabolic synthesis. The 2ODD family genes also function in the formation of abundant flavonoids during anthocyanin synthesis, thereby modulating plant development and response to diverse stresses. RESULTS Totally, 379, 336, 205, and 204 2ODD genes were identified in G. barbadense (Gb), G. hirsutum (Gh), G. arboreum (Ga), and G. raimondii (Gb), respectively. The 336 2ODDs in G. hirsutum were divided into 15 subfamilies according to their putative functions. The structural features and functions of the 2ODD members in the same subfamily were similar and evolutionarily conserved. Tandem duplications and segmental duplications served essential roles in the large-scale expansion of the cotton 2ODD family. Ka/Ks values for most of the gene pairs were less than 1, indicating that 2ODD genes undergo strong purifying selection during evolution. Gh2ODDs might act in cotton responses to different abiotic stresses. GhLDOX3 and GhLDOX7, two members of the GhLDOX subfamily from Gh2ODDs, were significantly down-regulated in transcription under alkaline stress. Moreover, the expression of GhLDOX3 in leaves was significantly higher than that in other tissues. These results will provide valuable information for further understanding the evolution mechanisms and functions of the cotton 2ODD genes in the future. CONCLUSIONS Genome-wide identification, structure, and evolution and expression analysis of 2ODD genes in Gossypium were carried out. The 2ODDs were highly conserved during evolutionary. Most Gh2ODDs were involved in the regulation of cotton responses to multiple abiotic stresses including salt, drought, hot, cold and alkali.
Collapse
Affiliation(s)
- Tiantian Jiang
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aihua Cui
- Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, Jiangxi, China
| | - Yupeng Cui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruifeng Cui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Mingge Han
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hui Huang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xixian Feng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yuqian Lei
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaoyu Liu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kesong Ni
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hong Zhang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Nan Xu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jing Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liangqing Sun
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Cun Rui
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuai Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xuke Lu
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Delong Wang
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lixue Guo
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology / School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
7
|
Luo C, Liu L, Zhao J, Xu Y, Liu H, Chen D, Cheng X, Gao J, Hong B, Huang C, Ma C. CmHY5 functions in apigenin biosynthesis by regulating flavone synthase II expression in chrysanthemum flowers. PLANTA 2022; 257:7. [PMID: 36478305 DOI: 10.1007/s00425-022-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives. CmHY5 participates in apigenin biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum. Chrysanthemum (Chrysanthemum morifolium) flowers have been used for centuries as functional food and in herbal tea and traditional medicine. The chrysanthemum flower contains significant amounts of the biologically active compound flavones, which has medicinal properties. However, the mechanism regulating flavones biosynthesis in chrysanthemum flowers organs is still unclear. Here, we compared the transcriptomes and metabolomes of different floral organs between two cultivars with contrasting flavone levels in their flowers. We identified 186 flavonoids by metabolome analysis. The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives, of which the contents are highly correlated with the expression of flavones synthase II gene CmFNSII-1. We also determined that CmHY5 is a direct upstream regulator of CmFNSII-1 transcription. We showed that CmHY5 RNAi interference lines in chrysanthemum have lower contents of apigenin compared to wild-type chrysanthemum. Our results demonstrated that CmHY5 participates in flavone biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China.
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Chacon DS, Santos MDM, Bonilauri B, Vilasboa J, da Costa CT, da Silva IB, Torres TDM, de Araújo TF, Roque ADA, Pilon AC, Selegatto DM, Freire RT, Reginaldo FPS, Voigt EL, Zuanazzi JAS, Scortecci KC, Cavalheiro AJ, Lopes NP, Ferreira LDS, dos Santos LV, Fontes W, de Sousa MV, Carvalho PC, Fett-Neto AG, Giordani RB. Non-target molecular network and putative genes of flavonoid biosynthesis in Erythrina velutina Willd., a Brazilian semiarid native woody plant. FRONTIERS IN PLANT SCIENCE 2022; 13:947558. [PMID: 36161018 PMCID: PMC9493460 DOI: 10.3389/fpls.2022.947558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.
Collapse
Affiliation(s)
- Daisy Sotero Chacon
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Bernardo Bonilauri
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Taffarel de Melo Torres
- Bioinformatics, Biostatistics and Computer Biology Nucleus, Rural Federal University of the Semiarid, Mossoró, RN, Brazil
| | | | - Alan de Araújo Roque
- Institute for Sustainable Development and Environment, Dunas Park Herbarium, Natal, RN, Brazil
| | - Alan Cesar Pilon
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | - Denise Medeiros Selegatto
- Zimmermann Group, European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rafael Teixeira Freire
- Signal and Information Processing for Sensing Systems, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Eduardo Luiz Voigt
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Kátia Castanho Scortecci
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Leandro Vieira dos Santos
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Paulo Costa Carvalho
- Computational and Structural Proteomics Laboratory, Carlos Chagas Institute, Fiocruz, PR, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel Brandt Giordani
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
9
|
Tian S, Yang Y, Wu T, Luo C, Li X, Zhao X, Xi W, Liu X, Zeng M. Functional Characterization of a Flavone Synthase That Participates in a Kumquat Flavone Metabolon. FRONTIERS IN PLANT SCIENCE 2022; 13:826780. [PMID: 35310637 PMCID: PMC8924551 DOI: 10.3389/fpls.2022.826780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 05/17/2023]
Abstract
Flavones predominantly accumulate as O- and C-glycosides in kumquat plants. Two catalytic mechanisms of flavone synthase II (FNSII) support the biosynthesis of glycosyl flavones, one involving flavanone 2-hydroxylase (which generates 2-hydroxyflavanones for C-glycosylation) and another involving the direct catalysis of flavanones to flavones for O-glycosylation. However, FNSII has not yet been characterized in kumquats. In this study, we identified two kumquat FNSII genes (FcFNSII-1 and FcFNSII-2), based on transcriptome and bioinformatics analysis. Data from in vivo and in vitro assays showed that FcFNSII-2 directly synthesized apigenin and acacetin from naringenin and isosakuranetin, respectively, whereas FcFNSII-1 showed no detectable catalytic activities with flavanones. In agreement, transient overexpression of FcFNSII-2 in kumquat peels significantly enhanced the transcription of structural genes of the flavonoid-biosynthesis pathway and the accumulation of several O-glycosyl flavones. Moreover, studying the subcellular localizations of FcFNSII-1 and FcFNSII-2 demonstrated that N-terminal membrane-spanning domains were necessary to ensure endoplasmic reticulum localization and anchoring. Protein-protein interaction analyses, using the split-ubiquitin yeast two-hybrid system and bimolecular fluorescence-complementation assays, revealed that FcFNSII-2 interacted with chalcone synthase 1, chalcone synthase 2, and chalcone isomerase-like proteins. The results provide strong evidence that FcFNSII-2 serves as a nucleation site for an O-glycosyl flavone metabolon that channels flavanones for O-glycosyl flavone biosynthesis in kumquat fruits. They have implications for guiding genetic engineering efforts aimed at enhancing the composition of bioactive flavonoids in kumquat fruits.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chuan Luo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xin Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Xiaogang Liu,
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- Ming Zeng, ;
| |
Collapse
|
10
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
11
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
12
|
Marín L, Gutiérrez-Del-Río I, Villar CJ, Lombó F. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity. Microb Biotechnol 2021; 14:2009-2024. [PMID: 34216097 PMCID: PMC8449655 DOI: 10.1111/1751-7915.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
Flavonoids are important plant secondary metabolites, which were shown to have antioxidant, anti-inflammatory or antiviral activities. Heterologous production of flavonoids in engineered microbial cell factories is an interesting alternative to their purification from plant material representing the natural source. The use of engineered bacteria allows to produce specific compounds, independent of soil, climatic or other plant-associated production parameters. The initial objective of this study was to achieve an engineered production of two interesting flavanonols, garbanzol and fustin, using Streptomyces albus as the production host. Unexpectedly, the engineered strain produced several flavones and flavonols in the absence of the additional expression of a flavone synthase (FNS) or flavonol synthase (FLS) gene. It turned out that the heterologous flavanone 3-hydroxylase (F3H) has a 2-hydroxylase side activity, which explains the observed production of 7,4'-dihydroxyflavone, resokaempferol, kaempferol and apigenin, as well as the biosynthesis of the extremely rare 2-hydroxylated intermediates 2-hydroxyliquiritigenin, 2-hydroxynaringenin and probably licodione. Other related metabolites, such as quercetin, dihydroquercetin and eriodictyol, have also been detected in culture extracts of this recombinant strain. Hence, the enzymatic versatility of S. albus can be conveniently exploited for the heterologous production of a large diversity of plant metabolites of the flavonoid family.
Collapse
Affiliation(s)
- Laura Marín
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Claudio Jesús Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| |
Collapse
|
13
|
Shui L, Huo K, Chen Y, Zhang Z, Li Y, Niu J. Integrated metabolome and transcriptome revealed the flavonoid biosynthetic pathway in developing Vernonia amygdalina leaves. PeerJ 2021; 9:e11239. [PMID: 33981500 PMCID: PMC8083182 DOI: 10.7717/peerj.11239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Vernonia amygdalina as a tropical horticultural crop has been widely used for medicinal herb, feed, and vegetable. Recently, increasing studies revealed that this species possesses multiple pharmacological properties. Notably, V. amygdalina leaves possess an abundance of flavonoids, but the specific profiles of flavonoids and the mechanisms of fl avonoid bi osynthesis in developing leaves are largely unknown. Methods The total flavonoids of V. amygdalina leaves were detected using ultraviolet spectrophotometer. The temporal flavonoid profiles of V. amygdalina leaves were analyzed by LC-MS. The transcriptome analysis of V. amygdalina leaves was performed by Illumina sequencing. Functional annotation and differential expression analysis of V. amygdalina genes were performed by Blast2GO v2.3.5 and RSEM v1.2.31, respectively. qRT-PCR analysis was used to verify the gene expressions in developing V. amygdalina leaves. Results By LC-MS analysis, three substrates (p-coumaric acid, trans-cinnamic acid, and phenylalanine) for flavonoid biosynthesis were identified in V. amygdalina leaves. Additionally, 42 flavonoids were identified from V. amygdalina leaves, including six dihydroflavones, 14 flavones, eight isoflavones, nine flavonols, two xanthones, one chalcone, one cyanidin, and one dihydroflavonol. Glycosylation and methylation were common at the hydroxy group of C3, C7, and C4’ positions. Moreover, dynamic patterns of different flavonoids showed diversity. By Illumina sequencing, the obtained over 200 million valid reads were assembled into 60,422 genes. Blast analysis indicated that 31,872 genes were annotated at least in one of public databases. Greatly increasing molecular resources makes up for the lack of gene information in V. amygdalina. By digital expression profiling and qRT-PCR, we specifically characterized some key enzymes, such as Va-PAL1, Va-PAL4, Va-C4H1, Va-4CL3, Va-ACC1, Va-CHS1, Va-CHI, Va-FNSII, and Va-IFS3, involved in flavonoid biosynthesis. Importantly, integrated metabolome and transcriptome data of V. amygdalina leaves, we systematically constructed a flavonoid biosynthetic pathway with regards to material supplying, flavonoid scaffold biosynthesis, and flavonoid modifications. Our findings contribute significantly to understand the underlying mechanisms of flavonoid biosynthesis in V. amygdalina leaves, and also provide valuable information for potential metabolic engineering.
Collapse
Affiliation(s)
- Lanya Shui
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Kaisen Huo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yan Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Zilin Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Yanfang Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
14
|
Xia Y, Chen W, Xiang W, Wang D, Xue B, Liu X, Xing L, Wu D, Wang S, Guo Q, Liang G. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC PLANT BIOLOGY 2021; 21:98. [PMID: 33596836 PMCID: PMC7890969 DOI: 10.1186/s12870-021-02877-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants have remarkable diversity in petal colour through the biosynthesis and accumulation of various pigments. To better understand the mechanisms regulating petal pigmentation in Lonicera japonica, we used multiple approaches to investigate the changes in carotenoids, anthocyanins, endogenous hormones and gene expression dynamics during petal colour transitions, i.e., green bud petals (GB_Pe), white flower petals (WF_Pe) and yellow flower petals (YF_Pe). RESULTS Metabolome analysis showed that YF_Pe contained a much higher content of carotenoids than GB_Pe and WF_Pe, with α-carotene, zeaxanthin, violaxanthin and γ-carotene identified as the major carotenoid compounds in YF_Pe. Comparative transcriptome analysis revealed that the key differentially expressed genes (DEGs) involved in carotenoid biosynthesis, such as phytoene synthase, phytoene desaturase and ζ-carotene desaturase, were significantly upregulated in YF_Pe. The results indicated that upregulated carotenoid concentrations and carotenoid biosynthesis-related genes predominantly promote colour transition. Meanwhile, two anthocyanins (pelargonidin and cyanidin) were significantly increased in YF_Pe, and the expression level of an anthocyanidin synthase gene was significantly upregulated, suggesting that anthocyanins may contribute to vivid yellow colour in YF_Pe. Furthermore, analyses of changes in indoleacetic acid, zeatin riboside, gibberellic acid, brassinosteroid (BR), methyl jasmonate and abscisic acid (ABA) levels indicated that colour transitions are regulated by endogenous hormones. The DEGs involved in the auxin, cytokinin, gibberellin, BR, jasmonic acid and ABA signalling pathways were enriched and associated with petal colour transitions. CONCLUSION Our results provide global insight into the pigment accumulation and the regulatory mechanisms underlying petal colour transitions during the flower development process in L. japonica.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weibo Xiang
- Rare Plant Research Institute of the Yangtze River (Yichang); Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100083, China
| | - Dan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Baogui Xue
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Xinya Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Lehua Xing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Shuming Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China.
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education; College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Dymarska M, Janeczko T, Kostrzewa-Susłow E. The Callus of Phaseolus coccineus and Glycine max Biotransform Flavanones into the Corresponding Flavones. Molecules 2020; 25:E5767. [PMID: 33297500 PMCID: PMC7730475 DOI: 10.3390/molecules25235767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
In vitro plant cultures are gaining in industrial importance, especially as biocatalysts and as sources of secondary metabolites used in pharmacy. The idea that guided us in our research was to evaluate the biocatalytic potential of newly obtained callus tissue towards flavonoid compounds. In this publication, we describe new ways of using callus cultures in the biotransformations. In the first method, the callus cultures grown on a solid medium are transferred to the water, the reaction medium into which the substrate is introduced. In the second method, biotransformation is carried out on a solid medium by growing callus cultures. In the course of the research, we have shown that the callus obtained from Phaseolus coccineus and Glycine max is capable of converting flavanone, 5-methoxyflavanone and 6-methoxyflavanone into the corresponding flavones.
Collapse
Affiliation(s)
- Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (T.J.); (E.K.-S.)
| | | | | |
Collapse
|
16
|
Metabolomics Reveals Distinct Metabolites between Lonicera japonica and Lonicera macranthoides Based on GC-MS. J CHEM-NY 2020. [DOI: 10.1155/2020/6738571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lonicera japonica Thunb. (LJ) and Lonicera macranthoides Hand. -Mazz. (LM) have been widely used in Chinese medicine for thousands of years. Although the morphological characteristics of LJ and LM are quite similar, there are significant distinctions of medicinal ingredients (mainly the secondary metabolites) and clinical indications between them. However, the in-depth differences of primary metabolites have not thoroughly been studied yet. Therefore, gas chromatography-mass spectrometry- (GC-MS-) based metabolomics method combined with chemometric methods were performed to analyze the distinction in this study. The results showed that LJ and LM were obviously classified into two groups. 10 metabolites were obtained as biomarkers on account of their p values, pcorr values, and differing variable importance in projection (VIP) values. Metabolic pathway analysis showed that the galactose metabolism and starch and sucrose metabolism gathered as potential pathways caused these extraordinary differences of primary metabolites between LJ and LM. Further, we found that the differences of main medicinal ingredients between LJ and LM could be interpreted from these metabolites according to the analysis of mainly related pathways. The metabolites involved in the starch and sucrose metabolism presented upregulated in LJ, while almost all metabolites in the galactose metabolism, the TCA cycle, and the phenolic acid part of phenylpropanoid metabolism were downregulated in LJ. Therefore, the energy stored in the starch and sucrose metabolism may be saved to produce flavonoid, which could be the reason that the level of flavonoid of phenylpropanoid metabolism is higher in LJ compared to LM. Consequently, this study presented an effective tool for quality evaluation of LJ and LM and laid a foundation for further studies of the metabolic mechanisms and high-quality manufacturing of them.
Collapse
|
17
|
Integrated metabolomic and transcriptomic profiling reveals the tissue-specific flavonoid compositions and their biosynthesis pathways in Ziziphora bungeana. Chin Med 2020; 15:73. [PMID: 32695217 PMCID: PMC7364582 DOI: 10.1186/s13020-020-00354-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Ziziphora bungeana Juz. is a folk medicine from the Xinjiang Uygur Autonomous Region. The herb or the aerial parts of it have been used to medicinally treat cardiovascular diseases. Flavonoids are the main pharmacologically active ingredients in Z. bungeana. Identification of the tissue-specific distribution of flavonoids in Z. bungeana is crucial for effective and sustainable medicinal use of the plant. Furthermore, understanding of the biosynthesis pathways of these flavonoids in Z. bungeana is of great biological significance. Methods The flavonoids from different tissues of Z. bungeana were identified using liquid chromatography-tandem mass spectrometry (LC–MS/MS). The full-length transcriptome of Z. bungeana was determined using a strategy based on a combination of Illumina and PacBio sequencing techniques. The functions of differentially expressed unigenes were predicted using bioinformatics methods and further investigated by real-time quantitative PCR and phylogenetic relationship analysis. Results Among the 12 major flavonoid components identified from Z. bungeana extracts, linarin was the most abundant component. Nine flavonoids were identified as characteristic components of specific tissues. Transcriptome profiling and bioinformatic analysis revealed that 18 genes were putatively involved in flavonoid biosynthesis. The gene expression and phylogenetic analysis results indicated that ZbPALs, Zb4CL3, ZbCHS1, and ZbCHI1 may be involved in the biosynthesis of the main flavonoid intermediate. ZbFNSII, ZbANS, and ZbFLS may be involved in the biosynthesis of flavones, anthocyanins, and flavonols, respectively. A map of the biosynthesis pathways of the 12 major flavonoids in Z. bungeana is proposed. Conclusions The chemical constituent analysis revealed the compositions of 9 characteristic flavonoids in different tissues of Z. bungeana. Linarin can be hydrolysed into acacetin to exert a pharmaceutical role. Apigenin-7-O-rutinoside is hypothesised to be the precursor of linarin in Z. bungeana. There was greater content of linarin in the aerial parts of the plant than in the whole herb, which provides a theoretical basis for using the aerial parts of Z. bungeana for medicine. These results provide a valuable reference for further research on the flavonoid biosynthesis pathways of Z. bungeana and will be significant for the effective utilisation and ecological protection of Z. bungeana.
Collapse
|
18
|
Li Y, Li W, Fu C, Song Y, Fu Q. Lonicerae japonicae flos and Lonicerae flos: a systematic review of ethnopharmacology, phytochemistry and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:1-61. [PMID: 32206048 PMCID: PMC7088551 DOI: 10.1007/s11101-019-09655-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/11/2019] [Indexed: 05/05/2023]
Abstract
Lonicerae japonicae flos (called Jinyinhua, JYH in Chinese), flowers or flower buds of Lonicera japonica Thunberg, is an extremely used traditional edible-medicinal herb. Pharmacological studies have already proved JYH ideal clinical therapeutic effects on inflammation and infectious diseases and prominent effects on multiple targets in vitro and in vivo, such as pro-inflammatory protein inducible nitric oxide synthase, toll-like receptor 4, interleukin-1 receptor. JYH and Lonicerae flos [called Shanyinhua, SYH in Chinese, flowers or flower buds of Lonicera hypoglauca Miquel, Lonicera confusa De Candolle or Lonicera macrantha (D.Don) Spreng] which belongs to the same family of JYH were once recorded as same herb in multiple versions of Chinese Pharmacopoeia (ChP). However, they were listed as two different herbs in 2005 Edition ChP, leading to endless controversy since they have close proximity on plant species, appearances and functions, together with traditional applications. In the past decades, there has no literature regarding to systematical comparison on the similarity concerning research achievements of the two herbs. This review comprehensively presents similarities and differences between JYH and SYH retrospectively, particularly proposing them the marked differences in botanies, phytochemistry and pharmacological activities which can be used as evidence of separate list of JYH and SYH. Furthermore, deficiencies on present studies have also been discussed so as to further research could use for reference.
Collapse
Affiliation(s)
- Yuke Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 People’s Republic of China
| | - Wen Li
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 People’s Republic of China
| | - Chaomei Fu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 People’s Republic of China
| | - Ying Song
- Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075 People’s Republic of China
| | - Qiang Fu
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106 People’s Republic of China
| |
Collapse
|
19
|
Zhang L, Sun X, Wilson IW, Shao F, Qiu D. Identification of the Genes Involved in Anthocyanin Biosynthesis and Accumulation in Taxus chinensis. Genes (Basel) 2019; 10:E982. [PMID: 31795268 PMCID: PMC6947853 DOI: 10.3390/genes10120982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023] Open
Abstract
Taxus chinensis is a precious woody species with significant economic value. Anthocyanin as flavonoid derivatives plays a crucial role in plant biology and human health. However, the genes involved in anthocyanin biosynthesis have not been identified in T. chinensis. In this study, twenty-five genes involved in anthocyanin biosynthesis were identified, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, anthocyanidin synthase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin reductase, and leucoanthocyanidin reductase. The conserved domains and phylogenetic relationships of these genes were characterized. The expression levels of these genes in different tissues and different ages of xylem were investigated. Additionally, the anthocyanin accumulation in xylem of different ages of T. chinensis was measured. The results showed the anthocyanin accumulation was correlated with the expression levels of dihydroflavonol 4-reductase, anthocyanidin synthase, flavonoid 3'-hydroxylase, and flavonoid 3',5'-hydroxylase. Our results provide a basis for studying the regulation of the biosynthetic pathway for anthocyanins and wood color formation in T. chinensis.
Collapse
Affiliation(s)
- Lisha Zhang
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Iain W. Wilson
- CSIRO Agriculture and Food, P.O. Box 1600, Canberra, ACT 2601, Australia;
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding &Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (L.Z.); (X.S.); (D.Q.)
| |
Collapse
|
20
|
Deng Y, Li C, Li H, Lu S. Identification and Characterization of Flavonoid Biosynthetic Enzyme Genes in Salvia miltiorrhiza (Lamiaceae). Molecules 2018; 23:E1467. [PMID: 29914175 PMCID: PMC6099592 DOI: 10.3390/molecules23061467] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a class of important secondary metabolites with a broad spectrum of pharmacological functions. Salviamiltiorrhiza Bunge (Danshen) is a well-known traditional Chinese medicinal herb with a broad diversity of flavonoids. However, flavonoid biosynthetic enzyme genes have not been systematically and comprehensively analyzed in S.miltiorrhiza. Through genome-wide prediction and molecular cloning, twenty six flavonoid biosynthesis-related gene candidates were identified, of which twenty are novel. They belong to nine families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), flavonoid 3',5'-hydroxylase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), respectively. Analysis of intron/exon structures, features of deduced proteins and phylogenetic relationships revealed the conservation and divergence of S.miltiorrhiza flavonoid biosynthesis-related proteins and their homologs from other plant species. These genes showed tissue-specific expression patterns and differentially responded to MeJA treatment. Through comprehensive and systematic analysis, fourteen genes most likely to encode flavonoid biosynthetic enzymes were identified. The results provide valuable information for understanding the biosynthetic pathway of flavonoids in medicinal plants.
Collapse
Affiliation(s)
- Yuxing Deng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| | - Heqin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151 Malianwa North Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
21
|
Jin W, Long Y, Fu C, Zhang L, Xiang J, Wang B, Li M. Ca 2+ imaging and gene expression profiling of Lonicera Confusa in response to calcium-rich environment. Sci Rep 2018; 8:7068. [PMID: 29728644 PMCID: PMC5935734 DOI: 10.1038/s41598-018-25611-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
As a medicinal plant widely planted in southwest karst of China, the study of adaptation mechanisms of Lonicera confusa, especially to karst calcium-rich environment, can provide important theoretical basis for repairing desertification by genetic engineering. In this study, the Ca2+ imaging in the leaves of L. confusa was explored by LSCM (Laser Scanning Confocal Microscopy) and TEM (Transmission Electron Microscopy), which revealed that the calcium could be transported to gland, epidermal hair and stoma in the leaves of L. confusa in high-Ca2+ environment. In addition, we simulated the growth environment of L. confusa and identified DEGs (Differentially Expressed Genes) under different Ca2+ concentrations by RNA sequencing. Further analysis showed that these DEGs were assigned with some important biological processes. Furthermore, a complex protein-protein interaction network among DEGs in L. Confusa was constructed and some important regulatory genes and transcription factors were identified. Taken together, this study displayed the Ca2+ transport and the accumulation of Ca2+ channels and pools in L. Confusa with high-Ca2+ treatment. Moreover, RNA sequencing provided a global picture of differential gene expression patterns in L. Confusa with high-Ca2+ treatment, which will help to reveal the molecular mechanism of the adaptation of L. confusa to high-Ca2+ environment in the future.
Collapse
Affiliation(s)
- Wenwen Jin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhua Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China.
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, 250000, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
22
|
Chen Z, Liu G, Tang N, Li Z. Transcriptome Analysis Reveals Molecular Signatures of Luteoloside Accumulation in Senescing Leaves of Lonicera macranthoides. Int J Mol Sci 2018; 19:E1012. [PMID: 29597293 PMCID: PMC5979331 DOI: 10.3390/ijms19041012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Lonicera macranthoides is an important medicinal plant widely used in traditional Chinese medicine. Luteoloside is a critical bioactive compound in L. macranthoides. To date, the molecular mechanisms underlying luteoloside biosynthesis are still largely unknown. In this work, high performance liquid chromatography (HPLC) was employed to determine the luteoloside contents in leaves, stems, and flowers at different developmental stages. Results showed that senescing leaves can accumulate large amounts of luteoloside, extremely higher than that in young and semi-lignified leaves and other tissues. RNA-Seq analysis identified that twenty-four differentially expressed unigenes (DEGs) associated with luteoloside biosynthesis were significantly up-regulated in senescing leaves, which are positively correlated with luteoloside accumulation. These DEGs include phenylalanine ammonia lyase 2, cinnamate 4-hydroxylase 2, thirteen 4-coumarate-CoA ligases, chalcone synthase 2, six flavonoid 3'-monooxygenase (F3'H) and two flavone 7-O-β-glucosyltransferase (UFGT) genes. Further analysis demonstrated that two F3'Hs (CL11828.Contig1 and CL11828.Contig2) and two UFGTs (Unigene2918 and Unigene97915) might play vital roles in luteoloside generation. Furthermore, several transcription factors (TFs) related to flavonoid biosynthesis including MYB, bHLH and WD40, were differentially expressed during leaf senescence. Among these TFs, MYB12, MYB75, bHLH113 and TTG1 were considered to be key factors involved in the regulation of luteoloside biosynthesis. These findings provide insights for elucidating the molecular signatures of luteoloside accumulation in L. macranthoides.
Collapse
Affiliation(s)
- Zexiong Chen
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China.
| | - Guohua Liu
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Ning Tang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 400000, China.
| | - Zhengguo Li
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 400000, China.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
23
|
Su X, Shen G, Di S, Dixon RA, Pang Y. Characterization of UGT716A1 as a Multi-substrate UDP:Flavonoid Glucosyltransferase Gene in Ginkgo biloba. FRONTIERS IN PLANT SCIENCE 2017; 8:2085. [PMID: 29270187 PMCID: PMC5725826 DOI: 10.3389/fpls.2017.02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
Ginkgo biloba L., a "living fossil" and medicinal plant, is a well-known rich source of bioactive flavonoids. The molecular mechanism underlying the biosynthesis of flavonoid glucosides, the predominant flavonoids in G. biloba, remains unclear. To better understand flavonoid glucosylation in G. biloba, we generated a transcriptomic dataset of G. biloba leaf tissue by high-throughput RNA sequencing. We identified 25 putative UDP-glycosyltransferase (UGT) unigenes that are potentially involved in the flavonoid glycosylation. Among them, we successfully isolated and expressed eight UGT genes in Escherichia coli, and found that recombinant UGT716A1 protein was active toward broad range of flavonoid/phenylpropanoid substrates. In particular, we discovered the first recombinant UGT protein, UGT716A1 from G. biloba, possessing unique activity toward flavanol gallates that have been extensively documented to have significant bioactivity relating to human health. UGT716A1 expression level paralleled the flavonoid distribution pattern in G. biloba. Ectopic over-expression of UGT716A1 in Arabidopsis thaliana led to increased accumulation of several flavonol glucosides. Identification and comparison of the in vitro enzymatic activity of UGT716A1 homologs revealed a UGT from the primitive land species Physcomitrella patens also showed broader substrate spectrum than those from higher plants A. thaliana, Vitis vinifera, and Medicago truncatula. The characterization of UGT716A1 from G. biloba bridges a gap in the evolutionary history of UGTs in gymnosperms. We also discuss the implication of UGT716A1 for biosynthesis, evolution, and bioengineering of diverse glucosylated flavonoids.
Collapse
Affiliation(s)
- Xiaojia Su
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoan Shen
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shaokang Di
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yongzhen Pang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Wang Y, Dou Y, Wang R, Guan X, Hu Z, Zheng J. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway. Gene 2017; 635:16-23. [PMID: 28890377 DOI: 10.1016/j.gene.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/09/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species.
Collapse
Affiliation(s)
- Yu Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Ying Dou
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Rui Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Xuelian Guan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China
| | - Jian Zheng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, China.
| |
Collapse
|
25
|
Jung HA, Paudel P, Seong SH, Min BS, Choi JS. Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives. Bioorg Med Chem Lett 2017; 27:2274-2280. [PMID: 28454670 DOI: 10.1016/j.bmcl.2017.04.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/30/2023]
Abstract
Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5±2.6µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4±0.30µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6±0.49µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0±0.27µM). Among the glycosides, only prunin (IC50: 106.5±4.1µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.
Collapse
Affiliation(s)
- Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 608-737, Republic of Korea.
| |
Collapse
|
26
|
Du H, Ran F, Dong HL, Wen J, Li JN, Liang Z. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants. PLoS One 2016; 11:e0165020. [PMID: 27760179 PMCID: PMC5070762 DOI: 10.1371/journal.pone.0165020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023] Open
Abstract
Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies-CYP93A-K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution-CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS) analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis.
Collapse
Affiliation(s)
- Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Feng Ran
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Hong-Li Dong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Jia-Na Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Zhe Liang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
| |
Collapse
|
27
|
Wang Y, Liu J, Wang X, Liu S, Wang G, Zhou J, Yuan Y, Chen T, Jiang C, Zha L, Huang L. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica. FRONTIERS IN PLANT SCIENCE 2016; 7:1101. [PMID: 27507983 PMCID: PMC4961011 DOI: 10.3389/fpls.2016.01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (C t) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica.
Collapse
Affiliation(s)
- Yaolong Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Xumin Wang
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Shuang Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Guoliang Wang
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Tiying Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
28
|
Jiang N, Doseff AI, Grotewold E. Flavones: From Biosynthesis to Health Benefits. PLANTS (BASEL, SWITZERLAND) 2016; 5:E27. [PMID: 27338492 PMCID: PMC4931407 DOI: 10.3390/plants5020027] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Flavones correspond to a flavonoid subgroup that is widely distributed in the plants, and which can be synthesized by different pathways, depending on whether they contain C- or O-glycosylation and hydroxylated B-ring. Flavones are emerging as very important specialized metabolites involved in plant signaling and defense, as well as key ingredients of the human diet, with significant health benefits. Here, we appraise flavone formation in plants, emphasizing the emerging theme that biosynthesis pathway determines flavone chemistry. Additionally, we briefly review the biological activities of flavones, both from the perspective of the functions that they play in biotic and abiotic plant interactions, as well as their roles as nutraceutical components of the human and animal diet.
Collapse
Affiliation(s)
- Nan Jiang
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|