1
|
Liu B, Tian H, Momeni MR. The interplay of exercise and green tea: a new road in cancer therapy. Cancer Cell Int 2025; 25:6. [PMID: 39773739 PMCID: PMC11705833 DOI: 10.1186/s12935-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away. An unevenness in the levels of free radicals and the body's antioxidant defenses, made up of enzyme and non-enzyme antioxidants, results in oxidative pressure. Generally, an imbalance in the levels of oxidative stress triggers the creation of harmful reactive oxygen or nitrogen compounds, causing the development or progression of numerous ailments, including cancer. The equilibrium between pro-oxidant and antioxidant substances is a direct indicator of this imbalance. Green tea and its derivatives are rich sources of bioactive substances such as flavonoids and polyphenols which possess antioxidant abilities. Moreover, modulation of epigenetic targets as well as inflammatory pathways including ERK1/2 and NF-κB are other proposed mechanisms for its antioxidant activity. Recent studies demonstrate the promise of green tea as an antioxidant, showing its ability to decrease the likelihood of developing cancer by impacting actions like cell growth, blood vessel formation, and spread of cancer cells. This summary will concentrate on the complex network of different pathways related to physical activity and consumption of green tea. In particular, the focus of this research will be on examining how oxidative stress contributes to health and investigating the potential antioxidant properties of green tea, and the interconnected relationship between exercise and green tea in the treatment of cancer. Elucidation of these different pathways would help scientists for development of better therapeutic targets and further increase of current anticancer agents efficiency.
Collapse
Affiliation(s)
- Bing Liu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Heyu Tian
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | | |
Collapse
|
2
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Oh Y, Park K, Ansari JR, Seo J. Using a Carbon Quantum Dot Suspension as a New Solvent for Clear Hydrophobic Surface Coating on Hydrophilic PVA Films. Polymers (Basel) 2024; 16:2513. [PMID: 39274144 PMCID: PMC11398244 DOI: 10.3390/polym16172513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Polyvinyl alcohol (PVA) is a popular material used in the packaging industry. However, it is vulnerable to moisture, which can affect its performance and durability. Introducing hydrophobic substances, such as tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS), on the top layer of PVA can help maintain the excellent properties of PVA under high-humidity conditions. The low compatibility of hydrophobic materials with the hydrophilic layers allows them to aggregate more easily. To overcome these issues, we focused on the effects of particle size when increasing the coating suspension's dispersibility. A carbon quantum dot (CQD) suspension is an appropriate novel solvent for hydrophobic TEOS/HDTMS coating suspensions because its particles are small and light and exhibit good dispersibility. The CQD suspension formed a smooth hydrophobic coating on the TEOS/HDTMS materials. Furthermore, the uniformly coated PVA with the CQD suspension exhibited a water contact angle of 110°. The water droplets remained intact without being absorbed, confirming the effectiveness of the surface coating facilitated by CQDs. These results suggested that CQDs improved the dispersibility and enhanced the coating quality of TEOS/HDTMS on PVA. Enhancing the hydrophobicity of PVA is ideal for applications in packaging and other fields.
Collapse
Affiliation(s)
- Yena Oh
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea
| | - Kitae Park
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea
| | - Jamilur R Ansari
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Republic of Korea
| |
Collapse
|
4
|
Zhou SY, Giang NN, Kim H, Chien PN, Le LTT, Trinh TT, Nga PT, Kwon HJ, Ham JR, Lee WK, Gu YJ, Zhang XR, Jin YX, Nam SY, Heo CY. Assessing the efficacy of mesotherapy products: Ultra Exo Booster, and Ultra S Line Plus in hair growth: An ex vivo study. Skin Res Technol 2024; 30:e13780. [PMID: 39031929 PMCID: PMC11259544 DOI: 10.1111/srt.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
In this study, scalp tissues from Korean adults between 20 and 80 without skin disease were used. Scalp tissues were processed, and hair follicles were isolated and cultured with different treatments (including Bioscalp, Ultra Exo Booster, and Ultra S Line Plus) from Ultra V company. Over 12 days, observations and measurements of hair follicle characteristics were recorded at intervals (Days 0, 3, 6, 9, and 12). The study assessed the impact of these substances on hair follicle growth and morphology. Bioscalp, combined with Ultra Exo Booster and Ultra S Line Plus, showed significant hair elongation in ex vivo. Preservation of hair bulb diameter was observed, indicating potential for sustained hair growth by exosome-based products. The hair growth cycle analysis suggested a lower transition to the catagen stage in test products from Ultra V compared to non-treated groups. The research findings indicated that the tested formulations, especially the combination of Bioscalp, Ultra Exo Booster, and Ultra S Line Plus, demonstrated significant effectiveness in promoting hair growth, maintaining the integrity of the hair bulb, and reducing the transition to the catagen stage. The study suggests promising alternative treatments for hair loss, illustrating results that were as good as those of the conventional testing product groups.
Collapse
Affiliation(s)
- Shu Yi Zhou
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
| | - Hyunjee Kim
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Biomedical ScienceCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Faculty of Medical TechniqueHai Phong University of Medicine and PharmacyHaiphongVietnam
| | - Thuy‐Tien Thi Trinh
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| | | | | | - Won Ku Lee
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Yeon Ju Gu
- UltraV Co., Ltd. R&D CenterSeoulSouth Korea
| | - Xin Rui Zhang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Yong Xun Jin
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
| | - Chan Yeong Heo
- Department of MedicineCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Department of Plastic and Reconstructive SurgerySeoul National University Bundang HospitalSeongnamSouth Korea
- Department of Medical Device DevelopmentCollege of MedicineSeoul National UniversitySeoulSouth Korea
- Korean Institute of Nonclinical StudyH&Bio. Co. Ltd.SeongnamSouth Korea
| |
Collapse
|
5
|
Wishna-Kadawarage RN, Jensen M, Powałowski S, Hickey RM, Siwek M. In-vitro screening of compatible synbiotics and (introducing) "prophybiotics" as a tool to improve gut health. Int Microbiol 2024; 27:645-657. [PMID: 37608143 PMCID: PMC11144166 DOI: 10.1007/s10123-023-00417-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Synbiotics have been intensively studied recently to improve gut health of humans and animals. The success of synergistic synbiotics depends on the compatibility of the prebiotic and probiotic components. Certain plant extracts possess both antimicrobial and prebiotic properties representing a potential use in combination with probiotics to improve the gut health. Here, we coined the term "prophybiotics" to describe this combined bioactivity. The current study aimed to select prebiotics that are preferred as an energy source and antimicrobial plant extracts which do not inhibit the growth, of six strains of lactic acid bacteria (LAB namely; Lactiplantibacillus plantarum, Lacticaseibacillus casei, Limosilactobacillus reuteri, Lacticaseibacillus rhamnosus, Leuconostoc mesenteroides, and Pediococcus pentosaceus) in-vitro to identify compatible combinations for potential synbiotic/prophybiotic use, respectively. Their growth kinetics were profiled in the presence of prebiotics: Inulin, Raffinose, and Saccharicterpenin with glucose, as the control, using carbohydrate free MRS broth media. Similarly, their growth kinetics in MRS broth supplemented with turmeric, green tea, and garlic extracts at varying concentrations were profiled. The results revealed the most compatible pairs of prebiotics and LAB. Turmeric and garlic had very little inhibitory effect on the growth of the LAB while green tea inhibited the growth of all LAB in a dose-dependent manner. Therefore, we conclude that turmeric and garlic have broad potential for use in prophybiotics, while the prebiotics studied here have limited use in synbiotics, with these LAB.
Collapse
Affiliation(s)
- Ramesha N Wishna-Kadawarage
- Department of Animal Biotechology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Martin Jensen
- Department of Food Science, Aarhus University, AgroFoodPark 48, 8200, Århus N, Denmark
| | - Szymon Powałowski
- Univeristy of Humanities Król Stanisław Leszczyński, Królowej Jadwigi 10, 64-100, Leszno, Poland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996, Co. Cork, Ireland
| | - Maria Siwek
- Department of Animal Biotechology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
6
|
Das U, Biswas R, Mazumder N. One-Pot Interference-Based Colorimetric Detection of Melamine in Raw Milk via Green Tea-Modified Silver Nanostructures. ACS OMEGA 2024; 9:21879-21890. [PMID: 38799313 PMCID: PMC11112553 DOI: 10.1021/acsomega.3c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Detection of melamine has proven to be a challenge, requiring the use of complex analytical techniques. This study introduces an innovative, straightforward one-pot technique for qualitative assessment of the milk adulterant melamine. Originally, silver nanoparticles (AgNPs) were synthesized by utilizing green tea extract, which acted as both a reducing and sensing element. The synthesized AgNPs were characterized using UV-vis spectroscopy, X-ray diffraction, zeta potential, transmission electron microscopy, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. Melamine, rich in -NH2 groups, interacts with the biopolyphenols of green tea extract through hydrogen bonding. This interaction inhibits the formation of nanoparticles, resulting in a noticeable colorimetric response. The data obtained were confirmed by a standard UV-vis spectrophotometer and validated by the high-performance liquid chromatography technique. The limit of detection achieved by this scheme was quite low, falling below the permissible levels recommended by government bodies, e.g., the Food Safety and Standards Authority of India (FSSAI).
Collapse
Affiliation(s)
- Upama Das
- Applied
Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Rajib Biswas
- Applied
Optics and Photonics Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Nirmal Mazumder
- Department
of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
7
|
Er-Rahmani S, Errabiti B, Matencio A, Trotta F, Latrache H, Koraichi SI, Elabed S. Plant-derived bioactive compounds for the inhibition of biofilm formation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34859-34880. [PMID: 38744766 DOI: 10.1007/s11356-024-33532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024]
Abstract
Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents. In this review, we critically highlight and discuss the recent progress in understanding the antibiofilm effects of several bioactive compounds isolated from different plants, and in elucidating the underlying mechanisms of action and the factors influencing their adhesion. The literature shows that bioactive compounds have promising antibiofilm potential against both Gram-negative and Gram-positive bacterial and fungal strains, via several mechanisms of action, such as suppressing the formation of the polymer matrix, limiting O2 consumption, inhibiting microbial DNA replication, decreasing hydrophobicity of cell surfaces and blocking the quorum sensing network. This antibiofilm activity is influenced by several environmental factors, such as nutritional cues, pH values, O2 availability and temperature. This review demonstrates that several bioactive compounds could mitigate the problem of biofilm production. However, toxicological assessment and pharmacokinetic investigations of these molecules are strongly required to validate their safety.
Collapse
Affiliation(s)
- Sara Er-Rahmani
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Badr Errabiti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Adrián Matencio
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, Nanomaterials for Industry and Sustainability Centre (NIS Centre), Università Di Torino, 10125, Turin, Italy
| | - Hassan Latrache
- Laboratory of Bioprocesses and Bio-Interfaces, Faculty of Science and Technology, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Saad Ibnsouda Koraichi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco
| | - Soumya Elabed
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University of Fez, Imouzzer Road, 30000, Fez, Morocco.
| |
Collapse
|
8
|
Jansen CA, Zanzarin DM, Março PH, Porto C, do Prado RM, Carvalhaes F, Pilau EJ. Metabolomic kinetics investigation of Camellia sinensis kombucha using mass spectrometry and bioinformatics approaches. Heliyon 2024; 10:e28937. [PMID: 38601539 PMCID: PMC11004822 DOI: 10.1016/j.heliyon.2024.e28937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Kombucha is created through the fermentation of Camellia sinensis tea leaves, along with sucrose, utilizing a symbiotic consortium of bacteria and yeast cultures. Nonetheless, there exists a dearth of comprehensive information regarding the spectrum of metabolites that constitute this beverage. To explore this intricate system, metabolomics was used to investigate fermentation kinetics of Kombucha. For that, an experimental framework was devised to assess the impact of varying sucrose concentrations and fermentation temperatures over a ten-day period of kombucha fermentation. Following fermentation, samples were analyzed using an LC-QTOF-MS system and a distinctive metabolomic profile was observed. Principal component analysis was used to discriminate between metabolite profiles. Moreover, the identified compounds were subjected to classification using the GNPS platform. The findings underscore notable differences in compound class concentrations attributable to distinct fermentation conditions. Furthermore, distinct metabolic pathways were identified, specially some related to the biotransformation of flavonoids. This comprehensive investigation offers valuable insights into the pivotal role of SCOBY in driving metabolite production and underscores the potential bioactivity harbored within Kombucha.
Collapse
Affiliation(s)
- Cler Antônia Jansen
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Graduate Program in Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Daniele Maria Zanzarin
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Graduate Program in Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Henrique Março
- Federal University of Technology of the Paraná State (UTFPR), Campo Mourão, PR, Brazil
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- MS Bioscience, Maringá, PR, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | | | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
- Graduate Program in Cell Biology, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
9
|
Zhu K, Zeng H, Yue L, Huang J, Ouyang J, Liu Z. The Protective Effects of L-Theanine against Epigallocatechin Gallate-Induced Acute Liver Injury in Mice. Foods 2024; 13:1121. [PMID: 38611425 PMCID: PMC11011850 DOI: 10.3390/foods13071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG) is a main bioactive constituent in green tea. Being a redox-active polyphenol, high-dose EGCG exhibits pro-oxidative activity and could cause liver injury. L-theanine is a unique non-protein amino acid in green tea and could provide liver-protective effects. The purpose of this study was to investigate the hepatoprotective effects of L-theanine on EGCG-induced liver injury and the underlying mechanisms. A total of 300 mg/kg L-theanine was administrated to ICR mice for 7 days. Then, the acute liver injury model was established through intragastric administration of 1000 mg/kg EGCG. Pretreatment with L-theanine significantly alleviated the oxidative stress and inflammatory response caused by high-dose EGCG through modulation of Nrf2 signaling and glutathione homeostasis. Furthermore, metabolomic results revealed that L-theanine protects mice from EGCG-induced liver injury mainly through the regulation of amino acid metabolism, especially tryptophan metabolism. These findings could provide valuable insights into the potential therapeutic applications of L-theanine and highlight the importance of the interactions between dietary components.
Collapse
Affiliation(s)
- Kun Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China;
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Lin Yue
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| | - Jie Ouyang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (H.Z.); (L.Y.); (J.H.)
| |
Collapse
|
10
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
11
|
Chiavaroli A, Brunetti L. Food Components in Health Promotion and Disease Prevention. Foods 2023; 12:4401. [PMID: 38137205 PMCID: PMC10743150 DOI: 10.3390/foods12244401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, more plant-based sources of functional foods have been shown to be effective in preventing, reducing, and treating chronic inflammatory and metabolic diseases, and promoting health [...].
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy;
| | | |
Collapse
|
12
|
Han H, Ke L, Xu W, Wang H, Zhou J, Rao P. Incidental nanoparticles in black tea alleviate DSS-induced ulcerative colitis in BALB/c mice. Food Funct 2023; 14:8420-8430. [PMID: 37615587 DOI: 10.1039/d3fo00641g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
As the dominant herbal drink consumed worldwide, black tea exhibits various health promoting benefits including amelioration of inflammatory bowel diseases. Despite extensive studies on the tea's components, little is known about the bioactivities of nanoparticles (NPs) which were incidentally assembled in the tea infusion and represent the major components. This study investigated the alleviative effects of black tea infusion, the isolated black tea NPs, and a mixture of caffeine, epigallocatechin-3-gallate, gallic acid and epicatechin gallate on dextran sodium sulfate (DSS)-induced ulcerative colitis. The results showed that both the black tea infusion and the NPs significantly alleviated colitis, suppressed the mRNA levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and suppressed the DSS-induced loss of cell-cell junction proteins (e.g., E-cadherin, ZO-1, and claudin-1) and increase of p-STAT3. The mixture of four tea components, which is the analogue of bioactive payloads carried by the NPs, was much less effective than the tea infusion and NPs. It shows that the NPs elevate the efficiency of polyphenols and caffeine in black tea in restoring the intercellular connection in the intestine, inhibiting mucosal inflammation, and alleviating ulcerative colitis. This work may inspire the development of tea-based therapeutics for treating inflammatory bowel diseases and have wide influences on value-added processing, quality evaluation, functionalization, and innovation of tea and other plant-based beverages.
Collapse
Affiliation(s)
- Huan Han
- School of Chemical Engineering and Technology, Tianjin University, China
- Zhe Jiang Institute of Tianjin University, Shaoxing, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijing Ke
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Wei Xu
- Zhe Jiang Institute of Tianjin University, Shaoxing, China
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Huiqin Wang
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jianwu Zhou
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Pingfan Rao
- Food Nutrition Science Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
13
|
Ashraf MV, Pant S, Khan MAH, Shah AA, Siddiqui S, Jeridi M, Alhamdi HWS, Ahmad S. Phytochemicals as Antimicrobials: Prospecting Himalayan Medicinal Plants as Source of Alternate Medicine to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:881. [PMID: 37375828 DOI: 10.3390/ph16060881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Among all available antimicrobials, antibiotics hold a prime position in the treatment of infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global healthcare setups have accelerated the development and spread of AMR, leading to the emergence of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have gained attention as a potential source of alternative medicine to address the challenge of AMR. Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects, disrupting essential cellular activities. Given the promising results of plant-based antimicrobials, coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants reported to possess antimicrobial phytocompounds, thus compiling the existing information that will help researchers in the exploration of phytochemicals to combat AMR.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Shreekar Pant
- Centre for Biodiversity Studies, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - M A Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mouna Jeridi
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185 234, India
| |
Collapse
|
14
|
Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: The latest update. Biomed Pharmacother 2023; 162:114606. [PMID: 36989716 DOI: 10.1016/j.biopha.2023.114606] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cells are continually exposed to reactive oxygen species (ROS) generated during cellular metabolism. Apoptosis, necrosis, and autophagy are biological processes involving a feedback cycle that causes ROS molecules to induce oxidative stress. To adapt to ROS exposure, living cells develop various defense mechanisms to neutralize and use ROS as a signaling molecule. The cellular redox networks combine signaling pathways that regulate cell metabolism, energy, cell survival, and cell death. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) are essential antioxidant enzymes that are required for scavenging ROS in various cell compartments and response to stressful situations. Among the non-enzymatic defenses, vitamin C, glutathione (GSH), polyphenols, carotenoids, vitamin E, etc., are also essential. This review article describes how ROS are produced as byproducts of oxidation/reduction (redox) processes and how the antioxidants defense system is directly or indirectly engaged in scavenging ROS. In addition, we used computational methods to determine the comparative profile of binding energies of several antioxidants with antioxidant enzymes. The computational analysis demonstrates that antioxidants with a high affinity for antioxidant enzymes regulate their structures.
Collapse
Affiliation(s)
- Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| |
Collapse
|
15
|
Pavlik P, Jost P, Rehulka P, Vozandychova V, Link M, Spidlova P. Epigallocatechin gallate inhibits Francisella tularensis growth and suppresses the function of DNA-binding protein HU. Microb Pathog 2023; 176:105999. [PMID: 36702369 DOI: 10.1016/j.micpath.2023.105999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Francisella tularensis is a highly infectious intracellular bacterium causing tularemia disease and is regarded as a potential biological weapon. The development of a vaccine, effective treatment, or prophylactic substances targeted against tularemia is in the forefront of interest and could help to prevent or mitigate possible malevolent acts by bioterrorism utilizing F. tularensis. The viability of F. tularensis, and thus of a tularemia disease outbreak, might potentially be suppressed by simple commonly available natural substances. Epigallocatechin gallate (EGCG) is contained in green tea and its antimicrobial effect has been described. Here, we show that EGCG can suppress F. tularensis growth and is able to reduce the bacterium's ability to replicate inside mouse bone marrow-derived macrophages (BMMs) without side effects on BMMs' own viability. We suggest one (but not the only) mechanism of EGCG action. We demonstrate that EGCG can block the main functions of HU protein, the important regulator of F. tularensis virulence, leading to overall attenuation of F. tularensis viability. EGCG can delay death of mice infected by F. tularensis and can be used as a prophylactic agent against tularemia disease. Postponing death by up to 2 days can provide sufficient opportunity to administer another treatment agent.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
17
|
Tlais AZA, Rantsiou K, Filannino P, Cocolin LS, Cavoski I, Gobbetti M, Di Cagno R. Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.). Int J Food Microbiol 2023; 387:110057. [PMID: 36563533 DOI: 10.1016/j.ijfoodmicro.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Our study investigated the potential of Annona squamosa (L.) fruit as a reservoir of yeasts and lactic acid bacteria having biotechnological implications, and phenolics capable of modifying the ecology of microbial consortia. Only a single species of lactic acid bacteria (Enterococcus faecalis) was identified, while Annona fruit seemed to be a preferred niche for yeasts (Saccharomyces cerevisiae, Hanseniaspora uvarum), which were differentially distributed in the fruit. In order to identify ecological implications for inherent phenolics, the antimicrobial potential of water- and methanol/water-soluble extracts from peel and pulp was studied. Pulp extracts did not show any antimicrobial activity against the microbial indicators, while some Gram-positive bacteria (Staphylococcus aureus, Staphylococcus saprophyticus, Listeria monocytogenes, Bacillus megaterium) were susceptible to peel extracts. Among lactic acid bacteria used as indicators, only Lactococcus lactis and Weissella cibaria were inhibited. The chemical profiling of methanol/water-soluble phenolics from Annona peel reported a full panel of 41 phenolics, mainly procyanidins and catechin derivatives. The antimicrobial activity was associated to specific compounds (procyanidin dimer type B [isomer 1], rutin [isomer 2], catechin diglucopyranoside), in addition to unidentified catechin derivatives. E. faecalis, which was detected in the epiphytic microbiota, was well adapted to the phenolics from the peel. Peel phenolics had a growth-promoting effect toward the autochthonous yeasts S. cerevisiae and H. uvarum.
Collapse
Affiliation(s)
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Luca Simone Cocolin
- Department of Agricultural, Forest, and Food Science, University of Turin, Grugliasco, Torino, Italy
| | - Ivana Cavoski
- CIHEAM-MAIB, Mediterranean Agronomic Institute of Bari, 70010 Valenzano, Bari, Italy
| | - Marco Gobbetti
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
18
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
20
|
Development of Novel Whey-Mango Based Mixed Beverage: Effect of Storage on Physicochemical, Microbiological, and Sensory Analysis. Foods 2023; 12:foods12020237. [PMID: 36673328 PMCID: PMC9858226 DOI: 10.3390/foods12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The present study was aimed at developing whey-mango-based mixed beverages and characterizing their physicochemical properties. Three different formulations were prepared by varying proportions of whey and mango (sample-1 = 60:20 mL, sample-2 = 65:15 mL, and sample-3 = 70:10 mL). Prepared beverage samples during 25 days of storage revealed a significant increase in acidity (0.27 ± 0.02−0.64 ± 0.03%), TSS (17.15 ± 0.01−18.20 ± 0.01 °Brix); reducing sugars (3.01 ± 0.01−3.67 ± 0.01%); moisture (74.50 ± 0.02−87.02 ± 0.03%); protein (5.67 ± 0.02−7.58 ± 0.01%); fat (0.97 ± 0.01−1.39 ± 0.04%); and carbohydrate (18.01 ± 0.02−3.45 ± 0.02%). The sedimentation rate was only 1%. The total plate count for the prepared samples ranged from 3.32 ± 0.08 to 3.49 ± 0.15 log CFU/mL while yeast and mold counts varied between 0.48 ± 0.01 to 1.85 ± 0.11 Log CFU/mL. The coliform count was below the detection limit (<1). The overall sensory score revealed that the whey beverage with more mango juice could attain acceptable quality upon processing. Based on the findings, it may be concluded that whey can be utilized with fruits and vegetables to develop whey-based beverages.
Collapse
|
21
|
Eiki N, Manyelo TG, Hassan ZM, Lebelo SL, Sebola NA, Sakong B, Mabelebele M. Phenolic composition of ten plants species used as ethnoveterinary medicines in Omusati and Kunene regions of Namibia. Sci Rep 2022; 12:21335. [PMID: 36494497 PMCID: PMC9734134 DOI: 10.1038/s41598-022-25948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The therapeutic benefits of phenolic compounds found in plants are well known. The purpose of this study was to determine the phenolic content of ten plant species used as ethnoveterinary treatments in Namibia's Omusati and Kunene regions. The plants of concern were Aloe esculenta, Fockea angustifolia, Boscia albitrunca, Combretum imberbe, Acacia nilotica, Colophospermum mopane, Acacia erioloba, Ziziphus mucronata, Ximenia americana, and Salvadora persica. An LC-MS approach was used to identify the compounds. To analyse high-resolution UPLC-UV/MS, a Waters Acquity ultra-performance liquid chromatograph (UPLC) with a photodiode array detector was connected to a Waters Synapt G2 quadrupole time-of-flight mass spectrometer (MS). The current study identified a total of 29 phenolic compounds. Flavonoids (epicatechin, (-)-Epigallocatechin, and rutin,) were the most abundant, followed by 2R, 3S-Piscidic acid. Methylisocitric acid was found in all species investigated, with the highest quantities in A. esculenta and X. americana leaf extracts. There were differences in composition and quantity of phenolic compounds in aerial and ground sections between species. The overall findings of the present study would act as a standard for subsequent investigations into the pharmacological potentials of plants species utilized as ethnoveterinary remedies. Priority should be given to isolating, purifying, and defining the active compounds responsible for these plants' activity.
Collapse
Affiliation(s)
- N. Eiki
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - T. G. Manyelo
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - Z. M. Hassan
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - S. L. Lebelo
- grid.412801.e0000 0004 0610 3238Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - N. A. Sebola
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - B. Sakong
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| | - M. Mabelebele
- grid.412801.e0000 0004 0610 3238Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710 South Africa
| |
Collapse
|
22
|
Sharma N, Saszet K, Szabó T, Karajz D, Szilágyi IM, Garg S, Pap Z, Hernadi K. Demonstration of effectiveness: plant extracts in the tuning of BiOX photocatalysts' activity. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Pereira MTM, Charret TS, Pascoal VDB, Machado RLD, Rocha LM, Pascoal ACRF. Myrciaria Genus: Bioactive Compounds and Biological Activities. Chem Biodivers 2022; 19:e202200864. [PMID: 36250914 DOI: 10.1002/cbdv.202200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
The Myrtaceae family is of angiosperms, imposing its size and economic, cultural, and scientific importance. The genus Myrciaria, belonging to this family, has 33 species currently accepted, many of which are research targets aimed at elucidating their bioactive compounds and biological activities. Most species of the Myrciaria genus have terpenes in their composition, mainly mono and sesquiterpenes, and phenolic compounds such as tannins, phenolic acids, and flavonoids. Other secondary metabolites are also observed, such as alkaloids, steroids, coumarins, saponins, and naphthoquinones. These bioactive compounds are closely related to these species' most diverse biological activities: antioxidant, anti-inflammatory, analgesic, antiproliferative, antimicrobial, antiparasitic, insecticide, metabolic, protective, and nutraceutical. This work aims to provide a review of secondary metabolites and medicinal properties related to the genus Myrciaria, thus stimulating further studies on the species of this genus.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Thiago Sardou Charret
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Vinicius D'Avila Bitencourt Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Ricardo Luiz Dantas Machado
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Leandro Machado Rocha
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório de Tecnologia de Produtos Naturais do Departamento de Tecnologia Farmacêutica da Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| |
Collapse
|
24
|
Camellia sinensis mediated synthesis and characterization of nanoparticles and applications to control Gram-negative ESBL producing antibiotic resistant bacterial pathogens. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration ( Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022; 14:nu14193924. [PMID: 36235576 PMCID: PMC9572352 DOI: 10.3390/nu14193924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.
Collapse
|
26
|
Hr R, Jagwani S, Shenoy PA, Jadhav K, Shaikh S, Mutalik SP, Mullick P, Mutalik S, Jalalpure S, Sikarwar MS, Dhamecha D. Thermoreversible gel of green tea extract: Formulation and evaluation for the management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wandee R, Sutthanut K, Songsri J, Sonsena S, Krongyut O, Tippayawat P, Tukummee W, Rittirod T. Tamarind Seed Coat: A Catechin-Rich Source with Anti-Oxidation, Anti-Melanogenesis, Anti-Adipogenesis and Anti-Microbial Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165319. [PMID: 36014557 PMCID: PMC9415986 DOI: 10.3390/molecules27165319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Tamarindus indica L. or tamarind seed is an industrial by-product of interest to be investigated for its potential and value-added application. An ethanolic tamarind seed coat (TS) extract was prepared using the maceration technique and used to determine the phytochemical composition and bioactivities. The total phenolic and flavonoid contents were determined using colorimetric methods; moreover, chemical constituents were identified and quantified compared to the standard compounds using the HPLC-UV DAD technique. Bioactivities were investigated using various models: antioxidative activity in a DPPH assay model, anti-melanogenesis in B16 melanoma cells, anti-adipogenesis in 3T3-L1 adipocytes, and anti-microbial activity against S. aureus, P. aeruginosa, E. coli, and C. albican using agar disc diffusion and microdilution methods. The results manifested a high content of catechin as a chemical constituent and multiple beneficiary bioactivities of TS extract, including superior antioxidation to ascorbic acid and catechin, comparable anti-melanogenesis to deoxyarbutin, and significant anti-adipogenesis through inhibition of pre-adipocyte differentiation and reduction of lipid and triglyceride accumulation, and a broad spectral anti-microbial activity with a selectively high susceptibility to S. aureus when compared to 1% Parabens. Conclusively, TS extract has been revealed as a potential bioactive agent as well as an alternative preservative for application in food, cosmetic, and pharmaceutical product development.
Collapse
Affiliation(s)
- Roongrawee Wandee
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Khaetthareeya Sutthanut
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43202378
| | - Jenjira Songsri
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriyakorn Sonsena
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ornnicha Krongyut
- Bachelor of Thai Traditional Medicine, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | | | - Wipawee Tukummee
- Human High Performance & Health Promotion Research Institute: HHP&HP Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theera Rittirod
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
28
|
Nieri V, de Souza JF, Segato TCM, Caetano ÉLA, Leite FG, Chaud MV, Grotto D. Effects of Green Tea and Green Tea Incorporated in Nanoparticle Lyotropic Liquid Crystal on Exercise Adaptations: A High-Intensity Interval Training Pre-Clinical Study. Nutrients 2022; 14:3226. [PMID: 35956402 PMCID: PMC9370762 DOI: 10.3390/nu14153226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Green tea (GT) is a natural antioxidant, sensitive to oxidation after preparation. Lyotropic liquid crystals (LLCs) are nanostructured systems used to incorporate bioactive compounds. High-intensity interval training (HIIT) is a workout modality that increases the production of reactive oxygen species (ROS). Thus, this research aimed to compare the effects of GT and GT loaded in LLC in animals subjected to HIIT, considering hematological, biochemical and histological parameters, redox status, and body mass. Monoolein, GT in infusion and Poloxamer 407 were mixed to obtain nanoparticles of LLC (NP-LLC). Healthy male rats were randomized into six groups (n = 6/group): Control (C), GT, GT-NP-LLC, Exercise (Ex), GT+Ex, GT-NP-LLC+Ex. Body weight was significantly lower in all groups subjected to HIIT compared to C. The percentages of body mass reduction were 11.3, 13.0, 10.0 and 11.0% for Ex, GT+Ex, GT-NP-LLC and GT-NP-LLC+Ex, respectively, compared to control. GT-NP-LLC and Ex reduced triglycerides compared to C. GT and GT-NP-LLC supplementation combined with HIIT presented higher muscle hypertrophy (25 and 21%, respectively), better physical conditioning, and reduced body weight gain rate compared to HIIT by itself. Moreover, the effects of GT-NP-LLC itself on body mass and biochemical parameters are promising, suggesting NP-LLC could improve the bioavailability of GT.
Collapse
Affiliation(s)
- Vitor Nieri
- Laboratory of Toxicologycal Research, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| | - Juliana Ferreira de Souza
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| | | | - Érika Leão Ajala Caetano
- Laboratory of Toxicologycal Research, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| | - Fernanda Gomes Leite
- Laboratory of Toxicologycal Research, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| | - Marco Vinícius Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| | - Denise Grotto
- Laboratory of Toxicologycal Research, University of Sorocaba, UNISO, Sorocaba 18023-000, SP, Brazil
| |
Collapse
|
29
|
Pradhan A, Sengupta S, Sengupta R, Chatterjee M. Attenuation of methotrexate induced hepatotoxicity by epigallocatechin 3-gallate. Drug Chem Toxicol 2022:1-9. [PMID: 35698845 DOI: 10.1080/01480545.2022.2085738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methotrexate (MTX) is currently used as first-line therapy for autoimmune diseases like rheumatoid arthritis, psoriasis, and systemic lupus erythematous. However, its use is limited by its hepatotoxic potential. Epigallocatechin-3-gallate (EGCG), an abundant catechin present in tea possesses potent antioxidant activity and effectively ameliorates oxidative stress-related disorders. This study aimed to investigate the hepatoprotective influence of EGCG in a MTX-induced rat model of hepatotoxicity. Sprague Dawley rats pretreated with EGCG (40 mg kg-1 b.w., p.o.) were administered a single dose of MTX (20 mg kg-1 b.w., i.p.) and its hepatoprotective efficacy compared with folic acid (1 mg kg-1 b.w., i.p.). On day 10, blood samples were collected to determine plasma levels of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), while the livers were examined for histopathogical changes along with levels of oxidative stress measured in terms of myeloperoxidase (MPO) activity, protein carbonylation (PCO), lipid peroxidation (LPO), and activities of cellular enzymatic antioxidants - superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). MTX significantly increased the plasma levels of AST, ALT, ALP, and LDH, which were prevented by pretreatment with EGCG, and was corroborated by histopathology. Additionally, MTX-induced hepatic oxidative stress as measured by increased generation of MPO, enhanced PCO, LPO, and decreased activities of antioxidant enzymes was mitigated by pretreatment with EGCG. The amelioration of MTX-induced hepatotoxicity by EGCG endorsed the inclusion of an anti-oxidant during chronic administration of MTX.
Collapse
Affiliation(s)
- Ayan Pradhan
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Shilpa Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Ritika Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research (IPGME&R), Kolkata, India
| |
Collapse
|
30
|
Li Q, Gao Y, Zhang J, Tang Y, Yangyong S, Wu L, Wu H, Shen M, Liu X, Han L, Xu Z. Crosslinking and functionalization of acellular patches via the self-assembly of copper@tea polyphenol nanoparticles. Regen Biomater 2022; 9:rbac030. [PMID: 35665201 PMCID: PMC9157057 DOI: 10.1093/rb/rbac030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Decellularization is a promising technique to produce natural scaffolds for tissue engineering applications. However, non-crosslinked natural scaffolds disfavor application in cardiovascular surgery due to poor biomechanics and rapid degradation. Herein, we proposed a green strategy to crosslink and functionalize acellular scaffolds via the self-assembly of copper@tea polyphenol nanoparticles (Cu@TP NPs), and the resultant nanocomposite acellular scaffolds were named as Cu@TP-dBPs. The crosslinking degree, biomechanics, denaturation temperature and resistance to enzymatic degradation of Cu@TP-dBPs were comparable to those of glutaraldehyde crosslinked decellularized bovine pericardias (Glut-dBPs). Furthermore, Cu@TP-dBPs were biocompatible and had abilities to inhibit bacterial growth and promote the formation of capillary-like networks. Subcutaneous implantation models demonstrated that Cu@TP-dBPs were free of calcification and allowed for host cell infiltration at Day 21. Cardiac patch graft models confirmed that Cu@TP-dBP patches showed improved ingrowth of functional blood vessels and remodeling of extracellular matrix at Day 60. These results suggested that Cu@TP-dBPs not only had comparable biomechanics and biostability to Glut-dBPs, but also had several advantages over Glut-dBPs in terms of anticalcification, remodeling and integration capabilities. Particularly, they were functional patches possessing antibacterial and proangiogenic activities. These material properties and biological functions made Cu@TP-dBPs a promising functional acellular patch for cardiovascular applications.
Collapse
Affiliation(s)
- Qin Li
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Yuan Gao
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Jiajun Zhang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Yangfeng Tang
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Shun Yangyong
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lujia Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Meifang Shen
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
| | - Lin Han
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiovascular Lab, Institute of Cardiothoracic Surgery, Changhai Hospital, Shanghai, China
- Institute of Cardiovascular Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
31
|
Salatin S, Bazmani A, Shahi S, Naghili B, Memar MY, Dizaj SM. Antimicrobial benefits of flavonoids and their nanoformulations. Curr Pharm Des 2022; 28:1419-1432. [DOI: 10.2174/1381612828666220509151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Nowadays, there is an urgent need to discover and develop long-term and effective antimicrobial and biofilm-inhibiting compounds. Employing combination therapies using novel drug delivery systems and also natural antimicrobial substances is a promising strategy in this field. Nanoparticles (NPs)-based materials have become well appreciated in recent times due to serve as antimicrobial agents or the carriers for promoting the bioavailability and effectiveness of antibiotics. Flavonoids belong to the promising groups of bioactive compounds abundantly found in fruits, vegetables, spices, and medicinal plants with strong antimicrobial features. Flavonoids and NPs have potential as alternatives to the conventional antimicrobial agents, both on their own as well as in combination. Different classes of flavonoid NPs may be particularly advantageous in handling microbial infections. The most important antimicrobial mechanisms of flavonoid NPs include oxidative stress induction, non-oxidative mechanisms, and metal ion release. However, the efficacy of flavonoid NPs against pathogens and drug-resistant pathogens changes according to their physicochemical characteristics as well as the particular structure of microbial cell wall and enzymatic composition. In this review, we provide an outlook on the antimicrobial mechanism of flavonoid-based NPs and the crucial factors that are involved.
Collapse
Affiliation(s)
- Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pistachio (Pistacia vera L.) nuts contain nutrients and phytochemicals which have been linked to several positive outcomes. The aim of this research was to examine the antimicrobial effect of natural raw and roasted unsalted polyphenols-rich pistachio extracts (NRRE and RURE) and hexane oil fractions. American Type Culture Collection (ATCC), food and clinical isolates of Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecium) and yeasts (Candida albicans) were used. In addition, the influence of the extraction method was evaluated. Generally, NRRE extracts were richer in polyphenolic compounds compared with RURE extracts. NRRE extracted with n-hexane was the most effective on Listeria monocytogenes food isolates strains (MIC values between 0.25 and 2.0 mg mL−1). All extracts, except for RURE extracted with n-hexane, were active against Listeria monocytogenes ATCC 13932. Both hexane oil fractions were active against Listeria monocytogenes ATCC 13932 and Enterococcus faecium DSZM 17050. The oil obtained from natural pistachio was active against three food isolates of Listeria monocytogenes. In conclusion, the present study indicates an inhibitory effect of pistachio polyphenols against Listeria monocytogenes, one of the most serious pathogens causing foodborne disease.
Collapse
|
33
|
Dalli M, El Guerraf A, Azizi SE, Benataya K, Azghar A, Mi-Kyung J, Maleb A, Bonglee K, Gseyra N. Loaded n-Hydroxyapatite/SSG 3D Scaffolds as a Drug Delivery System of Nigella sativa Fractions for the Management of Local Antibacterial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:856. [PMID: 35269342 PMCID: PMC8912363 DOI: 10.3390/nano12050856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023]
Abstract
As a result of their close similarities to the inorganic mineral components of human bone, hydroxyapatite nanoparticles (n-HAp) are widely used in biomedical applications and for the elaboration of biocompatible scaffold drug delivery systems for bone tissue engineering. In this context, a new efficient and economic procedure was used for the consolidation of n-HAp in the presence of various Nigella sativa (NS) fractions at a near-room temperature. The research conducted in the present study focuses on the physicochemical properties of loaded n-HAp 3D scaffolds by NS fractions and the in vitro antibacterial activity against Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27853), and Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 700603) bacteria. In order to better understand the effect of the inserted fractions on the HAp molecular structure, the elaborated samples were subject to Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopic analyses. In addition, the morphological investigation by scanning electron microscope (SEM) of the loaded n-HAp 3D scaffolds demonstrated the presence of a porous structure, which is generally required in stimulating bone regeneration. Furthermore, the fabricated 3D composites exhibited significant antibacterial activity against all tested bacteria. Indeed, MIC values ranging from 5 mg/mL to 20 mg/mL were found for the HAp-Ethanol fraction (HAp-Et) and HAp-Hexane fraction (HAp-Hex), while the HAp-Aqueous fraction (HAp-Aq) and HAp-Methanol fraction (HAp-Me) showed values between 20 mg/mL and 30 mg/mL on the different strains. These results suggest that the HAp-NS scaffolds were effective as a drug delivery system and have very promising applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, Oujda 60000, Morocco; (S.-e.A.); (N.G.)
| | - Abdelqader El Guerraf
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohammed the First, P.O. Box 524, Oujda 60000, Morocco; (A.E.G.); (K.B.)
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, Oujda 60000, Morocco; (S.-e.A.); (N.G.)
| | - Karim Benataya
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, University Mohammed the First, P.O. Box 524, Oujda 60000, Morocco; (A.E.G.); (K.B.)
| | - Ali Azghar
- Laboratory of Microbiology, Hospital University Center/Faculty of Medicine and Pharmacy, P.O. Box 724, Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Jeong Mi-Kyung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Adil Maleb
- Laboratory of Microbiology, Hospital University Center/Faculty of Medicine and Pharmacy, P.O. Box 724, Oujda 60000, Morocco; (A.A.); (A.M.)
| | - Kim Bonglee
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, Oujda 60000, Morocco; (S.-e.A.); (N.G.)
| |
Collapse
|
34
|
pH effect on colloidal characteristics of micro-nano particles in lapsang souchong black tea infusion. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Han H, Ke L, Wang H, Gao G, zhang Y, Rao P, Zhou J, Tirosh O, Schwartz B. Incidental Nanoparticles in Black Tea Infusion: Carriers of Bioactives Fortifying Protection on Intestinal Mucosal Cells Against Oxidative Stresses. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-021-09708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li Y, Zhu L, Guo C, Xue M, Xia F, Wang Y, Jia D, Li L, Gao Y, Shi Y, He Y, Yuan C. Dietary Intake of Hydrolyzable Tannins and Condensed Tannins to Regulate Lipid Metabolism. Mini Rev Med Chem 2021; 22:1789-1802. [PMID: 34967286 DOI: 10.2174/1389557522666211229112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder is a multifactor issue, which contributes to several serious health consequences, such as obesity, hyperlipidemia, atherosclerosis diabetes, non-alcoholic fatty liver etc. Tannins, applied as natural derived plant, are commonly used in the study of lipid metabolism disease with excellent safety and effectiveness, while producing less toxic and side effects. Meanwhile, recognition of the significance of dietary tannins in lipid metabolism disease prevention has increased. As suggested by existing evidence, dietary tannins can reduce lipid accumulation, block adipocyte differentiation, enhance antioxidant capacity, increase the content of short-chain fatty acids, and lower blood lipid levels, thus alleviating lipid metabolism disorder. This study is purposed to sum up and analyze plenty of documents on tannins, so as to provide the information required to assess the lipid metabolism of tannins.
Collapse
Affiliation(s)
- Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yuming He
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
37
|
In Vitro Antiviral Activity of Green Tea Polyphenon-60 against Avian Paramyxoviruses. Vet Med Int 2021; 2021:3411525. [PMID: 34912537 PMCID: PMC8668330 DOI: 10.1155/2021/3411525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Avian paramyxoviruses (APMVs) have caused an economically significant drop in global domestic poultry production because of their high morbidity and mortality rates. Polyphenols are the major components of green tea that have great antiviral effects. This study aimed to evaluate the anti-APMV activities of polyphenon-60. Twelve APMV-1 strains representing three different pathotypes, two strains of APMV-2, one strain of APMV-3, and one strain of APMV-7 were propagated in chicken embryos. To determine the cytotoxic effect, chicken embryo fibroblasts were treated with the test compound in various concentrations. To assess the antiviral properties, time-dependent, dose-dependent, and virulence-dependent experiments were conducted in both cell and chicken embryo models. A reduction in virus titers was measured by the hemagglutination test. The inhibitory effect on virus adsorption to the chicken red blood cell (RBC) surface was examined by the hemagglutination inhibition test. The results showed that lentogenic and mesogenic APMV-1 strains, APMV-3 strain, and APMV-7 strain were significantly inhibited (
) by polyphenon-60 at 50 μg/ml, while the 50% cytotoxic concentration of the compound was 345 μg/ml. Polyphenon-60 also exhibited the inhibitory activity against hemagglutination by NDV. Taken together, the results suggest that polyphenon-60 has shown promise as an antiviral agent that has wide safety margins against APMVs, and challenge studies to evaluate its efficacy in chickens are necessary.
Collapse
|
38
|
The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: a randomized placebo-controlled clinical trial. Sci Rep 2021; 11:19067. [PMID: 34561541 PMCID: PMC8463579 DOI: 10.1038/s41598-021-98612-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Green tea, a widely consumed beverage in Asia, contains green tea catechins effective against obesity, especially epigallocatechin-3-O-gallate (EGCG), but must be consumed in an impractically huge amount daily to elicit its biological effect. Meanwhile, citrus polyphenols have various physiological effects that could enhance EGCG functionality. Here we investigated the antiobesity effect of a combination of EGCG and α-glucosyl hesperidin, a citrus polyphenol, at doses that have not been previously reported to exert antiobesity effects by themselves in any clinical trial. In a randomized, placebo-controlled, double-blinded, and parallel-group-designed clinical trial, 60 healthy Japanese males and females aged 30-75 years consumed green tea combined with α-glucosyl hesperidin (GT-gH), which contained 178 mg α-glucosyl hesperidin and 146 mg EGCG, for 12 weeks. Physical, hematological, blood biochemical, and urine examinations showed that GT-gH is safe to use. At week 12, GT-gH prevented weight gain and reduced body mass index (BMI) compared with the placebo. Especially in those aged < 50 years, triglyceride and body fat percentage decreased at week 6, visceral fat level and body fat percentage decreased at week 12; body weight, BMI, and blood LDL/HDL ratio also decreased. In conclusion, taking GT-gH prevents weight gain, and the antiobesity effect of GT-gH was more pronounced in people aged < 50 years.
Collapse
|
39
|
Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front Pharmacol 2021; 12:723233. [PMID: 34552489 PMCID: PMC8450524 DOI: 10.3389/fphar.2021.723233] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
Due to the increasing prevalence of life-threatening bacterial, fungal and viral infections and the ability of these human pathogens to develop resistance to current treatment strategies, there is a great need to find and develop new compunds to combat them. These molecules must have low toxicity, specific activity and high bioavailability. The most suitable compounds for this task are usually derived from natural sources (animal, plant or even microbial). In this review article, the latest and most promising natural compounds used to combat bacteria, filamentous fungi and viruses are presented and evaluated. These include plant extracts, essential oils, small antimicrobial peptides of animal origin, bacteriocins and various groups of plant compounds (triterpenoids; alkaloids; phenols; flavonoids) with antimicrobial and antiviral activity. Data are presented on the inhibitory activity of each natural antimicrobial substance and on the putative mechanism of action against bacterial and fungal strains. The results show that among the bioactive compounds studied, triterpenoids have significant inhibitory activity against coronaviruses, but flavonoids have also been shown to inhibit SARS-COV-2. The last chapter is devoted to nanocarriers used to improve stability, bioavailability, cellular uptake/internalization, pharmacokinetic profile and reduce toxicity of natural compunds. There are a number of nanocarriers such as liposomes, drug delivery microemulsion systems, nanocapsules, solid lipid nanoparticles, polymeric micelles, dendrimers, etc. However, some of the recent studies have focused on the incorporation of natural substances with antimicrobial/antiviral activity into polymeric nanoparticles, niosomes and silver nanoparticles (which have been shown to have intrinsic antimicrobial activity). The natural antimicrobials isolated from animals and microorganisms have been shown to have good inhibitory effect on a range of pathogens, however the plants remain the most prolific source. Even if the majority of the studies for the biological activity evaluation are in silico or in vitro, their internalization in the optimum nanocarriers represents the future of “green therapeutics” as shown by some of the recent work in the field.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, Bucharest, Romania.,Titu Maiorescu University, PhD Medical School, Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania
| | | | | | - Ariana Cristina Brezeanu
- Carol Davila University of Medicine and Pharmacy-Department of Plastic Surgery, Bucharest, Romania
| | | | - Cristiana Tanase
- Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Bucharest, Romania.,Titu Maiorescu University, Faculty of Medicine, Bucharest, Romania
| |
Collapse
|
40
|
Jubair N, Rajagopal M, Chinnappan S, Abdullah NB, Fatima A. Review on the Antibacterial Mechanism of Plant-Derived Compounds against Multidrug-Resistant Bacteria (MDR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3663315. [PMID: 34447454 PMCID: PMC8384518 DOI: 10.1155/2021/3663315] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.
Collapse
Affiliation(s)
- Najwan Jubair
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
41
|
Preparation and Assessment of Some Characteristics of Nanoparticles Based on Sodium Alginate, Chitosan, and Camellia chrysantha Polyphenols. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5581177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This paper presents the characteristics, morphology, and properties of alginate/chitosan/polyphenol nanoparticles, in which polyphenols were extracted from Camellia chrysantha leaves collected in Tam Dao district, Vinh Phuc province (Vietnam). The alginate/chitosan/polyphenol nanoparticles were prepared by ionic gelation method at different polyphenol content. The characteristics and morphology of these nanoparticles were investigated using infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-Vis), and scanning electron microscopy (SEM). Release kinetic of polyphenols from the alginate/chitosan/polyphenol nanoparticles was conducted in simulated human body fluids. The release kinetics of polyphenols from the above nanoparticles were also evaluated and discussed. The experimental results showed that the release process of polyphenols from the nanoparticles was dependent on three factors: time, pH of solution, and amount of polyphenols.
Collapse
|
42
|
Morlock GE, Heil J, Bardot V, Lenoir L, Cotte C, Dubourdeaux M. Effect-Directed Profiling of 17 Different Fortified Plant Extracts by High-Performance Thin-Layer Chromatography Combined with Six Planar Assays and High-Resolution Mass Spectrometry. Molecules 2021; 26:1468. [PMID: 33800407 PMCID: PMC7962818 DOI: 10.3390/molecules26051468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
An effect-directed profiling method was developed to investigate 17 different fortified plant extracts for potential benefits. Six planar effect-directed assays were piezoelectrically sprayed on the samples separated side-by-side by high-performance thin-layer chromatography. Multipotent compounds with antibacterial, α-glucosidase, β-glucosidase, AChE, tyrosinase and/or β-glucuronidase-inhibiting effects were detected in most fortified plant extracts. A comparatively high level of antimicrobial activity was observed for Eleutherococcus, hops, grape pomace, passiflora, rosemary and Eschscholzia. Except in red vine, black radish and horse tail, strong enzyme inhibiting compounds were also detected. Most plants with anti-α-glucosidase activity also inhibited β-glucosidase. Green tea, lemon balm and rosemary were identified as multipotent plants. Their multipotent compound zones were characterized by high-resolution mass spectrometry to be catechins, rosmarinic acid, chlorogenic acid and gallic acid. The results pointed to antibacterial and enzymatic effects that were not yet known for plants such as Eleutherococcus and for compounds such as cynaratriol and caffeine. The nontarget effect-directed profiling with multi-imaging is of high benefit for routine inspections, as it provides comprehensive information on the quality and safety of the plant extracts with respect to the global production chain. In this study, it not only confirmed what was expected, but also identified multipotent plants and compounds, and revealed new bioactivity effects.
Collapse
Affiliation(s)
- Gertrud E. Morlock
- TransMIT Center for Effect-Directed Analysis, and Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany;
| | - Julia Heil
- TransMIT Center for Effect-Directed Analysis, and Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany;
| | - Valérie Bardot
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - Loïc Lenoir
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - César Cotte
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| | - Michel Dubourdeaux
- PiLeJe Industrie, Naturopôle Nutrition Santé, Les Tiolans, 03800 Saint-Bonnet-de-Rochefort, France; (V.B.); (L.L.); (C.C.); (M.D.)
| |
Collapse
|
43
|
de Almeida SA, Ferracane JL, da Silva EM, Mushashe AM, Merritt J, Rocha AA, Noronha-Filho JD, de Almeida RV, Poskus LT. Antimicrobial potential of resin matrices loaded with coffee compounds. J Biomed Mater Res B Appl Biomater 2021; 109:428-435. [PMID: 32964641 PMCID: PMC8244821 DOI: 10.1002/jbm.b.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/05/2022]
Abstract
This study evaluated the biological behavior of the coffee compounds Trigonelline (T), chlorogenic acid (C), and nicotinic acid (N), correlating with their release from a resin matrix. Minimum inhibitory concentration (MIC) was evaluated against Streptococcus mutans UA159, and cytotoxicity was assessed by methyl tetrazolium salt on OD-21 cells. Resin matrices (bisphenol A-glycidyl-dimethacrylate/triethylene glycol-dimethacrylate 70/30 wt%, camphorquinone/ethyl 4-dimethyl aminobenzoate 0.5/1 wt%) were doped with coffee compounds in different concentrations (10/20/30/40/50 wt%), performing 15 groups (T10-T50, C10-C50, N10-N50), and a control group with no coffee compound. Degree of conversion (DC%) was analyzed by Fourier transform infrared spectroscopy. Antimicrobial properties were evaluated by bioluminescence (Luciferase assay). The release from loaded matrices was analyzed over time (24 hr, 6, 14, 21 and 28 days), using high-performance liquid chromatography (HPLC). Data were submitted to ANOVA/Tukey's test (α = 0.05). MIC for T and C was 6 mg/ml, and 4 mg/ml for N. None of them were cytotoxic. Only T50 and C50 showed lower DC% than control (α < 0.05). Some groups (T30/T40/T50/C40/C50/N50) were strongly antimicrobial, reducing bacterial activity approximately five times compared to control (α < 0.05). For T30, T40, T50, C40, and C50, the HPLC showed a release above or closer to MIC values mainly in 24 hr, but for N50, up to 28 days. In conclusion, the coffee compounds presented antimicrobial activity, depending on their concentration when added in resin matrices, being found a correlation with their release.
Collapse
Affiliation(s)
- Sarah A de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Eduardo M da Silva
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda M Mushashe
- School of Health Sciences, Universidade Positivo, Curitiba, Puerto Rico, Brazil
| | - Justin Merritt
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Anderson A Rocha
- Department of Chemistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jaime D Noronha-Filho
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rayane V de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Laiza T Poskus
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Tafazoli A, Tafazoli Moghadam E. Camellia Sinensis Mouthwashes in Oral Care: a Systematic Review. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2020; 21:249-262. [PMID: 33344675 PMCID: PMC7737926 DOI: 10.30476/dentjods.2020.83204.1045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herbal products are increasingly growing in the oral care market. Some of the related herbal compounds in this field have considerable clinical evidence for use in mouthwashes in their background. Camellia sinensis or tea plant has attracted numerous researchers of dentistry and pharmaceutical sciences, in recent years, for its biologic and medicinal properties. The effects such as anti-septic, anti-oxidative, and anti-inflammatory activities have made this plant a suitable candidate for preparation of mouthwashes. In this systematic review, we tried to find, evaluate, and categorize the sparse evidence in medical literature about Camellia sinensis mouthwashes. We explored three scientific databases with keywords including tea, dental care, Camellia sinensis, and mouthwashes and found 69 relevant studies including 41 randomized controlled trials (RCTs), which are generally proposing anti-microbial, anti-plaque, and analgesic indications for these tea formulations. Considering the main trend in clinical evidence and favorable safety profile, Camellia sinensis products are able to act as antiseptic, anti-plaque, and anti-inflammatory agents and can be used as useful mouthwashes in the future clinical studies and practice.
Collapse
Affiliation(s)
- Ali Tafazoli
- Dept. Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Tafazoli Moghadam
- Dept. of Orthodontics, School of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
45
|
Nutritional, Antioxidant, Antimicrobial, and Toxicological Profile of Two Innovative Types of Vegan, Sugar-Free Chocolate. Foods 2020; 9:foods9121844. [PMID: 33322360 PMCID: PMC7764326 DOI: 10.3390/foods9121844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Increased sugar consumption and unhealthy dietary patterns are key drivers of many preventable diseases that result in disability and death worldwide. However, health awareness has increased over the past decades creating a massive on-going demand for new low/non-caloric natural sweeteners that have a high potential and are safer for consumption than artificial ones. The current study aims to investigate the nutritional properties, in vitro toxicological profile, total/individual polyphenols content, and the antioxidant, anti-cariogenic, and antimicrobial activity of two newly obtained vegan and sugar-free chocolate (VHC1 and VHC2). The energy values for the two finished products were very similar, 408.04 kcal/100 g for VHC1 and 404.68 kcal/100 g for VHC2. Both products, VHC1 and VHC2 present strong antioxidant activities, whereas antimicrobial results show an increased activity for VHC1 compared to VHC2, because of a higher phenolic content. In vitro toxicological evaluation revealed that both samples present a safe toxicological profile, while VHC2 increased cellular turnover of dermal cell lines, highlighting its potential use in skin treatments. The current work underlines the potential use of these vegetal mixtures as sugar-free substitutes for conventional products, as nutraceuticals, as well as topic application in skin care due to antimicrobial and antioxidant effects.
Collapse
|
46
|
Hassan FU, Arshad MA, Ebeid HM, Rehman MSU, Khan MS, Shahid S, Yang C. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction. Front Vet Sci 2020; 7:575801. [PMID: 33263013 PMCID: PMC7688522 DOI: 10.3389/fvets.2020.575801] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ruminants inhabit the consortia of gut microbes that play a critical functional role in their maintenance and nourishment by enabling them to use cellulosic and non-cellulosic feed material. These gut microbes perform major physiological activities, including digestion and metabolism of dietary components, to derive energy to meet major protein (65-85%) and energy (ca 80%) requirements of the host. Owing to their contribution to digestive physiology, rumen microbes are considered one of the crucial factors affecting feed conversion efficiency in ruminants. Any change in the rumen microbiome has an imperative effect on animal physiology. Ruminal microbes are fundamentally anaerobic and produce various compounds during rumen fermentation, which are directly used by the host or other microbes. Methane (CH4) is produced by methanogens through utilizing metabolic hydrogen during rumen fermentation. Maximizing the flow of metabolic hydrogen in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. Understanding of microbial diversity and rumen dynamics is not only crucial for the optimization of host efficiency but also required to mediate emission of greenhouse gases (GHGs) from ruminants. There are various strategies to modulate the rumen microbiome, mainly including dietary interventions and the use of different feed additives. Phytogenic feed additives, mainly plant secondary compounds, have been shown to modulate rumen microflora and change rumen fermentation dynamics leading to enhanced animal performance. Many in vitro and in vivo studies aimed to evaluate the use of plant secondary metabolites in ruminants have been conducted using different plants or their extract or essential oils. This review specifically aims to provide insights into dietary interactions of rumen microbes and their subsequent consequences on rumen fermentation. Moreover, a comprehensive overview of the modulation of rumen microbiome by using phytogenic compounds (essential oils, saponins, and tannins) for manipulating rumen dynamics to mediate CH4 emanation from livestock is presented. We have also discussed the pros and cons of each strategy along with future prospective of dietary modulation of rumen microbiome to improve the performance of ruminants while decreasing GHG emissions.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Hossam M. Ebeid
- Dairy Science Department, National Research Centre, Giza, Egypt
| | - Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad Khan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Shehryaar Shahid
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, Pakistan
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
47
|
Bhuyan T, Simon AT, Maity S, Singh AK, Ghosh SS, Bandyopadhyay D. Magnetotactic T-Budbots to Kill-n-Clean Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43352-43364. [PMID: 32864951 DOI: 10.1021/acsami.0c08444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Treatment of persistent biofilm infections has turned out to be a formidable challenge even with broad-spectrum antibiotic therapies. In this direction, intelligent micromachines may serve as active mechanical means to dislodge such deleterious bacterial communities. Herein, we have designed biocompatible micromotors from tea buds, namely, T-Budbots, which shows the capacity to be magnetically driven on a biofilm matrix and remove or fragment biofilms with precision, as a part of the proposed non-invasive "Kill-n-Clean" strategy. In a way, we present a bactericidal robotic platform decorated with magnetite nanoparticles aimed at clearing in vitro biofilms present on the surfaces. We have also shown that the smart porous T-Budbots can integrate antibiotic ciprofloxacin due to electrostatic interaction on their surface to increase their antibacterial efficacy against dreadful pathogenic bacterial communities of Pseudomonas aeruginosa and Staphylococcus aureus. It is noteworthy that the release of this drug can be controlled by tuning the surrounding pH of the T-Budbots. For example, while the acidic environment of the biofilm facilitates the release of antibiotics from the porous T-Budbots, the drug release was rather minimal at higher pH. The work represents a first step in the involvement of a plant-based microbot exhibiting magneto-robotic therapeutic properties, providing a non-invasive and safe approach to dismantle harmful biofilm infections.
Collapse
Affiliation(s)
- Tamanna Bhuyan
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Anitha T Simon
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
48
|
Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns. Adv Healthc Mater 2020; 9:e2000247. [PMID: 32378364 DOI: 10.1002/adhm.202000247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Management of burn wounds with diabetes and microbial infection is challenging in tissue engineering. The delayed wound healing further leads to scar formation in severe burn injury. Herein, a silver-catechin nanocomposite tethered collagen scaffold with angiogenic and antibacterial properties is developed to enable scarless healing in chronic wounds infected with Pseudomonas aeruginosa under diabetic conditions. Histological observations of the granulation tissues collected from an experimental rat model show characteristic structural organizations similar to normal skin, whereas the open wound and pristine collagen scaffold treated animals display elevated dermis with thick epidermal layer and lack of appendages. Epidermal thickness of the hybrid scaffold treated diabetic animals is lowered to 33 ± 2 µm compared to 90 ± 2 µm for pristine collagen scaffold treated groups. Further, the scar elevation index of 1.3 ± 0.1 estimated for the bioengineered scaffold treated diabetic animals is closer to the normal skin. Immunohistochemical analyses provide compelling evidence for the enhanced angiogenesis as well as downregulated transforming growth factor- β1 (TGF-β1) and upregulated TGF-β3 expressions in the hybrid scaffold treated animal groups. The insights from this study endorse the bioengineered collagen scaffolds for applications in tissue regeneration without scar in chronic burn wounds.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| | - Thanikaivelan Palanisamy
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| |
Collapse
|
49
|
Velázquez-Lam E, Imperial J, Ponz F. Polyphenol-Functionalized Plant Viral-Derived Nanoparticles Exhibit Strong Antimicrobial and Antibiofilm Formation Activities. ACS APPLIED BIO MATERIALS 2020; 3:2040-2047. [DOI: 10.1021/acsabm.9b01161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edith Velázquez-Lam
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
- Doctorado en Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, CSIC, Serrano 115bis, 28006 Madrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CBGP, UPM-INIA), Campus Montegancedo, Autopista M-40, km 38, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
50
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|