1
|
Carr SC, Rehman F, Hagel JM, Chen X, Ng KKS, Facchini PJ. Two ubiquitous aldo-keto reductases in the genus Papaver support a patchwork model for morphine pathway evolution. Commun Biol 2024; 7:1410. [PMID: 39472466 PMCID: PMC11522673 DOI: 10.1038/s42003-024-07100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.
Collapse
Affiliation(s)
- Samuel C Carr
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Fasih Rehman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Enveric Biosciences Inc., Calgary, AB, Canada
| | - Xue Chen
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Zhao X, Pan Y, Tan J, Lv H, Wang Y, Chen DX. Metabolomics and transcriptomics reveal the mechanism of alkaloid synthesis in Corydalis yanhusuo bulbs. PLoS One 2024; 19:e0304258. [PMID: 38781178 PMCID: PMC11115222 DOI: 10.1371/journal.pone.0304258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Corydalis yanhusuo W.T. Wang is a traditional herb. Benzylisoquinoline alkaloids (BIAs) are the main pharmacological active ingredients that play an important role in sedation, relieving pain, promoting blood circulation, and inhibiting cancer cells. However, there are few studies on the biosynthetic pathway of benzylisoquinoline alkaloids in Corydalis yanhusuo, especially on some specific components, such as tetrahydropalmatine. We carried out widely targeted metabolome and transcriptomic analyses to construct the biosynthetic pathway of benzylisoquinoline alkaloids and identified candidate genes. In this study, 702 metabolites were detected, including 216 alkaloids. Protoberberine-type and aporphine-type alkaloids are the main chemical components in C. yanhusuo bulbs. Key genes for benzylisoquinoline alkaloids biosynthesis, including 6-OMT, CNMT, NMCH, BBE, SOMT1, CFS, SPS, STOX, MSH, TNMT and P6H, were successfully identified. There was no significant difference in the content of benzylisoquinoline alkaloids and the expression level of genes between the two suborgans (mother-bulb and son-bulb). The expression levels of BIA genes in the expansion stage (MB-A and SB-A) were significantly higher than those in the maturity stage (MB-C and SB-C), and the content of benzylisoquinoline alkaloids was consistent with the pattern of gene regulation. Five complete single genes were likely to encode the functional enzyme of CoOMT, which participated in tetrahydropalmatine biosynthesis in C. yanhusuo bulbs. These studies provide a strong theoretical basis for the subsequent development of metabolic engineering of benzylisoquinoline alkaloids (especially tetrahydropalmatine) of C. yanhusuo.
Collapse
Affiliation(s)
- Xiao Zhao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yuan Pan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Jun Tan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Hui Lv
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Yu Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| | - Da-xia Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, China
- Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing, China
| |
Collapse
|
3
|
Zhao X, Wang L, Zhou Y, Wang Q, Wang F, Li Y. Integrating Full-Length and Second-Generation Transcriptomics to Reveal Differentially Expressed Genes Associated with the Development of Corydalis yanhusuo Tuber. Life (Basel) 2023; 13:2207. [PMID: 38004347 PMCID: PMC10672666 DOI: 10.3390/life13112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Corydalis yanhusuo is a medicinal herb in China that has been widely used to treat various kinds of pain. The tuber is the main organ of C. yanhusuo used for medicinal purposes, but changes in related genes during the development of the tuber have rarely been reported. To identify the differentially expressed genes during tuber development, C. yanhusuo full-length transcriptomic sequencing was performed using single-molecule real-time technology, and tubers at three development stages were selected for comparative transcriptome analysis. A total of 90,496 full-length non-chimeric transcripts were obtained, and 19,341 transcripts were annotated in at least one public database. A total of 9221 differentially expressed genes were identified during the swelling process of C. yanhusuo tuber. A Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that differentially expressed genes associated with a "starch and sucrose metabolism pathway", "phenylpropanoid biosynthesis pathway", "isoquinoline alkaloid biosynthesis pathway", "zeatin biosynthesis pathway", and "brassinosteroid biosynthesis pathway" were predominantly enriched. In addition, the genes involved in cell wall metabolism were potentially associated with tuber swelling. These processes regulated and were involved in C. yanhusuo tuber development. The results provide a foundation for further research on tuber formation in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China (L.W.); (Y.Z.); (Q.W.); (F.W.)
| |
Collapse
|
4
|
Tu TQ, Do PT, Van Nguyen D, Pham NTT, Nguyen TT, Chu MH. The columbamine O-methyltransferase gene (CoOMT) is capable of increasing alkaloid content in transgenic tobacco plants. Mol Biol Rep 2022; 49:2667-2675. [PMID: 35059967 DOI: 10.1007/s11033-021-07074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the alkaloid biosynthetic pathways of Stephania and Rannunculaceae, columbamine O-methyltransferase (CoOMT) is an important enzyme that catalyses the formation of the tetrahydropalmatin (rotundin) biosynthesis pathway. In this study, the transgenic construct pBI121-35S-CoOMT-cmyc-Kdel was designed successfully. METHODS AND RESULTS The real-time RT-PCR results proved that the CoOMT transgene was successfully introduced into Nicotiana tabacum L. plants and produced mRNA. Its transcription levels in three transgenic tobacco lines, T0-7, T0-9, and T0-20, in the T0 generation were higher than those in wild-type tobacco plants. By analysing Western blots and ELISAs, three T0 generation transgenic tobacco lines also expressed recombinant CoOMT (rCoOMT) protein with a molecular weight of approximately 40 kDa, and its contents ranged from 0.048 μg mg-1 to 0.177 μg mg-1. These data illustrated that the CoOMT transgene was expressed; thus, the rCoOMT protein synthesis efficiency increased significantly in comparison with that of the wild-type tobacco plants. The total alkaloid contents ranged from 2.12 g 100 g-1 (of dry weight) to 3.88 g 100 g-1 (of dry weight). The T0-20 plant had the highest total alkaloid content (3.88 g 100 g-1 of dry weight), followed by the T0-7 line (2.75 g 100 g-1 of dry weight). The total alkaloid contents of the CoOMT transgenic tobacco lines increased by approximately 1.09-1.83-fold compared to the wild-type tobacco plants. CONCLUSIONS This is the first study on the transformation and expression of the CoOMT gene in N. tabacum plants. Initial results of the analysis of transgenic plants proved that the transgenic structure pBI121- CoOMT-Cmyc-Kdel can be used for transformation into Stephania plants.
Collapse
Affiliation(s)
- Tan Quang Tu
- TNU- University of Education, Thai Nguyen, 250000, Vietnam
| | - Phat Tien Do
- VAST- Institute of Biotechnology, Ha Noi, 100000, Vietnam
- VAST - Graduate University of Sciences and Technology, Hanoi, 100000, Vietnam
| | | | | | - Tam Thi Nguyen
- TNU- University of Education, Thai Nguyen, 250000, Vietnam
| | - Mau Hoang Chu
- TNU- University of Education, Thai Nguyen, 250000, Vietnam.
| |
Collapse
|
5
|
An Update of the Sanguinarine and Benzophenanthridine Alkaloids’ Biosynthesis and Their Applications. Molecules 2022; 27:molecules27041378. [PMID: 35209167 PMCID: PMC8876366 DOI: 10.3390/molecules27041378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.
Collapse
|
6
|
Xu D, Lin H, Tang Y, Huang L, Xu J, Nian S, Zhao Y. Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. HORTICULTURE RESEARCH 2021; 8:16. [PMID: 33423040 PMCID: PMC7797006 DOI: 10.1038/s41438-020-00450-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full-length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway in C. yanhusuo was constructed according to these findings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C. yanhusuo. Our full-length transcriptomic data will enable further molecular cloning of enzymes and activity validation studies.
Collapse
Affiliation(s)
- Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Hanfeng Lin
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Yuping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Lu Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi, China
| | - Jian Xu
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Sihui Nian
- Institute of Modern Chinese Medicine, School of Pharmacy, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Xiang Q, Hu S, Ligaba-Osena A, Yang J, Tong F, Guo W. Seasonal Variation in Transcriptomic Profiling of Tetrastigma hemsleyanum Fully Developed Tuberous Roots Enriches Candidate Genes in Essential Metabolic Pathways and Phytohormone Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:659645. [PMID: 34305963 PMCID: PMC8300961 DOI: 10.3389/fpls.2021.659645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing, SYQ) is a perennial climbing liana and an endemic plant to southern China. Its tuberous roots (TRs) are used in traditional Chinese medicine for treating some diseases such as high fever, pneumonia, asthma, hepatitis, and cancers. However, the mechanisms underlying the development of TR and the content of flavonoids and phenylpropanoids (FPs) are not well-understood. In this study, we performed a transcriptomic analysis of 12 fully developed TR (FD-TR) samples harvested in four seasons [spring (Sp), summer (Su), autumn (Au), and winter (Wi)] using the RNA-Sequencing (RNA-Seq). We obtained a total of 78.54 Gb raw data and 65,578 unigenes. Then, the unigenes were annotated by using six databases such as non-redundant protein database (NR), Pfam, eggNOG, SWISSProt, Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene ontology (GO). The transcriptomic profiling showed closer relationships between the samples obtained in Su and Au than those obtained in Sp and Wi based on the results of both total unigenes and differentially expressed genes (DEGs). Three pathways, including the biosynthesis of FPs, metabolism of starch and sucrose, and signaling of phytohormones, were highly enriched, suggesting a gene-level seasonal variation. Based on the numbers of DEGs, brassinosteroid (BR) signal transduction factors appeared to play a key role in modulating the development of TRs while most of the auxin signaling genes were mainly activated in Wi and Sp FD-TRs. Most genes in the biosynthesis and biodegradation of starch and biodegradation of cellulose were activated in Wi FD-TRs. As determined by the high performance liquid chromatography (HPLC) and aluminum nitrate colorimetric method, the contents of total flavonoids and most detected FP components increased from Sp to Au but decreased in Wi. Enhanced expression levels of some genes in the biosynthetic pathways of FPs were detected in Su and Au samples, which corroborated well with metabolite content. Our findings provide the first transcriptomic and biochemical data on a seasonal variation in the composition of medically important metabolites in SYQ FD-TRs.
Collapse
Affiliation(s)
- Qianqian Xiang
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Siyuan Hu
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, The University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Jiayao Yang
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fudan Tong
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wanli Guo
- Department of Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Wanli Guo ;
| |
Collapse
|
8
|
Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. PLANT MOLECULAR BIOLOGY 2020; 102:477-499. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 05/20/2023]
Abstract
The study carry out comprehensive transcriptome analysis of C. deltoidea and exploration of BIAs biosynthesis and accumulation based on UHPLC-MS/MS and combined sequencing platforms. Coptis deltoidea is an important medicinal plant with a long history of medicinal use, which is rich in benzylisoquinoline alkaloids (BIAs). In this study, Ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) and combined sequencing platforms were performed for exploration of BIAs biosynthesis, accumulation and comprehensive transcriptome analysis of C. deltoidea. By metabolism profiling, the accumulation of ten BIAs was analyzed using UHPLC-MS/MS and different contents were observed in different organs. From transcriptome sequencing result, we applied single-molecule real-time (SMRT) sequencing to C. deltoidea and generated a total of 75,438 full-length transcripts. We proposed the candidate biosynthetic pathway of tyrosine, precursor of BIAs, and identified 64 full length-transcripts encoding enzymes putatively involved in BIAs biosynthesis. RNA-Seq data indicated that the majority of genes exhibited relatively high expression level in roots. Transport of BIAs was also important for their accumulation. Here, 9 ABC transporters and 2 MATE transporters highly homologous to known alkaloid transporters related with BIAs transport in roots and rhizomes were identified. These findings based on the combined sequencing platforms provide valuable genetic information for C. deltoidea and the results of transcriptome combined with metabolome analysis can help us better understand BIAs biosynthesis and transport in this medicinal plant. The information will be critical for further characterization of C. deltoidea transcriptome and molecular-assisted breeding for this medicinal plant with scarce resources.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Luming Qi
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuntong Ma
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhuyun Yan
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
9
|
Identification and Selection of Reference Genes for Quantitative Transcript Analysis in Corydalis yanhusuo. Genes (Basel) 2020; 11:genes11020130. [PMID: 32012754 PMCID: PMC7074024 DOI: 10.3390/genes11020130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Corydalis yanhusuo is a medicinal plant frequently used in traditional Chinese medicine, which has effective medical effects in many aspects. Real-time polymerase chain reaction (RT-PCR) has been one of the most widely used methods in biosynthesis research due to its high sensitivity and quantitative properties in gene expression analysis. To obtain accurate normalization, reference genes are often selected in advance; however, no reference genes are available in C. yanhusuo. Herein, 12 reference gene candidates, named cyclophilin 2 (CYP2), elongation factor 1-α (EF1-α), protein phosphatase 2 (PP2A), SAND protein family (SAND), polypyrimidine tract-binding protein (PTBP), TIP41-like protein (TIP41), lyceraldehyde-3-phosphate hydrogenase (GAPDH), ubiquitin-conjugating enzyme 9 (UBC9), cyclophilin 1 (CYP1), tubulin beta (TUBA), thioredoxin (YLS8), and polyubiquitin 10 (UBQ10), were selected for stability analysis. After being treated with hormone, UV, salt, metal, oxidative, drought, cold (4 °C), and hot stresses (40 °C), the qRT-PCR data of the selected genes was analyzed with NormFinder, geNorm, and BestKeeper. The result indicated that GAPDH, SNAD, and PP2A were the top three most stable reference genes under most treatments. This study selected and validated reliable reference genes in C. yanhusuo under various environmental conditions, which can provide great help for future research on gene expression normalization in C. yanhusuo.
Collapse
|
10
|
Wan L, Zhao Y, Zhang Q, Gao G, Zhang S, Gao Y, Chen X, Qian X. Alkaloid extract of Corydalis yanhusuo inhibits angiogenesis via targeting vascular endothelial growth factor receptor signaling. Altern Ther Health Med 2019; 19:359. [PMID: 31823762 PMCID: PMC6905101 DOI: 10.1186/s12906-019-2739-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Background Corydalis yanhusuo W.T. Wang (YHS) is a well-known Chinese flowering herbal plant commonly used for centuries in functional food and traditional Chinese medicine. In the present study, we have identified and characterized a novel inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) with low toxicity, alkaloid extract of YHS, which suppressed angiogenesis that plays a fundamental role in a wide spectrum of physiological functions and pathological processes. Methods Proliferative ability of human umbilical vascular endothelial cells (HUVECs) was assessed using MTT assay and Ki67 immunofluorescence staining. Migration ability of HUVECs was evaluated by wound healing and transwell assays. In vitro angiogenesis was tested by spheroid sprouting and tube formation assays. In vivo vascularization was examined using Matrigel plug and chick chorioallantoic membrane (CAM) models. Protein expression and phosphorylation levels of VEGFR2, AKT, ERK and STAT3 were determined by Western blot assay. Results We demonstrated that alkaloid extract of YHS significantly inhibited a variety of VEGF-induced angiogenesis processes including proliferation, migration, sprouting, and tube formation of HUVECs. Moreover, alkaloid extract of YHS contributed to reduced in vivo neo-vessel formation in Matrigel plugs of mice and CAM models. Further mechanistic studies revealed that alkaloid extract of YHS suppressed VEGF-induced signaling pathway as evaluated by diminished phosphorylation of VEGFR2 and subsequently attenuated its downstream regulators including phospho-ERK1/2, phospho-AKT and phospho-STAT3 levels in HUVECs. Conclusion Collectively, these preclinical findings indicate that alkaloid extract of YHS remarkably limits angiogenesis and may serve as a promising anti-angiogenic drug candidate.
Collapse
|
11
|
Li K, Li J, Su J, Xiao X, Peng X, Liu F, Li D, Zhang Y, Chong T, Xu H, Liu C, Yang H. Identification of quality markers of Yuanhu Zhitong tablets based on integrative pharmacology and data mining. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:212-219. [PMID: 29551644 DOI: 10.1016/j.phymed.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/02/2017] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The quality evaluation of traditional Chinese medicine (TCM) formulations is needed to guarantee the safety and efficacy. In our laboratory, we established interaction rules between chemical quality control and biological activity evaluations to study Yuanhu Zhitong tablets (YZTs). Moreover, a quality marker (Q-marker) has recently been proposed as a new concept in the quality control of TCM. However, no appropriate methods are available for the identification of Q-markers from the complex TCM systems. PURPOSE We aimed to use an integrative pharmacological (IP) approach to further identify Q-markers from YZTs through the integration of multidisciplinary knowledge. In addition, data mining was used to determine the correlation between multiple constituents of this TCM and its bioactivity to improve quality control. METHODS The IP approach was used to identify the active constituents of YZTs and elucidate the molecular mechanisms by integrating chemical and biosynthetic analyses, drug metabolism, and network pharmacology. Data mining methods including grey relational analysis (GRA) and least squares support vector machine (LS-SVM) regression techniques, were used to establish the correlations among the constituents and efficacy, and dose efficacy in multiple dimensions. RESULTS Seven constituents (tetrahydropalmatine, α-allocryptopine, protopine, corydaline, imperatorin, isoimperatorin, and byakangelicin) were identified as Q-markers of YZT using IP based on their high abundance, specific presence in the individual herbal constituents and the product, appropriate drug-like properties, and critical contribution to the bioactivity of the mixture of YZT constituents. Moreover, three Q-markers (protopine, α-allocryptopine, and corydaline) were highly correlated with the multiple bioactivities of the YZTs, as found using data mining. Finally, three constituents (tetrahydropalmatine, corydaline, and imperatorin) were chosen as minimum combinations that both distinguished the authentic components from false products and indicated the intensity of bioactivity to improve the quality control of YZTs. CONCLUSIONS Tetrahydropalmatine, imperatorin, and corydaline could be used as minimum combinations to effectively control the quality of YZTs.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of UWB & THz of Shandong Academy of Sciences, Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Junfang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Xuefeng Xiao
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Xiujuan Peng
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Tao Chong
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China; Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China.
| | - Changxiao Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, PR China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| |
Collapse
|
12
|
Liu P, Shang EX, Zhu Y, Yu JG, Qian DW, Duan JA. Comparative Analysis of Compatibility Effects on Invigorating Blood Circulation for Cyperi Rhizoma Series of Herb Pairs Using Untargeted Metabolomics. Front Pharmacol 2017; 8:677. [PMID: 29018346 PMCID: PMC5622986 DOI: 10.3389/fphar.2017.00677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
The mutual-assistance compatibility of Cyperi Rhizoma (Xiangfu, XF) and Angelicae Sinensis Radix (Danggui, DG), Chuanxiong Rhizoma (Chuanxiong, CX), Paeoniae Radix Alba (Baishao, BS), or Corydalis Rhizoma (Yanhusuo, YH), found in a traditional Chinese medicine (TCM) named Xiang-Fu-Si-Wu Decoction (XFSWD), can produce synergistic and promoting blood effects. Nowadays, XFSWD has been proved to be effective in activating blood circulation and dissipating blood stasis. However, the role of the herb pairs synergistic effects in the formula were poorly understood. In order to quantitatively assess the compatibility effects of herb pairs, mass spectrometry-based untargeted metabolomics studies were performed. The plasma and urine metabolic profiles of acute blood stasis rats induced by adrenaline hydrochloride and ice water and administered with Cyperi Rhizoma-Angelicae Sinensis Radix (XD), Cyperi Rhizoma-Chuanxiong Rhizoma (XC), Cyperi Rhizoma-Paeoniae Radix Alba (XB), Cyperi Rhizoma-Corydalis Rhizoma (XY) were compared. Relative peak area of identified metabolites was calculated and principal component analysis (PCA) score plot from the potential markers was used to visualize the overall differences. Then, the metabolites results were used with biochemistry indicators and genes expression values as parameters to quantitatively evaluate the compatibility effects of XF series of herb pairs by PCA and correlation analysis. The collective results indicated that the four XF herb pairs regulated glycerophospholipid metabolism, steroid hormone biosynthesis and arachidonic acid metabolism pathway. XD was more prominent in regulating the blood stasis during the four XF herb pairs. This study demonstrated that metabolomics was a useful tool to efficacy evaluation and compatibility effects of TCM elucidation.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Gao Yu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Xin J, Zhang RC, Wang L, Zhang YQ. Researches on Transcriptome Sequencing in the Study of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7521363. [PMID: 28900463 PMCID: PMC5576426 DOI: 10.1155/2017/7521363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Due to its incomparable advantages, the application of transcriptome sequencing in the study of traditional Chinese medicine attracts more and more attention of researchers, which greatly promote the development of traditional Chinese medicine. In this paper, the applications of transcriptome sequencing in traditional Chinese medicine were summarized by reviewing recent related papers.
Collapse
Affiliation(s)
- Jie Xin
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Rong-chao Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Wang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yong-qing Zhang
- School of Pharmacy, Shan Dong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
14
|
Sivakumar G, Alba K, Phillips GC. Biorhizome: A Biosynthetic Platform for Colchicine Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2017; 8:1137. [PMID: 28713407 PMCID: PMC5491623 DOI: 10.3389/fpls.2017.01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Colchicine is one of the oldest plant-based medicines used to treat gout and one of the most important alkaloid-based antimitotic drugs with anticancer potential, which is commercially extracted from Gloriosa superba. Clinical trials suggest that colchicine medication could prevent atrial fibrillation recurrence after cardiac surgery. In addition, therapeutic colchicine is undergoing clinical trials to treat non-diabetic metabolic syndrome and diabetic nephropathy. However, the industrial-scale biomanufacturing of colchicine have not yet been established. Clearly, further studies on detailed biorhizome-specific transcriptome analysis, gene expression, and candidate gene validation are required before uncover the mechanism of colchicine biosynthesis and biorhizome-based colchicine biomanufacturing. Annotation of 32312 assembled multiple-tissues transcripts of G. superba represented 15088 unigenes in known plant specific gene ontology. This could help understanding colchicine biosynthesis in G. superba. This review highlights the biorhizomes, rhizome specific genes or gene what expressed with high level in rhizomes, and deep fluid dynamics in a bioreactor specifically for the biomanufacture of colchicine.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, HoustonTX, United States
| | - Kamran Alba
- Department of Engineering Technology, College of Technology, University of Houston, HoustonTX, United States
| | - Gregory C. Phillips
- College of Agriculture and Technology, Arkansas State University, JonesboroAR, United States
| |
Collapse
|
15
|
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
16
|
Screening active compounds from Corydalis yanhusuo by combining high expression VEGF receptor HEK293 cell membrane chromatography with HPLC - ESI - IT - TOF - MSn method. J Pharm Biomed Anal 2017; 136:134-139. [DOI: 10.1016/j.jpba.2017.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 11/20/2022]
|
17
|
[Dedicated to Prof. T. Okada and Prof. T. Nishioka: data science in chemistry]Classification of Alkaloid Compounds Based on Subring Skeleton (SRS) Profiling: On Finding Relationship of Compounds with Metabolic Pathways. JOURNAL OF COMPUTER AIDED CHEMISTRY 2017. [DOI: 10.2751/jcac.18.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Plug-and-Play Benzylisoquinoline Alkaloid Biosynthetic Gene Discovery in Engineered Yeast. Methods Enzymol 2016; 575:143-78. [DOI: 10.1016/bs.mie.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|