1
|
Blume RY, Rabokon AM, Pydiura M, Yemets AI, Pirko YV, Blume YB. Genome-wide identification and evolution of the tubulin gene family in Camelina sativa. BMC Genomics 2024; 25:599. [PMID: 38877397 PMCID: PMC11177405 DOI: 10.1186/s12864-024-10503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, β- and γ-subfamilies, while α- and β-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function. The aim of this research is to identify and characterize tubulins of an emerging biofuel crop Camelina sativa. RESULTS We report comprehensive identification and characterization of tubulin gene family in C. sativa, including analyses of exon-intron organization, duplicated genes comparison, proper isotype designation, phylogenetic analysis, and expression patterns in different tissues. 17 α-, 34 β- and 6 γ-tubulin genes were identified and assigned to a particular isotype. Recognition of orthologous tubulin isotypes was cross-referred, involving data of phylogeny, synteny analyses and genes allocation on reconstructed genomic blocks of Ancestral Crucifer Karyotype. An investigation of expression patterns of tubulin homeologs revealed the predominant role of N6 (A) and N7 (B) subgenomes in tubulin expression at various developmental stages, contrarily to general the dominance of transcripts of H7 (C) subgenome. CONCLUSIONS For the first time a complete set of tubulin gene family members was identified and characterized for allohexaploid C. sativa species. The study demonstrates the comprehensive approach of precise inferring gene orthology. The applied technique allowed not only identifying C. sativa tubulin orthologs in model Arabidopsis species and tracking tubulin gene evolution, but also uncovered that A. thaliana is missing orthologs for several particular isotypes of α- and β-tubulins.
Collapse
Affiliation(s)
- Rostyslav Y Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine.
| | - Anastasiia M Rabokon
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine
| | - Mykola Pydiura
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine
- JSC "Farmak", Kyiv, 04080, Ukraine
| | - Alla I Yemets
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine
| | - Yaroslav V Pirko
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, Kyiv, 02000, Ukraine
| |
Collapse
|
2
|
Yemets A, Shadrina R, Blume R, Plokhovska S, Blume Y. Autophagy formation, microtubule disorientation, and alteration of ATG8 and tubulin gene expression under simulated microgravity in Arabidopsis thaliana. NPJ Microgravity 2024; 10:31. [PMID: 38499552 PMCID: PMC10948825 DOI: 10.1038/s41526-024-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy plays an important role in plant growth and development, pathogen invasion and modulates plant response and adaptation to various abiotic stress stimuli. The biogenesis and trafficking of autophagosomes involve microtubules (MTs) as important actors in the autophagic process. However, initiation of autophagy in plants under microgravity has not been previously studied. Here we demonstrate how simulated microgravity induces autophagy development involving microtubular reorganization during period of autophagosome formation. It was shown that induction of autophagy with maximal autophagosome formation in root cells of Arabidopsis thaliana is observed after 6 days of clinostating, along with MT disorganization, which leads to visible changes in root morphology. Gradual decrease of autophagosome number was indicated on 9th and 12th days of the experiment as well as no significant re-orientation of MTs were identified. Respectively, analysis of α- and β-tubulins and ATG8 gene expression was carried out. In particular, the most pronounced increase of expression on both 6th and 9th days in response to simulated microgravity was detected for non-paralogous AtATG8b, AtATG8f, AtATG8i, and AtTUA2, AtTUA3 genes, as well as for the pair of β-tubulin duplicates, namely AtTUB2 and AtTUB3. Overall, the main autophagic response was observed after 6 and 9 days of exposure to simulated microgravity, followed by adaptive response after 12 days. These findings provide a key basis for further studies of cellular mechanisms of autophagy and involvement of cytoskeletal structures in autophagy biogenesis under microgravity, which would enable development of new approaches, aimed on enhancing plant adaptation to microgravity.
Collapse
Affiliation(s)
- Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Ruslana Shadrina
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Rostyslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| | - Svitlana Plokhovska
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskoho St., 2a, Kyiv, 04123, Ukraine.
| |
Collapse
|
3
|
Hao F, Liu X, Zhou B, Tian Z, Zhou L, Zong H, Qi J, He J, Zhang Y, Zeng P, Li Q, Wang K, Xia K, Guo X, Li L, Shao W, Zhang B, Li S, Yang H, Hui L, Chen W, Peng L, Liu F, Rong ZQ, Peng Y, Zhu W, McCallum JA, Li Z, Xu X, Yang H, Macknight RC, Wang W, Cai J. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat Genet 2023; 55:1976-1986. [PMID: 37932434 DOI: 10.1038/s41588-023-01546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Keke Xia
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
- BGI Research, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | | | - Shengkang Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Haifeng Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Linchong Hui
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Wei Chen
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenbo Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - John A McCallum
- The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | | | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
4
|
Lykholat YV, Rabokon AM, Blume RY, Khromykh NO, Didur OO, Sakharova VH, Kabar AM, Pirko YV, Blume YB. Characterization of β-Tubulin Genes in Prunus persica and Prunus dulcis for Fingerprinting of their Interspecific Hybrids. CYTOL GENET+ 2022. [DOI: 10.3103/s009545272206007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Full-Length Transcriptome Characterization and Comparative Analysis of Chosenia arbutifolia. FORESTS 2022. [DOI: 10.3390/f13040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a unique tree species in the Salicaceae family, Chosenia arbutifolia is used primarily for construction materials and landscape planting in China. Compared with other Salicaceae species members, the genomic resources of C. arbutifolia are extremely scarce. Thus, in the present study, the full-length transcriptome of C. arbutifolia was sequenced by single-molecular real-time sequencing (SMRT) technology based on the PacBio platform. Then, it was compared against those of other Salicaceae species. We generated 17,397,064 subreads and 95,940 polished reads with an average length of 1812 bp, which were acquired through calibration, clustering, and polishing. In total, 50,073 genes were reconstructed, of which 48,174 open reading frames, 4281 long non-coding RNAs, and 3121 transcription factors were discovered. Functional annotation revealed that 47,717 genes had a hit in at least one of five reference databases. Moreover, a set of 12,332 putative SSR markers were screened among the reconstructed genes. Single-copy and special orthogroups, and divergent and conserved genes, were identified and analyzed to find divergence among C. arbutifolia and the five Salicaceae species. To reveal genes involved in a specific function and pathway, enrichment analyses for GO and KEGG were also performed. In conclusion, the present study empirically confirmed that SMRT sequencing realistically depicted the C. arbutifolia transcriptome and provided a comprehensive reference for functional genomic research on Salicaceae species.
Collapse
|
6
|
Liu L, Kuang Y, Yan F, Li S, Ren B, Gosavi G, Spetz C, Li X, Wang X, Zhou X, Zhou H. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:5-7. [PMID: 32535959 PMCID: PMC7769226 DOI: 10.1111/pbi.13430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 05/11/2023]
Affiliation(s)
- Lang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yongjie Kuang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Shaofang Li
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Scientific Observing and Experimental Station of Crop Pests in GuilinMinistry of Agriculture and Rural AffairsGuilinChina
| | - Gokul Gosavi
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Carl Spetz
- Norwegian Institute of Bioeconomy ResearchAasNorway
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- State Key Laboratory of Rice BiologyInstitute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Scientific Observing and Experimental Station of Crop Pests in GuilinMinistry of Agriculture and Rural AffairsGuilinChina
| |
Collapse
|
7
|
Zhang E, Wu S, Cai W, Zeng J, Li J, Li G, Liu J. Validation of superior reference genes for qRT-PCR and Western blot analyses in marine Emiliania huxleyi-virus model system. J Appl Microbiol 2020; 131:257-271. [PMID: 33275816 DOI: 10.1111/jam.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 11/30/2022]
Abstract
AIMS To search for a set of reference genes for reliable gene expression analysis in the globally important marine coccolithophore Emiliania huxleyi-virus model system. METHODS AND RESULTS Fifteen housekeeping genes (CDKA, CYP15, EFG3, POLAI, RPL30, RPL13, SAMS, COX1, GPB1-2, HSP90, TUA, TUB, UBA1, CAM3 and GAPDH) were evaluated for their stability as potential reference genes for qRT-PCR using ΔCt, geNorm, NormFinder, Bestkeeper and RefFinder software. CDKA, TUA and TUB genes were tested as loading controls for Western blot in the same sample panel. Additionally, target genes associated with cell apoptosis, that is metacaspase genes, were applied to validate the selection of reference genes. The analysis results demonstrated that putative housekeeping genes exhibited significant variations in both mRNA and protein content during virus infection. After a comprehensive analysis with all the algorithms, CDKA and GAPDH were recommended as the most stable reference genes for E huxleyi virus (EhV) infection treatments. For Western blot, significant variation was seen for TUA and TUB, whereas CDKA was stably expressed, consistent with the results of qRT-PCR. CONCLUSIONS CDKA and GAPDH are the best choice for gene and protein expression analysis than the other candidate reference genes under EhV infection conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The stable internal control genes identified in this work will help to improve the accuracy and reliability of gene expression analysis and gain insight into complex E. huxleyi-EhV interaction regulatory networks.
Collapse
Affiliation(s)
- E Zhang
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - S Wu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - W Cai
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Zeng
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - G Li
- College of Food and Bioengineering, Jimei University, Xiamen, China
| | - J Liu
- College of Food and Bioengineering, Jimei University, Xiamen, China
| |
Collapse
|
8
|
Bastias A, Oviedo K, Almada R, Correa F, Sagredo B. Identifying and validating housekeeping hybrid Prunus spp. genes for root gene-expression studies. PLoS One 2020; 15:e0228403. [PMID: 32187192 PMCID: PMC7080228 DOI: 10.1371/journal.pone.0228403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/14/2020] [Indexed: 11/19/2022] Open
Abstract
Prunus rootstock belonging to subgenera Amygdalus (peach), Prunus (plum) and Cerasus (cherry) are either from the same species as the scion or another one. The number of inter-species (including inter-subgenera) hybrids has increased as a result of broadening the genetic basis for stress (biotic and abiotic) resistance/tolerance. Identifying genes associated with important traits and responses requires expression analysis. Relative quantification is the simplest and most popular alternative, which requires reference genes (housekeeping) to normalize RT-qPCR data. However, there is a scarcity of validated housekeeping genes for hybrid Prunus rootstock species. This research aims to increase the number of housekeeping genes suitable for Prunus rootstock expression analysis. Twenty-one candidate housekeeping genes were pre-selected from previous RNAseq data that compared the response of root transcriptomes of two rootstocks subgenera to hypoxia treatment, 'Mariana 2624' (P. cerasifera Ehrh.× P. munsoniana W. Wight & Hedrick), and 'Mazzard F12/1' (P. avium L.). Representing groups of low, intermediate or high levels of expression, the genes were assayed by RT-qPCR at 72 hours of hypoxia treatment and analyzed with NormFinder software. A sub-set of seven housekeeping genes that presented the highest level of stability were selected, two with low levels of expression (Unknown 3, Unknown 7) and five with medium levels (GTB 1, TUA 3, ATPase P, PRT 6, RP II). The stability of these genes was evaluated under different stress conditions, cold and heat with the hybrid 'Mariana 2624' and N nutrition with the hybrids 'Colt' (P. avium × P. pseudocerasus Lindl.) and 'Garnem' [P. dulcis Mill.× (P. persica L.× P. davidiana Carr.)]. The algorithms of geNorm and BestKeeper software also were used to analyze the performance of these genes as housekeepers. Stability rankings varied according to treatments, genotypes and the software for evaluation, but the gene GBT 1 often had the highest ranking. However, most of the genes are suitable depending on the stressor and/or genotype to be evaluated. No optimal number of reference genes could be determined with geNorm software when all conditions and genotypes were considered. These results strongly suggest that relative RT-qPCR should be analyzed separately with their respective best housekeeper according to the treatment and/or genotypes in Prunus spp. rootstocks.
Collapse
Affiliation(s)
- Adriana Bastias
- Facultad de Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Autónoma de Chile, Avenida Pedro de Valdivia, Santiago, Chile
| | - Kristen Oviedo
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Sector Los Choapinos, Rengo, Chile
| | - Ruben Almada
- Centro de Estudios Avanzados en Fruticultura (CEAF), Sector Los Choapinos, Rengo, Chile
| | - Francisco Correa
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Sector Los Choapinos, Rengo, Chile
| | - Boris Sagredo
- Instituto de Investigaciones Agropecuarias (INIA) CRI Rayentué, Sector Los Choapinos, Rengo, Chile
| |
Collapse
|
9
|
Gavazzi F, Pigna G, Braglia L, Gianì S, Breviario D, Morello L. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC PLANT BIOLOGY 2017; 17:237. [PMID: 29221437 PMCID: PMC5721616 DOI: 10.1186/s12870-017-1186-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. RESULTS We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. CONCLUSIONS Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Gaia Pigna
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Silvia Gianì
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| |
Collapse
|
10
|
Kaur S, Zhang X, Mohan A, Dong H, Vikram P, Singh S, Zhang Z, Gill KS, Dhugga KS, Singh J. Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat ( Triticum aestivum, L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1913. [PMID: 29163625 PMCID: PMC5681534 DOI: 10.3389/fpls.2017.01913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 10/23/2017] [Indexed: 05/30/2023]
Abstract
Plant cell wall formation is a complex, coordinated and developmentally regulated process. Cellulose is the most dominant constituent of plant cell walls. Because of its paracrystalline structure, cellulose is the main determinant of mechanical strength of plant tissues. As the most abundant polysaccharide on earth, it is also the focus of cellulosic biofuel industry. To reduce culm lodging in wheat and for improved ethanol production, delineation of the variation for stem cellulose content could prove useful. We present results on the analysis of the stem cellulose content of 288 diverse wheat accessions and its genome-wide association study (GWAS). Cellulose concentration ranged from 35 to 52% (w/w). Cellulose content was normally distributed in the accessions around a mean and median of 45% (w/w). Genome-wide marker-trait association study using 21,073 SNPs helped identify nine SNPs that were associated (p < 1E-05) with cellulose content. Four strongly associated (p < 8.17E-05) SNP markers were linked to wheat unigenes, which included β-tubulin, Auxin-induced protein 5NG4, and a putative transmembrane protein of unknown function. These genes may be directly or indirectly involved in the formation of cellulose in wheat culms. GWAS results from this study have the potential for genetic manipulation of cellulose content in bread wheat and other small grain cereals to enhance culm strength and improve biofuel production.
Collapse
Affiliation(s)
- Simerjeet Kaur
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Xu Zhang
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Amita Mohan
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Haixiao Dong
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Zhiwu Zhang
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Kulvinder S. Gill
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Kanwarpal S. Dhugga
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|