1
|
Lucarini E, Pagnotta E, Micheli L, Trisolini S, Matteo R, Righetti L, Martelli A, Testai L, Calderone V, Di Cesare Mannelli L, Ghelardini C. Benefits of Camelina sativa Supplementation in Morphine Treatment: Enhanced Analgesia, Delayed Tolerance and Reduced Gut Side Effects Through PPAR-α Receptor Engagement. Int J Mol Sci 2025; 26:2519. [PMID: 40141162 PMCID: PMC11942378 DOI: 10.3390/ijms26062519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Long-term opioid therapies are severely limited by the development of analgesic tolerance and gastrointestinal side effects. Camelina sativa, a plant of the Brassicaceae family, modulates the activity of peroxisome proliferator-activated receptor α (PPAR-α receptor), which is involved in the regulation of pain processing and gut physiology. The aim of this study was to evaluate the efficacy of Camelina sativa defatted seed meal (DSM) supplementation on the development of analgesic tolerance and side effects after repeated treatment with morphine in naïve mice. Co-administering Camelina sativa DSM (1 g kg-1 p.o.) and morphine (10 mg kg-1 s.c.) increased the efficacy and duration of the opioid-induced acute analgesic effect. Camelina supplementation also delayed the onset of tolerance to the morphine analgesic effect. The same result was obtained through either simultaneously administering morphine and camelina or administering camelina 24 h before morphine injection for the entire duration of the experiment. Camelina also counteracted intestinal damage and visceral hypersensitivity caused by morphine treatment. The beneficial effects of camelina on morphine-related analgesic efficacy and gut side effects were prevented via pre-treatment with the PPAR-α antagonist GW6471, though the latter did not influence the development of morphine tolerance. In conclusion, Camelina sativa DSM could be used as a supplement to improve the therapeutic profile of morphine.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Eleonora Pagnotta
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Samuele Trisolini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Roberto Matteo
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Righetti
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| |
Collapse
|
2
|
Kim SE, Chung G, Kim SK. Phytochemical-based therapeutics from traditional eastern medicine: analgesic effects and ion channel modulation. FRONTIERS IN PAIN RESEARCH 2025; 6:1537154. [PMID: 39958366 PMCID: PMC11825757 DOI: 10.3389/fpain.2025.1537154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Pain management remains a major challenge in the healthcare system. While synthetic analgesics are widely used for pain management, their effectiveness in managing chronic pain is often limited due to low efficacy or side effects. Thus, there is growing interest in exploring alternative pain relief methods, particularly using medicinal plants from traditional Eastern medicine and their phytochemicals. Previous studies have demonstrated the modulatory effects of various phytochemicals derived from herbal medicine on pain-related ion channels, such as voltage-gated sodium channels (Nav), calcium channels (Ca2+), and transient receptor potential (TRP) channels. Since these ion channels are integral to the transmission and modulation of pain signals, the ability of specific phytochemicals to activate or inhibit these channels presents a promising avenue for the development of novel analgesics. The goal of this review is to merge herbal insights with ion channel research to highlight the potential of natural compounds for safe and effective pain management. In this regard, we summarize the discovery and characterization of pain-relieving phytochemicals from herbal medicine, and we discuss their mechanisms of action and their potential to mimic or enhance the effects of conventional analgesics through ion channel modulation.
Collapse
Affiliation(s)
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang S, He G, Liu Y, Wang Y, Ma Y, Fu C, Xu H, Hu R, Li S. A P1-like MYB transcription factor boosts biosynthesis and transport of C-glycosylated flavones in duckweed. Int J Biol Macromol 2024; 277:134138. [PMID: 39067732 DOI: 10.1016/j.ijbiomac.2024.134138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
C-glycosylated flavones (CGFs) are the main flavonoids in duckweed (Lemna turionifera), known for their diverse pharmacological activities and nutritional values. However, the molecular mechanisms underlying flavonoid metabolism in duckweed remain poorly understood. This study identified a P1-Like R2R3-MYB transcription factor, LtP1L, as a crucial regulator of CGF biosynthesis and transport in L. turionifera. Over-expression of LtP1L led to a six-fold increase in CGF levels, whereas the CRISPR-mediated knockdown of LtP1L caused a drastic 74.3 % decrease in CGF contents compared with the wild type. LtP1L specifically activated the expression of genes encoding key enzymes involved in the biosynthesis of CGFs, including flavanone 3'-hydroxylases (F3'H), flavanone 2-hydroxylases (F2H), and C-glycosyltransferase (CGT). Meanwhile, LtP1L activated genes associated with phenylalanine and phenylpropanoid biosynthesis pathways, such as 3-deoxy-7-phosphoheptulonate synthase (DHS), phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL), redirecting carbon metabolic flux towards flavonoid pathway at the early stages of phenylalanine synthesis. In addition, LtP1L directly bound to a novel AC-like cis-element in the promoter of a tonoplast-localized ATP-binding cassette (ABC) transporter LtABCC4 and activated its expression. Furthermore, the preference of LtABCC4 for isoorientin over orientin during vacuolar transport was evidenced by the significant reduction of isoorientin compared to orientin in the Ltabcc4crispr lines. Altogether, LtP1L acts as a crucial transcriptional orchestrator in coordinating the biosynthesis and intracellular transport of CGFs in duckweed.
Collapse
Affiliation(s)
- Shumin Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo He
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yu Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chunxiang Fu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hua Xu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
4
|
Shah NZ, Khan A, Halim SA, Avula SK, Islam NU, Khan I, Karim N, Kifayatullah M, Khalid A, Alhazmi HA, Abdalla AN, Kashtoh H, Al-Harrasi A. Efficient microwave synthesis of flurbiprofen derivatives and their enhancement of efficacy in chronic inflammatory pain models and gastro-protective potential in post-operative model. J Biomol Struct Dyn 2024:1-16. [PMID: 38294707 DOI: 10.1080/07391102.2024.2309645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Present research was designed to synthesize and characterize the flurbiprofen derivatives and to evaluate their analgesic, anti-inflammatory and gastro-protective activities in post-operative and chronic inflammatory pain models. Flurbiprofen derivatives were produced by using three-step processes involving esterification, hydrazide production, and schiff base, each of which modified a different carboxyl group. All the newly synthesized flurbiprofen derivatives (NS5-NS8) were characterized by 1H NMR,13C NMR,19F NMR and HR-ESI-MS, and the post-operative, inflammatory pain and ulcerogenic activities were determined in well-established in-vivo animal models. To evaluate post-operative and inflammatory pain, various doses of compounds [1, 3, 10, and 30 mg/kg (bwt)] were used, while their ulcerogenic potential was assessed at doses of 100 and 150 mg/kg (bwt). The incisional damage linked pain was significantly (p < 0.001) reduced by derivatives at different doses in both the acute and repeated tests with decreased response of phologistic agent-induced inflammation. The stomach histology and biochemical features demonstrate that the synthesized derivatives have no potential to cause ulcerogenicity as compared to aspirin and flurbiprofen. Furthermore, docking shows that the hydrazide moiety of these compounds is crucial in interacting within COX-2 binding site. Therefore, the synthesized compounds exhibit strong analgesic and anti-inflammatory effects and a low risk of causing ulcers. These attributes render them potentially valuable therapeutic agents for the treatment of pathological disorders associated with inflammation and pain.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nisar Zamin Shah
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Imran Khan
- Department of Pharmacy, University of Swabi, Swabi, KPK, Pakistan
| | - Nasiara Karim
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
5
|
Qin Z, Xiang L, Zheng S, Zhao Y, Qin Y, Zhang L, Zhou L. Vitexin inhibits pain and itch behavior via modulating TRPV4 activity in mice. Biomed Pharmacother 2023; 165:115101. [PMID: 37406508 DOI: 10.1016/j.biopha.2023.115101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Itching and pain are distinct unpleasant sensations. The transient receptor potential cation channel subfamily V member 4 (TRPV4) pathway is regarded as a shared pathway that mediates pain and itching. Vitexin (Mujingsu, MJS), a C-glycosylflavonoid, is an effective analgesic. This study aimed to explore the antinociceptive and anti-pruritic effects of MJS and whether its effects are mediated via the TRPV4 pathway. Mice were treated with MJS (7.5 mg/kg) 0.5 h prior to the initiation of the pain or itch modeling process. The results showed that MJS suppressed pain-like behavior in hot plate, thermal infiltration, glacial acetic acid twisting, and formalin tests. Administration of MJS decreased the pruritus response induced by histamine, C48/80, chloroquine and BAM8-22 within 30 min. MJS reduced scratching bouts and lessened the wiping reaction of mice under TRPV4 activation by GSK101 (10 µg/5 μl). MJS inhibited scratching behavior in acetone-ether-water (AEW)-treated mice within 60 min. An H1 receptor antagonist-chlorpheniramine (CLP, 400 mg/kg)-and a TRPV4 antagonist-HC067047 (250 ng/kg), exhibited similar effects to those of MJS. Moreover, MJS ameliorated dry skin itch-associated cutaneous barrier disruption in mice. MJS did not inhibit the expression of TRPV4 in the dorsal root ganglion neurons at L2-L3 in AEW mice. These results indicate that the analgesic and anti-pruritic effects of MJS in acute and chronic pain and itching, as well as itching caused by TRPV4 activation, could be attributed to the TRPV4 pathway modulation.
Collapse
Affiliation(s)
- Zhiqiang Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lan Xiang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Siyu Zheng
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yuchen Zhao
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Yanyan Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lei Zhang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen 518055, China.
| |
Collapse
|
6
|
Shah NZ, Avula SK, Karim N, Islam NU, El-Saber Batiha G, Muhsinah AB, Khan A, Al-Harrasi A. Bio-oriented synthesis of ibuprofen derivatives for enhancement efficacy in post-operative and chronic inflammatory pain models. RSC Adv 2023; 13:12518-12528. [PMID: 37091596 PMCID: PMC10120854 DOI: 10.1039/d3ra01385e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
The discovery of post-operative, chronic inflammatory pain and any gastroulcerogenic potential using well-established animal models in vivo with new structures, high efficiency, broad-spectrum, and low toxicity has been the focus of medicinal chemists. In the present article, we are reporting the design and synthesis of various derivatives of ibuprofen by modifying the carboxyl group of ibuprofen using three steps reactions; esterification under microwave-irradiation in 10 minutes, hydrazide formation, and finally schiff's base reaction. Microwave-assisted esterification reaction can be employed to quickly explore and increase molecular diversity in synthetic chemistry. All of the newly synthesized compounds (NS1-NS4) were characterized by 1H-, 13C-NMR, and HR-ESI-MS spectroscopy and evaluated for post-operative, chronic inflammatory pain and any gastroulcerogenic potential using well-established animal models in vivo. The synthesized compounds at the tested doses of 100 and 150 mg kg-1 significantly attenuated the incisional-injury induced post-operative pain like condition and, also inhibited the phologistic agent induced inflammatory responses in both the acute and chronic testing paradigms. The gastric histological and biochemical parameters exhibited that the synthesized compounds were devoid of any ulcerogenic potential in comparison to aspirin and ibuprofen. These findings concluded that the synthesized ibuprofen derivatives exhibited profound analgesic, anti-inflammatory properties with reduced ulcerogenic potential and might be considered as effective therapeutic agents to treat pathological conditions associated with pain and inflammation.
Collapse
Affiliation(s)
- Nisar Zamin Shah
- Department of Pharmacy, University of Malakand Chakdara 18800 Khyber Pakhtunkhwa Pakistan
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa P. O. Box-33, Birkat Al-Mauz Postal Code-616 Nizwa Oman
| | - Nasiara Karim
- Department of Pharmacy, University of Malakand Chakdara 18800 Khyber Pakhtunkhwa Pakistan
- Department of Pharmacy, University of Peshawar 25120 Khyber Pakhtunkhwa Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology Peshawar Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University Da-manhour 22511 AlBeheira Egypt
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University Abha 61441 Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa P. O. Box-33, Birkat Al-Mauz Postal Code-616 Nizwa Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa P. O. Box-33, Birkat Al-Mauz Postal Code-616 Nizwa Oman
| |
Collapse
|
7
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
8
|
Baamonde A, Menéndez L. Experiences and reflections about behavioral pain assays in laboratory animals. J Neurosci Methods 2023; 386:109783. [PMID: 36610617 DOI: 10.1016/j.jneumeth.2023.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Pharmacological assays based on the measurement of nociceptive responses in laboratory animals are a fundamental tool to assess analgesic strategies. During our experience with this type of experiments, we have been repeatedly challenged by different concerns related to their interpretation or relevance. Although these subjects are frequently discussed in our lab, they do not usually find a place in research articles with original data, in which the focus on results seems mandatory. In the present manuscript we try to discuss as central issues some of these aspects that often cross transversally our research. We have gathered them in five topics inspired by the results obtained in our laboratory. The two initial sections are devoted to the influence of the behavioral method used to assess nociception on the results achieved, as well as to the possibility that data may be more easily accepted when obtained with standard methods than with alternative ones. The third topic is related to the difficulties encountered when working with a molecule that may evoke dual effects, acting as pronociceptive or antinociceptive depending on the dose. The fourth point deals with the situation in which a particular hyperalgesic reaction is related to several molecules but the single inhibition of only one of them can completely prevent it. Finally, the last issue is addressed to comment the impact in the progress of pain research of experiments performed in animal models of pathological settings.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA) Oviedo, Asturias, Spain.
| |
Collapse
|
9
|
Guo R, Qiu H, Li H, Ma D, Guan Y, Wang Y. The Preemptive Analgesic Effect of Capsaicin Involves Attenuations of Epidermal Keratinocytes Proliferation and Expression of Pro-Inflammatory Mediators After Plantar Incision in Rats. J Pain Res 2023; 16:141-149. [PMID: 36704542 PMCID: PMC9871044 DOI: 10.2147/jpr.s395065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
Purpose Subcutaneous infiltration of capsaicin, which initially activates transient receptor potential vanilloid 1 (TRPV1) receptors, can subsequently desensitize TRPV1-expressing nociceptors and induce analgesia in different pain models. Yet, whether the modulation of keratinocytes may also contribute to the analgesic action of capsaicin treatment remains unclear. In a rat model of postoperative pain, we tested the hypothesis that subcutaneous injection of capsaicin inhibited the proliferation of epidermal keratinocytes and their expression of pronociceptive inflammatory mediators after plantar incision. Methods The plantar incision model was carried out in the current study. Behavioral tests were used to evaluate postoperative pain-related behaviors in rats. Immunohistochemistry was used to investigate epidermal keratinocytes proliferation and expression of pro-inflammatory mediators in keratinocytes in rats. Results Behaviorally, plantar incision induced robust postoperative pain hypersensitivity. However, subcutaneous pretreatment of capsaicin (1%) but not the vehicle, prevented the development of postoperative pain. There was an increased proliferation of keratinocytes and the expressions of interleukin-1β (IL-1β) and tumour necrosis factor-alpha (TNF-α) in keratinocytes at 3 d and 7 d after plantar incision. However, these changes were also significantly attenuated by capsaicin pretreatment. Conclusion Our findings suggest that capsaicin pretreatment may inhibit incision-induced keratinocytes proliferation and reduce their expression of pronociceptive inflammatory mediators under postoperative pain conditions, which represents a peripheral non-neuronal mechanism of capsaicin-induced analgesia.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Huanrong Qiu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China,Correspondence: Yun Wang, Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86-010-85231330, Fax +86-10-65077808, Email
| |
Collapse
|
10
|
Hu ZY, Yang ZB, Zhang R, Luo XJ, Peng J. The Protective Effect of Vitexin Compound B-1 on Rat Cerebral I/R Injury through a Mechanism Involving Modulation of miR-92b/NOX4 Pathway. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:137-147. [PMID: 35331124 DOI: 10.2174/1871527321666220324115848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have uncovered that vitexin compound B-1 (VB-1) can protect neurons against hypoxia/reoxygenation (H/R)-induced oxidative injury through suppressing NOX4 expression. OBJECTIVE The aims of this study are to investigate whether VB-1 can protect the rat brain against ischemia/ reperfusion (I/R) injury and whether its effect on NOX4 expression is related to modulation of certain miRNAs expression. METHODS Rats were subjected to 2 h of cerebral ischemia followed by 24 h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score and infarct volume concomitant with an upregulation of NOX4 expression, increase in NOX activity, and downregulation of miR-92b. RESULTS Administration of VB-1 reduced I/R cerebral injury accompanied by a reverse in NOX4 and miR-92b expression. Similar results were achieved in a neuron H/R injury model. Next, we evaluated the association of miR-92b with NOX4 by its mimics in the H/R model. H/R treatment increased neurons apoptosis concomitant with an upregulation of NOX4 and NOX activity while downregulation of miR-92b. All these effects were reversed in the presence of miR-92b mimics, confirming the function of miR-92b in suppressing NOX4 expression. CONCLUSION We conclude the protective effect of VB-1 against rat cerebral I/R injury through a mechanism involving modulation of miR-92b/NOX4 pathway.
Collapse
Affiliation(s)
- Zhong-Yang Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zhong-Bao Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
11
|
Mouna R, Broisat A, Ahmed A, Debiossat M, Boumendjel A, Ghezzi C, Kabouche Z. Antiproliferative activity, cell-cycle arrest, apoptotic induction and LC-HRMS/MS analyses of extracts from two Linum species. PHARMACEUTICAL BIOLOGY 2022; 60:1491-1501. [PMID: 35943855 PMCID: PMC9367650 DOI: 10.1080/13880209.2022.2102196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Linum is the largest genus of the Linaceae family; the species of this genus are known to have anticancer activity. OBJECTIVE In this study, ethyl acetate extracts of L. numidicum Murb. (EAELN) and L. trigynum L. (EAELT) were examined, for the first time, for their anticancer capacity. The secondary metabolites compositions were analysed by LC-HRMS/MS. MATERIALS AND METHODS The antiproliferative effect of EAELN and EAELT (0-10.000 μg/mL) against PC3 and MDA-MB-231 cell lines were evaluated by the MTT assay after 72 h of treatment. Flow cytometer analysis of apoptosis (Annexin V-FITC/PI) and cell cycle (PI/RNase) was also performed after treatment with EAELN and EAELT at 250, 500, and 1000 μg/mL, for 24 h. RESULTS EAELN had the highest antiproliferative activity against PC3 (IC50 133.2 ± 5.73 μg/mL) and MDA-MB-231 (IC50 156.9 ± 2.83 μg/mL) lines, EAELN had also shown better apoptotic activity with 19 ± 2.47% (250 μg/mL), 87.5 ± 0.21% (500 μg/mL), and 92 ± 0.07% (1000 μg/mL), respectively, causing cell cycle arrest of PC3 cells in G2/M phase, whereas arrest in G0/G1 and G2/M phases was observed after treatment with EAELT. LC-HRMS/MS profiling of the extracts revealed the presence of known compounds that might be responsible for the observed anticancer activity such as chicoric acid, vicenin-2, vitexin and podophyllotoxin-β-d-glucoside. DISCUSSION AND CONCLUSIONS We have shown, for the first time, that EAELN and EAELT exert anticancer activity through cell cycle arrest and induction of apoptosis. EAELN can be considered as a source to treat cancer. Further studies will be required to evaluate the effect of the active compounds, once identified, on other cancer cell lines.
Collapse
Affiliation(s)
- Ryma Mouna
- Université des frères Mentouri-Constantine 1, Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Constantine, Algeria
- Université de Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Alexis Broisat
- Université de Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Abdalwahab Ahmed
- Department of Chemistry, College of Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Marlène Debiossat
- Université de Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Ahcène Boumendjel
- Université de Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Catherine Ghezzi
- Université de Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Zahia Kabouche
- Université des frères Mentouri-Constantine 1, Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Constantine, Algeria
- CONTACT Zahia Kabouche Université des frères Mentouri-Constantine 1, Constantine, Algeria
| |
Collapse
|
12
|
Lucarini E, Micheli L, Pagnotta E, Toti A, Ferrara V, Ciampi C, Margiotta F, Martelli A, Testai L, Calderone V, Matteo R, Suriano S, Troccoli A, Pecchioni N, Manera C, Mannelli LDC, Ghelardini C. The Efficacy of Camelina sativa Defatted Seed Meal against Colitis-Induced Persistent Visceral Hypersensitivity: The Relevance of PPAR α Receptor Activation in Pain Relief. Nutrients 2022; 14:nu14153137. [PMID: 35956313 PMCID: PMC9370738 DOI: 10.3390/nu14153137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Brassicaceae are natural sources of bioactive compounds able to promote gut health. Belonging to this plant family, Camelina sativa is an ancient oil crop rich in glucosinolates, polyunsaturated fatty acids, and antioxidants that is attracting renewed attention for its nutraceutical potential. This work aimed at investigating the therapeutic effects of a defatted seed meal (DSM) of Camelina sativa on the colon damage and the persistent visceral hypersensitivity associated with colitis in rats. Inflammation was induced by the intrarectal injection of 2,4-dinitrobenzenesulfonic acid (DNBS). The acute administration of Camelina sativa DSM (0.1–1 g kg−1) showed a dose-dependent pain-relieving effect in DNBS-treated rats. The efficacy of the meal was slightly enhanced after bioactivation with myrosinase, which increased isothiocyanate availability, and drastically decreased by pre-treating the animals with the selective peroxisome proliferator-activated receptor alpha (PPAR α) receptor antagonist GW6471. Repeated treatments with Camelina sativa DSM (1 g kg−1) meal counteracted the development, as well as the persistence, of visceral hyperalgesia in DNBS-treated animals by reducing the intestinal inflammatory damage and preventing enteric neuron damage. In conclusion, Camelina sativa meal might be employed as a nutraceutical tool to manage persistent abdominal pain in patients and to promote gut healing.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Eleonora Pagnotta
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Roberto Matteo
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.)
| | - Serafino Suriano
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Antonio Troccoli
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Nicola Pecchioni
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (S.S.); (A.T.); (N.P.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.); (C.M.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
- Correspondence:
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (E.L.); (L.M.); (A.T.); (V.F.); (C.C.); (F.M.); (C.G.)
| |
Collapse
|
13
|
Singla RK, Dhir V, Madaan R, Kumar D, Singh Bola S, Bansal M, Kumar S, Dubey AK, Singla S, Shen B. The Genus Alternanthera: Phytochemical and Ethnopharmacological Perspectives. Front Pharmacol 2022; 13:769111. [PMID: 35479320 PMCID: PMC9036189 DOI: 10.3389/fphar.2022.769111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Ethnopharmacological relevance: The genus Alternanthera (Amaranthaceae) comprises 139 species including 14 species used traditionally for the treatment of various ailments such as hypertension, pain, inflammation, diabetes, cancer, microbial and mental disorders. Aim of the review: To search research gaps through critical assessment of pharmacological activities not performed to validate traditional claims of various species of Alternanthera. This review will aid natural product researchers in identifying Alternanthera species with therapeutic potential for future investigation. Materials and methods: Scattered raw data on ethnopharmacological, morphological, phytochemical, pharmacological, toxicological, and clinical studies of various species of the genus Alternanthera have been compiled utilizing search engines like SciFinder, Google Scholar, PubMed, Science Direct, and Open J-Gate for 100 years up to April 2021. Results: Few species of Alternanthera genus have been exhaustively investigated phytochemically, and about 129 chemical constituents related to different classes such as flavonoids, steroids, saponins, alkaloids, triterpenoids, glycosides, and phenolic compounds have been isolated from 9 species. Anticancer, antioxidant, antibacterial, CNS depressive, antidiabetic, analgesic, anti-inflammatory, and immunomodulator effects have been explored in the twelve species of the genus. A toxicity study has been conducted on 3 species and a clinical study on 2 species. Conclusions: The available literature on pharmacological studies of Alternanthera species reveals that few species have been selected based on ethnobotanical surveys for scientific validation of their traditional claims. But most of these studies have been conducted on uncharacterized and non-standardized crude extracts. A roadmap of research needs to be developed for the isolation of new bioactive compounds from Alternanthera species, which can emerge out as clinically potential medicines.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Vivek Dhir
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| | - Deepak Kumar
- Department of Health and Family Welfare, Civil Hospital, Rampura Phul, India
| | - Simranjit Singh Bola
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Monika Bansal
- Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Bairong Shen, ; Reecha Madaan,
| |
Collapse
|
14
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
15
|
Tian MM, Li YX, Liu S, Zhu CH, Lan XB, Du J, Ma L, Yang JM, Zheng P, Yu JQ, Liu N. Glycosides for Peripheral Neuropathic Pain: A Potential Medicinal Components. Molecules 2021; 27:255. [PMID: 35011486 PMCID: PMC8746348 DOI: 10.3390/molecules27010255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropathic pain is a refractory disease that occurs across the world and pharmacotherapy has limited efficacy and/or safety. This disease imposes a significant burden on both the somatic and mental health of patients; indeed, some patients have referred to neuropathic pain as being 'worse than death'. The pharmacological agents that are used to treat neuropathic pain at present can produce mild effects in certain patients, and induce many adverse reactions, such as sedation, dizziness, vomiting, and peripheral oedema. Therefore, there is an urgent need to discover novel drugs that are safer and more effective. Natural compounds from medical plants have become potential sources of analgesics, and evidence has shown that glycosides alleviated neuropathic pain via regulating oxidative stress, transcriptional regulation, ion channels, membrane receptors and so on. In this review, we summarize the epidemiology of neuropathic pain and the existing therapeutic drugs used for disease prevention and treatment. We also demonstrate how glycosides exhibit an antinociceptive effect on neuropathic pain in laboratory research and describe the antinociceptive mechanisms involved to facilitate the discovery of new drugs to improve the quality of life of patients experiencing neuropathic pain.
Collapse
Affiliation(s)
- Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China;
| | - Shan Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Chun-Hao Zhu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Juan Du
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jia-Mei Yang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Ping Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China; (M.-M.T.); (S.L.); (C.-H.Z.); (X.-B.L.); (J.D.); (L.M.); (J.-M.Y.)
- Ningxia Special Traditional Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
16
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
17
|
Tan D, Li G, Lv W, Shao X, Li X, Niu H, Xu Y, Zhang J, Qin L, He Y, Jiang M, Cheng L. Distribution, Metabolism, Excretion and Toxicokinetics of Vitexin in Rats and Dogs. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412917666210809154537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Vitexin is the main bioactive compound of hawthorn (Crataegus pinnatifida),
a famous traditional Chinese medicine, and vitexin for injection is currently in phase I clinical
trial in China.
Objective:
This investigation systematically evaluated the metabolism and toxicokinetics of vitexin
in rats and dogs.
Methods:
Rats and beagle dogs were administrated different doses of vitexin, and then the plasma
concentration, tissue distribution, excretion, metabolism, pharmacokinetics and plasma protein
binding were investigated.
Results :
The elimination half-life (t1/2) values in rats after a single intravenous dose of 3, 15 and 75
mg/kg were estimated as 43.53±10.82, 22.86±4.23, and 21.17±8.64 min, and the values of the area
under the plasma concentration-time curve (AUC0→∞) were 329.34±144.07, 974.79±177.27, and
5251.49±786.98 mg•min/L, respectively. The plasma protein binding rate in rats was determined
as about 65% by equilibrium dialysis after 72 hr. After 24 hr of intravenous administration,
16.30%, 3.47% and 9.72% of the given dose were excreted in urine, feces and bile, respectively.
The metabolites of the vitexin were hydrolyzed via deglycosylation. The pharmacokinetics of dogs
after intravenous administration revealed t1/2, AUC0-∞ and mean residence time (MRT0-∞) values of
20.43±6.37 min, 227.96±26.68 mg•min/L and 17.12±4.33 min, respectively. The no-observed-adverse-
effect level (NOAEL) was 50 mg/kg body weight/day. There was no significant accumulation
effect at 8 or 20 mg/kg/day in dogs over 92 days of repeated administration. For the 50 mg/kg/-
day dose group, the exposure (AUC, Cmax) decreased significantly with prolonged administration.
This trend suggests that repeated administration accelerates vitexin metabolism.
Conclusion:
The absorption of vitexin following routine oral administration was very low. To improve
the bioavailability of vitexin, the development of an injectable formulation would be a suitable
alternative choice.
Collapse
Affiliation(s)
- Daopeng Tan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Geng Li
- China–Japan Friendship Hospital, Beijing 100029, China
| | - Wenying Lv
- Community Health Service Center of Chaoyangmen, Dongcheng, Beijing 100036, China
| | - Xu Shao
- Hefei Qixing Pharmaceutical Medicine and Technology Co., Ltd.; Hefei 230032, China
| | - Xiaoliang Li
- Hefei Qixing Pharmaceutical Medicine and Technology Co., Ltd.; Hefei 230032, China
| | - Haijun Niu
- Hefei Qixing Pharmaceutical Medicine and Technology Co., Ltd.; Hefei 230032, China
| | - Yaoqing Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Jianyong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Lin Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Yuqi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Min Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| | - Long Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Guizhou 563009, China
| |
Collapse
|
18
|
Zhou G, Cui J, Xie S, Wan H, Luo Y, Guo G. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Biosci Biotechnol Biochem 2021; 85:1183-1193. [PMID: 33704405 DOI: 10.1093/bbb/zbab012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Obesity is one of the most critical risk factors for diabetes mellitus and plays a significant role in diabetic nephropathy (DN). The present investigation aimed to evaluate the possible mechanism of action of vitexin on obesity-induced DN in a high-fat diet (HFD)-fed experimental C57BL/6 mice model. Obesity was induced in male C57BL/6 mice by chronic administration of HFD, and mice were concomitantly treated with vitexin (15, 30, and 60 mg/kg, p.o.). HFD-induced increased renal oxido-nitrosative stress and proinflammatory cytokine levels were significantly inhibited by vitexin. The Western blot analysis suggested that alteration in renal NF-κB, IκBα, nephrin, AMPK, and ACC phosphorylation levels was effectively restored by vitexin treatment. Histological aberration induced in renal tissue after chronic administration of HFD was also reduced by vitexin. In conclusion, vitexin suppressed the progression of obesity-induced DN via modulation of NF-κB/IkBα and AMPK/ACC pathways in an experimental model of HFD-induced DN in C57BL/6J mice.
Collapse
Affiliation(s)
- Guangju Zhou
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiale Cui
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Suhua Xie
- Department of Endocrinology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Haiyan Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Luo
- Department of Rehabilitation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Guo
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
19
|
In Vitro Metabolism of Six C-Glycosidic Flavonoids from Passiflora incarnata L. Int J Mol Sci 2021; 22:ijms22126566. [PMID: 34207335 PMCID: PMC8234803 DOI: 10.3390/ijms22126566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Several medical plants, such as Passiflora incarnata L., contain C-glycosylated flavonoids, which may contribute to their efficacy. Information regarding the bioavailability and metabolism of these compounds is essential, but not sufficiently available. Therefore, the metabolism of the C-glycosylated flavones orientin, isoorientin, schaftoside, isoschaftoside, vitexin, and isovitexin was investigated using the Caco-2 cell line as an in vitro intestinal and epithelial metabolism model. Isovitexin, orientin, and isoorientin showed broad ranges of phase I and II metabolites containing hydroxylated, methoxylated, and sulfated compounds, whereas schaftoside, isoschaftoside, and vitexin underwent poor metabolism. All metabolites were identified via UHPLC-MS or UHPLC-MS/MS using compound libraries containing all conceivable metabolites. Some structures were confirmed via UHPLC-MS experiments with reference compounds after a cleavage reaction using glucuronidase and sulfatase. Of particular interest is the observed cleavage of the C–C bonds between sugar and aglycone residues in isovitexin, orientin, and isoorientin, resulting in unexpected glucuronidated or sulfated luteolin and apigenin derivatives. These findings indicate that C-glycosidic flavones can be highly metabolized in the intestine. In particular, flavonoids with ortho-dihydroxy groups showed sulfated metabolites. The identified glucuronidated or sulfated aglycones demonstrate that enzymes expressed by Caco-2 cells are able to potentially cleave C–C bonds in vitro.
Collapse
|
20
|
Zhou Z, Qiu N, Ou Y, Wei Q, Tang W, Zheng M, Xing Y, Li JJ, Ling Y, Li J, Zhu Q. N-Demethylsinomenine, an active metabolite of sinomenine, attenuates chronic neuropathic and inflammatory pain in mice. Sci Rep 2021; 11:9300. [PMID: 33927244 PMCID: PMC8085237 DOI: 10.1038/s41598-021-88521-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic pain is a significant public health problem that afflicts nearly 30% of the global population, but current pharmacotherapies are insufficient. Previous report indicated that N-demethylsinomenine, an active metabolite of sinomenine, is efficacious against postoperative pain. The present study investigated whether N-demethylsinomenine is effective for chronic painful conditions or whether repeated treatment alters its effect. Both chronic constriction injury (CCI) surgery and complete Freund’s adjuvant (CFA) intraplantar injection induced significant and reliable mechanical allodynia at least for 7 days. Acute treatment with N-demethylsinomenine (10–40 mg/kg, i.p.) dose-dependently attenuated the mechanical allodynia both in CCI-induced neuropathic pain and CFA-induced inflammatory pain in mice. The potency of N-demethylsinomenine for reducing CFA-induced mechanical allodynia was slightly higher than sinomenine. During the period of repeated treatment, N-demethylsinomenine maintained its anti-allodynic effect against both neuropathic and inflammatory pain without producing carry-over effect. Pretreatment with bicuculline, a selective γ-aminobutyric acid type A (GABAA) receptor antagonist, almost completely blocked the anti-allodynia of N-demethylsinomenine (40 mg/kg) both in CCI and CFA-treated mice. Our findings indicated that N-demethylsinomenine exhibits GABAA receptor-mediated anti-allodynic effects in mouse models of neuropathic and inflammatory pain, suggesting it may be a useful novel pharmacotherapy for the control of chronic pain.
Collapse
Affiliation(s)
- Zhiyong Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Nanqing Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yuntao Ou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Qianqian Wei
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Wenting Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Mingcong Zheng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yaluan Xing
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Jie-Jia Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Junxu Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| | - Qing Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
21
|
Fusarium solani G6, a novel vitexin-producing endophytic fungus: characterization, yield improvement and osteoblastic proliferation activity. Biotechnol Lett 2021; 43:1371-1383. [PMID: 33797653 DOI: 10.1007/s10529-021-03118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
The study aimed to characterize a novel vitexin-producing endophytic fungus Fusarium solani G6 from Cajanus cajan, improve its capability for producing vitexin and evaluate its osteoblastic proliferation activity. A total of 153 endophytic fungi, classified into 6 genera, were isolated from C. cajan. Among them, only one strain, endophyte G6 identified as Fusarium solani, was found to produce vitexin. After the optimization of fermentation conditions, the highest vitexin yield (18.72 mg/L) for the strain was observed in PDB liquid medium containing 20.54 g/L of glucose and 8.90 g/L of ammonium sulfate, at an initial medium pH of 5.1 and at 28 °C for 6 days of cultivation. Moreover, the fungal vitexin exhibited notable osteoblastic proliferation stimulating activity. A novel vitexin-producing endophytic fungus F. solani G6 was characterized from C. cajan for the first time. The findings highlighted its potential use for large-scale production of vitexin and might have a promising use as therapeutic agent for osteoporosis.
Collapse
|
22
|
Costa EC, Menezes PMN, de Almeida RL, Silva FS, de Araújo Ribeiro LA, da Silva JA, de Oliveira AP, da Cruz Araújo EC, Rolim LA, Nunes XP. Inclusion of vitexin in β-cyclodextrin: preparation, characterization and expectorant/antitussive activities. Heliyon 2020; 6:e05461. [PMID: 33305043 PMCID: PMC7711145 DOI: 10.1016/j.heliyon.2020.e05461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The study aimed to include the isolated vitexin of Jatropha mutabilis in the β-cyclodextrin cavity to improve the solubility of this flavone. Its characterization was performed by techniques such as 1H NMR/ROESY (Nuclear Magnetic Resonance Spectroscopy), FT-IR (Infrared Spectroscopy with Fourier Transform), SEM (Morphological analysis of IC by Scanning Electron Microscopy) and dissolution study in vitro. In addition, the following activities were evaluated in the animal models: expectorant, phenol red dosage in bronchoalveolar lavage and antitussive, cough induced by citric acid. In the characterization of the complex, interaction between hydrogens of ring B of vitexin and (H3) of β-CD was observed, in addition to changes in morphology. In the dissolution test, an increase in the rate of dissolution of vitexin was observed in the first 30 min for the CI vitexin/β-CD when compared with vitexin. Regarding the pharmacological activity, it was observed that the inclusion complex (IC) vitexin/β-CD in the equivalent doses of 0.2, 1 and 5 mg/kg of flavone presented higher expectorant activity when compared to vitexin (p < 0.05), suggesting increased bioavailability. As for the antitussive activity, both vitexin and the complex had similar effects and were dose independent. In the toxicity test using Artemia salina, vitexin and IC vitexin/β-CD were considered non-toxic. At last, the study efficacy of vitexin/β-CD IC as an expectorant and of vitexin as antitussive. All of these data are being described for the first time.
Collapse
Affiliation(s)
- Eliatania Clementino Costa
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil
| | | | - Ricardo Lúcio de Almeida
- Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | - Fabrício Souza Silva
- Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | | | - James Amalda da Silva
- Universidade Federal de Sergipe (UFS), Av. Gov. Marcelo Déda, São José, Lagarto, SE, Brazil
| | - Ana Paula de Oliveira
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | | | - Larissa Araújo Rolim
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| | - Xirley Pereira Nunes
- Rede Nordeste de Biostecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE, Brazil.,Pós-graduação em Biociências (PGB), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, PE, Brazil
| |
Collapse
|
23
|
Kroth A, Santos MDCQ, da Silva TCB, Silveira EMS, Trapp M, Bezzerra RMN, Simabuco F, Niero R, Partata WA. Aqueous extract from Luehea divaricata Mart. Leaves reduces nociception in rats with neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112761. [PMID: 32171894 DOI: 10.1016/j.jep.2020.112761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luehea divaricata, popularly known in Brazil as "açoita-cavalo", has been widely explored by different ethnic groups native to Brazil to treat different pathologic conditions, including inflammatory pain. However, no report could be found on the effect that extract of L. divaricata has on neuropathic pain. This is an important topic because convergent and divergent mechanisms underlie inflammatory vs. neuropathic pain indicate that there may not always be a clear mechanistic delineation between these two conditions. AIM OF THE STUDY The study aimed to determine antioxidant activity and macronutrient composition of aqueous extract from leaves of L. divaricata, and the effect of oral administration on nociception in rats with chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain, one of the most commonly employed animal models of neuropathic pain. MATERIALS AND METHODS The antioxidant activity of the extract was evaluated by total phenolic content and DPPH, ABTS●+ and ORAC methods. Vitexin was determined by HPLC to show that the composition of the extract of the present study is similar to that used in previous studies with this genus. Total sugar and sucrose concentrations were assessed by the anthrone method, while glucose and triacilglycerides were determined using commercially available kits. Fructose concentration was calculated from values for total sugars, glucose and sucrose. Total protein was determined by Bradford assay. The effect on DNA strand breaking was investigated by inhibition of strand breaking of supercoiled DNA by hydroxyl radical. The antinociceptive effects of aqueous extract (100, 300, 500, and 1000 mg/kg, i.g.) were evaluated on thermal and mechanical thresholds for neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We also compared the antinociceptive effect of the extract (500 mg/kg, i.g.) with that induced by gabapentin (50 mg/kg, i.g.), a first-line clinical treatment for neuropathic pain. The effect of co-administration of extract (500 mg/kg, i.g.) and low-dose gabapentin (30 mg/kg, i.g.) was also assessed. In addition, the effect of the extract on body weight, and blood and hepatic parameters were investigated to reveal possible side effects of treatment. RESULTS The extract showed high content of total phenol; good reducing capacity for DPPH, ABTS●+ and ORAC assays; presence of vitexin; and a high capacity to inhibit strand breaking of supercoiled DNA. The predominant sugar was sucrose, followed by glucose and fructose. Total protein was greater than triacylglycerides, with the latter being present in a trace amount in the extract. The extract increased the thermal and mechanical thresholds, which was reduced by CCI. The antinociceptive effect was comparable to gabapentin and was also found after co-administration of extract and low-dose gabapentin. No significant change was found in body weight and blood and hepatic indicators after extract treatment. CONCLUSIONS Aqueous extract from L. divaricata leaves was as effective as gabapentin at attenuating CCI-induced neuropathic pain, indicating for first time the therapeutic potential of this species for this type of pain.
Collapse
Affiliation(s)
- Adarly Kroth
- Área Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina, Rua Getúlio Vargas, 2125, Bairro Flor da Serra, CEP 89600-000, Joaçaba, SC, Brazil
| | - Maria do Carmo Quevedo Santos
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Thaisla Cristiane Borella da Silva
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Elza Maria Santos Silveira
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Márcia Trapp
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | | | - Fernando Simabuco
- Faculdade de Ciências Aplicadas, Unicamp Campus 2, Rua Pedro Zaccaria, 1300, CEP 13484-350, Limeira, SP, Brazil
| | - Rivaldo Niero
- Escola de Ciências da Saúde, Programa de Pós-graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Campus Itajaí, Rua Uruguai, 458, Centro, CEP 88302-901, Itajaí, SC, Brazil
| | - Wania Aparecida Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Amedu NO, Omotoso GO. Lead acetate- induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: the role of Vitexin. Environ Anal Health Toxicol 2020; 35:e2020001. [PMID: 32570996 PMCID: PMC7308664 DOI: 10.5620/eaht.e2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 12/26/2022] Open
Abstract
This study was aimed at investigating the neuroprotective effect of Vitexin against lead (Pb) induced neurodegenerative changes in the dorsolateral prefrontal cortex (DLPFC) and working memory in mice. Thirty-two adolescent male albino mice were divided into four groups (n=8). Control group received 0.2 mL of normal saline; Pb group received 100 mg/kg of Pb acetate for 14 days, Vitexin group received 1mg/kg of Vitexin for 14 days, and Pb+Vitexin group received 100 mg/kg of Pb acetate and 1 mgkg of Vitexin for 14 days. Barnes maze test and novel object recognition test were done to ascertain working memory. Histoarchitectural assessment of DLPFC was done with haematoxylin and eosin (H&E), cresyl fast violet and congo red stains. Furthermore, cell count and other morphometric measurements were done. There was significant decline in working memory in the Pb group, but a combination of Pb+Vitexin improved the working memory. Vitexin significantly reduced neuronal death and chromatolysis caused by Pb. Amyloid aggregation was not observed in any of the groups. This study has shown that concurrent administration of Vitexin and Pb will significantly reduce neurodegeneration and improve working memory. However, Pb treatment or Pb+Vitexin treatment does not have any effect on intercellular distance, neuronal length and the cross-sectional area of neurons in layer III of DLPFC.
Collapse
Affiliation(s)
- Nathaniel Ohiemi Amedu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria.,Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kogi State University, P.M.B. 1008, Anyigba, Nigeria
| | - Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
25
|
Alghamdi S. Antinociceptive Effect of the Citrus Flavonoid Eriocitrinon Postoperative Pain Conditions. J Pain Res 2020; 13:805-815. [PMID: 32368133 PMCID: PMC7183786 DOI: 10.2147/jpr.s250391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Postoperative pain remains a major clinical problem as there are limited analgesic strategies that have been proven to be effective in preventing and relieving this type of pain. Natural products, including flavonoids, have distinct pharmacological properties and play an important role in the discovery of analgesic drugs. MATERIALS AND METHODS In this study, the flavonoid eriocitrin (eriodictyol 7-O-rutinoside), which is the main flavonoid in lemon fruit (Citrus limon), was mechanistically investigated for its prospective antinociceptive effect in a mouse model of postoperative pain. The antinociceptive property was evaluated by utilizing both tonic (acetic acid-induced writhing behavior) and phasic (hot-plate) nociception modalities. The hindpaw incisional surgery was performed and hyperalgesia was assessed using von Frey filaments. RESULTS The tested doses of eriocitrin significantly attenuated (P<0.01, P<0.001) the chemically-induced tonic visceral nociception (5, 10, 15, and 30 mg/kg) and acute phasic thermal nociception (10, 15, and 30 mg/kg). A significant dose-dependent reduction in the incisional nociceptive hyperalgesia was exhibited by eriocitrin, with a marked antinociception observed at doses of 15 mg/kg (P<0.05 during 30-60 minutes) and 30 mg/kg (P<0.05, P<0.01 during 30-120 minutes). CONCLUSION The antinociceptive effect of eriocitrin (30 mg/kg) was strongly blocked by the antagonists of the opioid receptor, naltrexone, and GABAA receptor, bicuculline, thereby suggesting the involvement of opioidergic and GABAergic mechanisms in the nociception, reducing proclivity of eriocitrin during transmission of incisional nociception. These results concluded that eriocitrin has a potent antinociceptive effect in postoperative pain conditions, probably mediated through opioid and GABAA receptors.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah21955, Saudi Arabia
| |
Collapse
|
26
|
Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Crit Rev Food Sci Nutr 2020; 61:1049-1064. [PMID: 32292045 DOI: 10.1080/10408398.2020.1753165] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
vitexin, an apigenin-8-C-glucoside, is widely present in numerous edible and medicinal plants. vitexin possesses a variety of bioactive properties, including antioxidation, anti-inflammation, anti-cancer, neuron-protection, and cardio-protection. Other beneficial health effects, such as fat reduction, glucose metabolism, and hepatoprotection, have also been reported in recent studies. This review briefly discusses the absorption and metabolism of vitexin, as well as its influence on gut microbiota. Recent advances in understanding the pharmacological and biological effects of vitexin are then reviewed. Improved knowledge of the absorption, metabolism, bioactivity, and molecular targets of vitexin is crucial for the better utilization of this emerging nutraceutical as a chemopreventive and chemotherapeutic agent.
Collapse
|
27
|
Gias ZT, Afsana F, Debnath P, Alam MS, Ena TN, Hossain MH, Jain P, Reza HM. A mechanistic approach to HPLC analysis, antinociceptive, anti-inflammatory and postoperative analgesic activities of panch phoron in mice. BMC Complement Med Ther 2020; 20:102. [PMID: 32228549 PMCID: PMC7106723 DOI: 10.1186/s12906-020-02891-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Panch phoron is a mixture of five spices containing an equal proportion of Foeniculum vulgare (fennel), Trigonella foenum-graecum Linn (fenugreek), Nigella sativa (black cumin), Cuminum cyminum (cumin) and Brassica nigra (black mustard). The mixture is commonly used in Bangladeshi cuisine and possesses many pharmacological effects. In this study, we evaluated the antinociceptive and anti-inflammatory activities of aqueous panch phoron extract (PPE) in vivo, its possible mechanism of action and phytochemical analysis by High-Performance Liquid Chromatography (HPLC). We also investigated the effect of PPE on postoperative pain in mice. Methods HPLC was carried out using LC-20A Modular HPLC system to identify the bioactive compounds present in PPE. Five groups of Swiss albino male mice (n = 6 per group) were orally treated with 10 ml/kg of distilled water or 10 mg/kg of sodium diclofenac or three doses of PPE (100 mg/kg, 300 mg/kg, 500 mg/kg). In vivo assessment was carried out by the writhing test, tail-flick test, formalin test, and carrageenan induced paw edema test. The opioid antagonist, naloxone was used in the acetic acid test to evaluate the involvement of opioid receptors. To assess the effect of PPE in postoperative pain, mice that underwent sciatic nerve surgery were measured for the paw withdrawal latency in a hot water bath. Results In HPLC analysis, different types of phenolic compounds and flavonoids, including catechin hydrate, para-coumaric acid, vanillic acid, and syringic acid were detected. Treatment with PPE exhibited dose-dependent antinociceptive and anti-inflammatory activities in pain models (p < 0.05). Furthermore, naloxone did not reverse the effect of PPE in the writhing test. Mice that underwent sciatic nerve surgery showed that the paw withdrawal latency increased gradually over 7 days. Conclusions Our results demonstrate that PPE has significant antinociceptive and anti-inflammatory activities and can provide significant postoperative analgesia.
Collapse
Affiliation(s)
- Zarin Tasnim Gias
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Fatima Afsana
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Polak Debnath
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - M Shadidul Alam
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Tania Naz Ena
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Md Hemayet Hossain
- BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), -1205, Dhaka, Bangladesh
| | - Preeti Jain
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, -1229, Dhaka, Bangladesh.
| |
Collapse
|
28
|
Pathway-specific enzymes from bamboo and crop leaves biosynthesize anti-nociceptive C-glycosylated flavones. Commun Biol 2020; 3:110. [PMID: 32144397 PMCID: PMC7060329 DOI: 10.1038/s42003-020-0834-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
C-glycosylated flavones (CGFs) are promising candidates as anti-nociceptive compounds. The leaves of bamboo and related crops in the grass family are a largely unexploited bioresource with a wide array of CGFs. We report here pathway-specific enzymes including C-glycosyltransferases (CGTs) and P450 hydroxylases from cereal crops and bamboo species accumulating abundant CGFs. Mining of CGTs and engineering of P450s that decorate the flavonoid skeleton allowed the production of desired CGFs (with yield of 20–40 mg/L) in an Escherichia coli cell factory. We further explored the antinociceptive activity of major CGFs in mice models and identified isoorientin as the most potent, with both neuroanalgesic and anti-inflammatory effects superior to clinical drugs such as rotundine and aspirin. Our discovery of the pain-alleviating flavonoids elicited from bamboo and crop leaves establishes this previously underutilized source, and sheds light on the pathway and pharmacological mechanisms of the compounds. Yuwei Sun, Zhuo Chen, Jingya Yang et al. identify bamboo as a rich source of C-glycosylated flavonoids that reduces pain and inflammation. They identify isoorientin as the most potent C-glycosylated flavonoid, superior to aspirin, and report new enzymes that synthesize pain-alleviating C-glycosylated flavonoids.
Collapse
|
29
|
Bektas N, Şenel B, Yenilmez E, Özatik O, Arslan R. Evaluation of wound healing effect of chitosan-based gel formulation containing vitexin. Saudi Pharm J 2019; 28:87-94. [PMID: 31933527 PMCID: PMC6950974 DOI: 10.1016/j.jsps.2019.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/02/2019] [Indexed: 12/22/2022] Open
Abstract
Acute or chronic wounds are one of the most common health problems worldwide and medicinal drugs or traditional remedies are often used in wound healing. Further studies regarding wound treatment are rapidly continuing. Vitexin is a phenolic compound, which is found in many medicinal plants, has different pharmacological effects such as anti-inflammatory, analgesic and antioxidant. In the present study, it is aimed to investigate the wound healing effect of formulation prepared as chitosan-based gel with vitexin in vivo and in vitro. Cytotoxicity and wound healing assays were used for in vitro and excisional wound model is used for in vivo studies. Extracted tissues from wound area were histologically examined. Wound healing process was monitored on 7, 14 and 21st days. When wound construction was evaluated, chitosan-based gel formulation containing vitexin demonstrated significant effect compared to control group. Histological examinations demonstrated that skin regeneration was promoted by vitexin formulation. Significant cell proliferation was observed with vitexin/chitosan dispersion in the wound healing assay performed with NIH 3T3 and HaCaT cells. In conclusion, our test substance chitosan-based gel formulation containing vitexin significantly accelerated wound healing both in vivo and in vitro.
Collapse
Affiliation(s)
- Nurcan Bektas
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey
| | - Behiye Şenel
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 26470 Eskisehir, Turkey
| | - Evrim Yenilmez
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26470 Eskisehir, Turkey
| | - Orhan Özatik
- Kütahya Health Sciences University, Faculty of Medicine, Department of Histology and Embryology, Kütahya, Turkey
| | - Rana Arslan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskisehir, Turkey
- Corresponding author.
| |
Collapse
|
30
|
The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies. Eur J Pharmacol 2019; 852:244-253. [PMID: 30965056 DOI: 10.1016/j.ejphar.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Multiple drug resistance (MDR) often occurs after prolonged chemotherapy, leading to refractory tumor and cancer recurrence. Autophagy as a primarily process during starvation or stress has a bipolar nature in cancer. It can cause MDR to become more difficult or make resistant cancer cells more susceptible to chemotherapeutic agents. A number of natural products have been introduced to drug discovery for many years. Some of these compounds have been shown to reverse drug resistance by different regulatory mechanisms. In this review, the focus is on the role of medicinal plants in the MDR phenomenon, primarily through the autophagy process.
Collapse
|
31
|
Schiano C, Grimaldi V, Boccella S, Iannotta M, Zullo A, Luongo L, Mancini FP, Maione S, Napoli C. Sweeteners modulate bioactivity of endothelial progenitor cells but not induce detrimental effects both on inflammation and behavioural changes. Int J Food Sci Nutr 2019; 70:725-737. [DOI: 10.1080/09637486.2018.1563052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Vincenzo Grimaldi
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology ‘L. Donatelli’, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Section of Pharmacology ‘L. Donatelli’, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Section of Pharmacology ‘L. Donatelli’, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| | | | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology ‘L. Donatelli’, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Claudio Napoli
- IRCCS SDN, Naples, Italy
- Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
32
|
Zhang Q, Yu Y, Li J, Guan Y, Huang J, Wang Z, Zhang Z, Zhang W, Guo J, Li J, Chen J, Zhou Q. Anti-arthritic activities of ethanol extracts of Circaea mollis Sieb. & Zucc. (whole plant) in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:359-366. [PMID: 29753098 DOI: 10.1016/j.jep.2018.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Circaea mollis Sieb. & Zucc., a genus of Circaea that follows Onagraceae, has been used for centuries as a folk herb in traditional Chinese medicine (TCM) and Hani Ethnopharmacy for the treatment of joint swelling and pain in rheumatoid arthritis. AIM OF THE STUDY This study was designed to confirm anti-arthritic effects and its underlying mechanism of ethanol extracts of Circaea mollis Sieb. & Zucc. (EEC), which may contribute to provide the pharmacological basis in the treatment of rheumatoid disease. MATERIALS AND METHODS Dimethylbenzene (DMB)-induced inflammatory swelling model, hot-plate pain model in mice and Freund's complete adjuvant (FCA)-induced arthritis model in rats were used to evaluate the anti-arthritis effect of EEC. Arthritis severity was done by measuring inflammatory swelling, pain threshol, paw swelling, arthritis index, body weight, spleen index and thymus index. The levels of TNF-α, IL-1β and IL-10 in sera were measured using ELISA. The pathological change of the ankle joint was also done. Phenolic composition of EEC was analyzed. RESULTS EEC inhibited inflammatory swelling and increased heat-induced pain threshold in mice. Furthermore, EEC significantly alleviated paw swelling and arthritis index, decreasing the spleen index and thymus index. Besides, EEC down-regulated the serum TNF-α and IL-1β, and increased the production of serum IL-10 in FCA-induced rats. Histopathological examination demonstrated that EEC can effectively relieve synovial hyperplasia, control the infiltration of the inflammatory and protect cartilage from destruction. CONCLUSION Our work demonstrated that EEC possessed the potential therapeutic effect against arthritis in rodents which was attributed to modulating proinflammatory cytokines TNF-α, IL-1β and anti-inflammatory factors IL-10. Flavonoids and polyphenols may contribute to the therapeutic effect of EEC on arthritis.
Collapse
Affiliation(s)
- Qing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yanhong Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China; Fifth Hospital in Wuhan, Wuhan 430050, China
| | - Jiajia Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yeli Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiangeng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zhiping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenrui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jing Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinghua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
33
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
34
|
Mitra S, Carlyle D, Kodumudi G, Kodumudi V, Vadivelu N. New Advances in Acute Postoperative Pain Management. Curr Pain Headache Rep 2018; 22:35. [PMID: 29619627 DOI: 10.1007/s11916-018-0690-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Postoperative pain remains one of the most common challenges following inpatient and outpatient surgeries. With our advances in modern medicine, pain following surgical procedures still remains a challenge, though significant accomplishments have been made over the past few decades. This article highlights some of the promising new advances and approaches in postoperative pain management. RECENT FINDINGS Over the last decade, Enhanced Recovery after Surgery (ERAS) pathways and protocols are becoming the benchmark standards for enhancing postoperative recovery. Multimodal analgesia (MMA) is an essential component of such care. Further, in the wake of serious and persistent concern on the opioid epidemic in the USA, there has been a recent renewal of interest in non-opioid alternatives or adjuncts in controlling postoperative pain, often in the context of MMA. Intravenous (IV) acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs), magnesium, ketamine, dexmedetomidine, liposomal bupivacaine, and newer neuraxial and peripheral regional techniques as well as patient-controlled modalities are gaining importance. Gabapentinoids have become popular but recent meta-analytic reviews have cast doubt on their routine use in perioperative settings. Among opioids, sublingual sufentanil, IV oxycodone, and iontophoretic transdermal fentanyl hold promise. Acupuncture and transcutaneous electrical nerve stimulation may be useful as adjuncts in MMA packages. Genetic testing, derivatives of herbal preparations, and an extended role of acute pain services may emerge as potential areas of importance in the future. There are, however, critical gaps in good quality evidence in many of the practice guideline recommendations. In the era of opioid epidemic, several lines of evidence have emerged to support non-opioid-based drugs and approaches along with a few newer opioid formulations for postoperative pain management, although more research is needed to find the right balance of efficacy and safety.
Collapse
Affiliation(s)
- Sukanya Mitra
- Department of Anaesthesia and Intensive Care, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India.
| | - Daniel Carlyle
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gopal Kodumudi
- California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Vijay Kodumudi
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Nalini Vadivelu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Antinociceptive Activity of Methanolic Extract of Clinacanthus nutans Leaves: Possible Mechanisms of Action Involved. Pain Res Manag 2018; 2018:9536406. [PMID: 29686743 PMCID: PMC5857305 DOI: 10.1155/2018/9536406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Abstract
Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been proven to possess antinociceptive activity that works via the opioid and NO-dependent/cGMP-independent pathways. In the present study, we aimed to further determine the possible mechanisms of antinociception of MECN using various nociceptive assays. The antinociceptive activity of MECN was (i) tested against capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged against selective antagonist of opioid receptor subtypes (β-funaltrexamine, naltrindole, and nor-binaltorphimine); (iii) prechallenged against antagonist of nonopioid systems, namely, α2-noradrenergic (yohimbine), β-adrenergic (pindolol), adenosinergic (caffeine), dopaminergic (haloperidol), and cholinergic (atropine) receptors; (iv) prechallenged with inhibitors of various potassium channels (glibenclamide, apamin, charybdotoxin, and tetraethylammonium chloride). The results demonstrated that the orally administered MECN (100, 250, and 500 mg/kg) significantly (p < 0.05) reversed the nociceptive effect of all models in a dose-dependent manner. Moreover, the antinociceptive activity of 500 mg/kg MECN was significantly (p < 0.05) inhibited by (i) antagonists of μ-, δ-, and κ-opioid receptors; (ii) antagonists of α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and (iii) blockers of different K+ channels (voltage-activated-, Ca2+-activated, and ATP-sensitive-K+ channels, resp.). In conclusion, MECN-induced antinociception involves modulation of protein kinase C-, bradykinin-, TRVP1 receptors-, and glutamatergic-signaling pathways; opioidergic, α2-noradrenergic, β-adrenergic, adenosinergic, dopaminergic, and cholinergic receptors; and nonopioidergic receptors as well as the opening of various K+ channels. The antinociceptive activity could be associated with the presence of several flavonoid-based bioactive compounds and their synergistic action with nonvolatile bioactive compounds.
Collapse
|
36
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
37
|
Ou Y, Su M, Ling Y, Wei Q, Pan F, Li J, Li JX, Zhu Q. Anti-allodynic effects of N-demethylsinomenine, an active metabolite of sinomenine, in a mouse model of postoperative pain. Eur J Pharmacol 2018; 823:105-109. [PMID: 29408089 DOI: 10.1016/j.ejphar.2018.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 11/30/2022]
Abstract
Sinomenine, a major bioactive ingredient isolated from traditional Chinese medicine Sinomenium acutum, has been reported to have analgesic effects in various pain animal models. N-demethylsinomenine, the N-demethylated product of sinomenine, has been identified to be the major metabolite of sinomenine and is also a natural component extracted from Sinomenium acutum. This study examined the anti-allodynic effects of N-demethylsinomenine in a mouse model of postoperative pain. A significant and sustained mechanical allodynia that lasted for 4 days was induced by making a surgical incision on the right hind paw in mice. Acute treatment with N-demethylsinomenine (10-40 mg/kg, s.c.) relieved the mechanical allodynia in a dose-dependent manner. Although there was no difference in maximal analgesic effect between N-demethylsinomenine (40 mg/kg, s.c.) and sinomenine (40 mg/kg, s.c.), the onset of action of N-demethylsinomenine was quicker than sinomenine. Repeated treatment with N-demethylsinomenine (10-40 mg/kg/day, s.c.) also dose-dependently exerted sustained antinociception against postoperative allodynia and did not produce analgesic tolerance and carry-over effect. The anti-allodynia induced by N-demethylsinomenine (40 mg/kg, s.c.) was attenuated by bicuculline, a selective γ-aminobutyric acid type A (GABAA) receptor antagonist. In addition, the doses of N-demethylsinomenine used here did not alter the locomotor activity in mice. Our findings demonstrated that N-demethylsinomenine exerts behaviorally-specific anti-allodynia against postoperative allodynia mediated through the GABAA receptors, suggesting it may be a useful novel pharmacotherapy for the control of postoperative pain.
Collapse
Affiliation(s)
- Yuntao Ou
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Man Su
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qianqian Wei
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Fei Pan
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jiejia Li
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
38
|
Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget 2017; 9:3278-3291. [PMID: 29423046 PMCID: PMC5790463 DOI: 10.18632/oncotarget.22890] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer treatment is limited due to the diverse multidrug resistance acquired by cancer cells and the collateral damage caused to adjacent normal cells by chemotherapy. The flavonoid compound vitexin exhibits anti-oxidative, anti-inflammatory and anti-tumor activity. This study elucidated the antitumor effects of vitexin and its underlying mechanisms in a multi-drug resistant human colon cancer cell line (HCT-116DR), which exhibits higher levels of multidrug-resistant protein 1 (MDR1) expression as compared with its parental cell line (HCT-116). Here, we observed that vitexin suppressed MDR-1 expression and activity in HCT-116DR cells and showed cytotoxic effect in HCT-116DR cells by inhibiting autophagy and inducing apoptosis in a concentration-dependent manner. Additionally, vitexin treatment caused cleavage of caspase-9 and caspase-3, and upregulated the expression of the pro-apoptotic proteins, BID and Bax. Moreover, the expression of autophagy-related proteins, such as ATG5, Beclin-1 and LC3-II, was markedly reduced by vitexin treatment. Furthermore, in vivo experiments showed that vitexin induced apoptosis and suppressed tumor growth in HCT-116DR xenograft model. These results revealed that vitexin induced apoptosis through suppression of autophagy in vitro and in vivo and provide insight into the therapeutic potential of vitexin for the treatment of chemo-resistant colorectal cancer.
Collapse
|
39
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
40
|
A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016; 115:74-85. [DOI: 10.1016/j.fitote.2016.09.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
41
|
Burma NE, Leduc-Pessah H, Fan CY, Trang T. Animal models of chronic pain: Advances and challenges for clinical translation. J Neurosci Res 2016; 95:1242-1256. [PMID: 27376591 DOI: 10.1002/jnr.23768] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022]
Abstract
Chronic pain is a global problem that has reached epidemic proportions. An estimated 20% of adults suffer from pain, and another 10% are diagnosed with chronic pain each year (Goldberg and McGee, ). Despite the high prevalence of chronic pain (an estimated 1.5 billion people are afflicted worldwide), much remains to be understood about the underlying causes of this condition, and there is an urgent requirement for better pain therapies. The discovery of novel targets and the development of better analgesics rely on an assortment of preclinical animal models; however, there are major challenges to translating discoveries made in animal models to realized pain therapies in humans. This review discusses common animal models used to recapitulate clinical chronic pain conditions (such as neuropathic, inflammatory, and visceral pain) and the methods for assessing the sensory and affective components of pain in animals. We also discuss the advantages and limitations of modeling chronic pain in animals as well as highlighting strategies for improving the predictive validity of preclinical pain studies. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicole E Burma
- Departments of Comparative Biology and Experimental Medicine, and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Heather Leduc-Pessah
- Departments of Comparative Biology and Experimental Medicine, and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Churmy Y Fan
- Departments of Comparative Biology and Experimental Medicine, and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Departments of Comparative Biology and Experimental Medicine, and Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|