1
|
Künzel SR, Klapproth E, Zimmermann N, Kämmerer S, Schubert M, Künzel K, Hoffmann M, Drukewitz S, Vehlow A, Eitler J, Arriens M, Thiel J, Kronstein-Wiedemann R, Tietze M, Beissert S, Renner B, El-Armouche A, Günther C. Radiation-induced morphea of the breast - characterization and treatment of fibroblast dysfunction with repurposed mesalazine. Sci Rep 2024; 14:26132. [PMID: 39477958 PMCID: PMC11525966 DOI: 10.1038/s41598-024-74206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Radiation-induced morphea (RIM) is a rare complication of radiotherapy presenting as inflammatory fibrosis, most commonly reported in breast cancer patients. As underlying disease mechanisms are not well understood, targeted therapies are lacking. Since fibroblasts are the key mediators of all fibroproliferative diseases, this study aimed to characterize patient-derived fibroblasts to identify therapeutic targets. We studied primary human control and RIM-fibroblasts on a functional and molecular basis, analyzed peripheral blood and tissue samples and conducted, based on our findings, a treatment attempt in one patient. In RIM, we identified a distinct myofibroblast phenotype reflected by increased alpha-smooth-muscle-actin (αSMA) expression, reduced proliferation and migration rates, and overexpression of osteopontin (OPN). Our RNA sequencing identified aberrant Myc activation as a potential disease driver in RIM fibroblasts, similar to previous findings in systemic sclerosis. Treatment with the anti-inflammatory drug mesalazine reversed the myofibroblast phenotype by targeting Myc. Based on these findings, a patient with RIM was successfully treated with mesalazine, resulting in reduced inflammation and pain and tissue softening, while serum OPN was halved. The present study provides a comprehensive characterization of RIM fibroblasts, suggests a disease-driving role for Myc, demonstrates promising antifibrotic effects of mesalazine and proposes OPN as a biomarker for RIM.
Collapse
Affiliation(s)
- Stephan R Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany.
| | - Erik Klapproth
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nick Zimmermann
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Susanne Kämmerer
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolina Künzel
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Hoffmann
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Drukewitz
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics, NCT Dresden and DKFZ, Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jiri Eitler
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Marieke Arriens
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Jessica Thiel
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Romy Kronstein-Wiedemann
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Maximiliane Tietze
- Institute for Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden and DRK Blutspendedienst Nord-Ost gGmbH, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany
| | - Bertold Renner
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Institute for Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Roso-Mares A, Andújar I, Díaz Corpas T, Sun BK. Non-coding RNAs as skin disease biomarkers, molecular signatures, and therapeutic targets. Hum Genet 2024; 143:801-812. [PMID: 37580609 DOI: 10.1007/s00439-023-02588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/23/2023] [Indexed: 08/16/2023]
Abstract
Non-coding RNAs (ncRNAs) are emerging as biomarkers, molecular signatures, and therapeutic tools and targets for diseases. In this review, we focus specifically on skin diseases to highlight how two classes of ncRNAs-microRNAs and long noncoding RNAs-are being used to diagnose medical conditions of unclear etiology, improve our ability to guide treatment response, and predict disease prognosis. Furthermore, we explore how ncRNAs are being used as both as drug targets and associated therapies have unique benefits, risks, and challenges to development, but offer a distinctive promise for improving patient care and outcomes.
Collapse
Affiliation(s)
- Andrea Roso-Mares
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Andújar
- Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Tania Díaz Corpas
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Dermatology, Hospital Dr Peset, Valencia, Spain
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
3
|
Soffritti I, D’Accolti M, Bini F, Mazziga E, Di Luca D, Maccari C, Arcangeletti MC, Caselli E. Virus-Induced MicroRNA Modulation and Systemic Sclerosis Disease. Biomedicines 2024; 12:1360. [PMID: 38927567 PMCID: PMC11202132 DOI: 10.3390/biomedicines12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA sequences that regulate gene expression at the post-transcriptional level. They are involved in the regulation of multiple pathways, related to both physiological and pathological conditions, including autoimmune diseases, such as Systemic Sclerosis (SSc). Specifically, SSc is recognized as a complex and multifactorial disease, characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis, affecting skin and internal organs. Among predisposing environmental triggers, evidence supports the roles of oxidative stress, chemical agents, and viral infections, mostly related to those sustained by beta-herpesviruses such as HCMV and HHV-6. Dysregulated levels of miRNA expression have been found in SSc patients compared to healthy controls, at both the intra- and extracellular levels, providing a sort of miRNA signature of the SSc disease. Notably, HCMV/HHV-6 viral infections were shown to modulate the miRNA profile, often superposing that observed in SSc, potentially promoting pathological pathways associated with SSc development. This review summarizes the main data regarding miRNA alterations in SSc disease, highlighting their potential as prognostic or diagnostic markers for SSc disease, and the impact of the putative SSc etiological agents on miRNA modulation.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.M.); (M.-C.A.)
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (I.S.); (M.D.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, 44122 Ferrara, Italy
| |
Collapse
|
4
|
Khatri S, Bustos AH, Jørgensen CD, Torok KS, Gjerdrum LMR, Astakhova K. Synthetic Nucleic Acid Antigens in Localized Scleroderma. Int J Mol Sci 2023; 24:17507. [PMID: 38139335 PMCID: PMC10744100 DOI: 10.3390/ijms242417507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
We investigated the impact of synthetic nucleic acid antigens on the autoantibody profiles in patients with localized scleroderma, an autoimmune skin disease. Anti-DNA antibodies, including double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA), are common among autoimmune diseases, such as systemic lupus erythematosus and localized scleroderma. Based on recent studies, we hypothesized that the sequence of nucleic acid antigens has an impact on the autoimmune reactions in localized scleroderma. To test our hypothesis, we synthesized a panel of DNA and RNA antigens and used them for autoantibody profiling of 70 children with localized scleroderma compared with the healthy controls and patients with pediatric systemic lupus erythematosus (as a disease control). Among the tested antigens, dsD4, which contains the sequence of the human oncogene BRAF, showed a particularly strong presence in localized scleroderma but not systemic lupus erythematosus. Disease activity in patients was significantly associated with dsD4 autoantibody levels. We confirmed this result in vivo by using a bleomycin-induced mouse model of localized scleroderma. When administered intraperitoneally, dsD4 promoted an active polyclonal response in the mouse model. Our study highlights sequence specificity for nucleic acid antigens in localized scleroderma that could potentially lead to developing novel early-stage diagnostic tools.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| | - Adrian H. Bustos
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| | - Christian Damsgaard Jørgensen
- Department of Mathematical Sciences, Aalborg University, 9220 Aalborg, Denmark;
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Kathryn S. Torok
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lise-Mette Rahbek Gjerdrum
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (S.K.); (A.H.B.)
| |
Collapse
|
5
|
Shen L, Yin H, Sun L, Zhang Z, Jin Y, Cao S, Fu Q, Fan C, Bao C, Lu L, Zhan Y, Xu X, Chen X, Yan Q. Iguratimod attenuated fibrosis in systemic sclerosis via targeting early growth response 1 expression. Arthritis Res Ther 2023; 25:151. [PMID: 37596660 PMCID: PMC10439582 DOI: 10.1186/s13075-023-03135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The early growth response 1 (EGR1) is a central transcription factor involved in systemic sclerosis (SSc) pathogenesis. Iguratimod is a synthesized anti-rheumatic disease-modifying drug, which shows drastic inhibition to EGR1 expression in B cells. This study is aiming to investigate the anti-fibrotic effect of iguratimod in SSc. METHODS EGR1 was detected by immunofluorescence staining real-time PCR or western blot. Iguratimod was applied in EGR1 overexpressed or knockdown human dermal fibroblast, bleomycin pre-treated mice, tight skin 1 mice, and SSc skin xenografts. RNA sequencing was performed in cultured fibroblast and xenografts to identify the iguratimod regulated genes. RESULTS EGR1 overexpressed predominantly in non-immune cells of SSc patients. Iguratimod reduced EGR1 expression in fibroblasts and neutralized changes of EGR1 response genes regulated by TGFβ. The extracellular matrix (ECM) production and activation of fibroblasts were attenuated by iguratimod while EGR1 overexpression reversed this effect of iguratimod. Iguratimod ameliorated the skin fibrosis induced by bleomycin and hypodermal fibrosis in TSK-1 mice. Decreasing in the collagen content as well as the density of EGR1 or TGFβ positive fibroblasts of skin xenografts from naïve SSc patients was observed after local treatment of iguratimod. CONCLUSION Targeting EGR1 expression is a probable underlying mechanism for the anti-fibrotic effect of iguratimod.
Collapse
Affiliation(s)
- Lichong Shen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Hanlin Yin
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Li Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiliang Zhang
- Department of Plastic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Yuyang Jin
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Shan Cao
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Qiong Fu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Chaofan Fan
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Chunde Bao
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Liangjing Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, 201203, China
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Xiaoxiang Chen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
- Department of Rheumatology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong Universuty, Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong Universuty School of Medicine, Nantong, 226006, China.
| | - Qingran Yan
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| |
Collapse
|
6
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
7
|
Epigenetic Dysregulation in Autoimmune and Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2022; 63:447-471. [DOI: 10.1007/s12016-022-08956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
|
8
|
Role of miR-155 in inflammatory autoimmune diseases: a comprehensive review. Inflamm Res 2022; 71:1501-1517. [DOI: 10.1007/s00011-022-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
|
9
|
Han L, Lv Q, Guo K, Li L, Zhang H, Bian H. Th17 cell-derived miR-155-5p modulates interleukin-17 and suppressor of cytokines signaling 1 expression during the progression of systemic sclerosis. J Clin Lab Anal 2022; 36:e24489. [PMID: 35545753 PMCID: PMC9169208 DOI: 10.1002/jcla.24489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background miR‐155‐5p is associated with autoimmune diseases. T helper 17 (Th17) cells, interleukin (IL)‐17, and suppressor of cytokines signaling 1 (SOCS1) have important roles in the pathogenesis of systemic sclerosis (SSc). The purpose of this study was to explore the role of miR‐155‐5p in the regulation of IL‐17 and SOCS1 expression in Th17 cells and the subsequent effect on SSc disease progression. Methods Th17 cells were isolated from peripheral blood mononuclear cells of SSc patients and healthy controls (HCs). RT‐qPCR and western blotting were used to examine the expression patterns of miR‐155‐5p, IL‐17, and SOCS1. Luciferase reporter assays were performed to confirm SOCS1 as a target of miR‐155‐5p. RNA pull‐down assays were performed to detect the interaction of IL‐17 and SOCS1 with miR‐155‐5p. In situ hybridization was performed to analyze the co‐expression pattern of miR‐155‐5p and IL17A in Th17 cells. Results The levels of Th17 cell‐derived miR‐155‐5p were significantly up‐regulated in SSc patients compared with HCs, and its levels were negatively correlated with SOCS1 levels. Meanwhile, miR‐155‐5p positively regulated IL‐17 expression levels in Th17 cells isolated from SSc patients as the disease progressed. Using pmirGLO vectors, SOCS1 was confirmed as a target of miR‐155‐5p. The binding status of IL‐17 and SOCS1 to miR‐155‐5p was related to SSc progression. An increase in the co‐localization of miR‐155‐5p and IL‐17 was associated with greater SSc progression. Conclusions IL‐17 and SOCS1 expression modulated by Th17 cell‐derived miR‐155‐5p are critical for SSc progression, which may provide novel insights into the pathogenesis of SSc.
Collapse
Affiliation(s)
- Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Qin Lv
- Department of Chinese Medicine, Nanyang Medical College, Nanyang, China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Linyun Li
- Department of Rheumatism Immunity, Nanyang Traditional Chinese Medicine Hospital, Nanyang, China
| | - Hong Zhang
- Department of Rheumatism Immunity, Nanyang Central Hospital, Nanyang, China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| |
Collapse
|
10
|
Liu Y, Cheng L, Zhan H, Li H, Li X, Huang Y, Li Y. The Roles of Noncoding RNAs in Systemic Sclerosis. Front Immunol 2022; 13:856036. [PMID: 35464474 PMCID: PMC9024074 DOI: 10.3389/fimmu.2022.856036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Noncoding RNAs (ncRNAs) constitute more than 90% of the RNAs in the human genome. In the past decades, studies have changed our perception of ncRNAs from “junk” transcriptional products to functional regulatory molecules that mediate critical processes, including chromosomal modifications, mRNA splicing and stability, and translation, as well as key signaling pathways. Emerging evidence suggests that ncRNAs are abnormally expressed in not only cancer but also autoimmune diseases, such as systemic sclerosis (SSc), and may serve as novel biomarkers and therapeutic targets for the diagnosis and treatment of SSc. However, the functions and underlying mechanisms of ncRNAs in SSc remain incompletely understood. In this review, we discuss the current findings on the biogenetic processes and functions of ncRNAs, including microRNAs and long noncoding RNAs, as well as explore emerging ncRNA-based diagnostics and therapies for SSc.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomeng Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Yongzhe Li,
| |
Collapse
|
11
|
Zhu X, Jiang L, Zhong Q, Kong X, Zhang R, Zhu L, Liu Q, Wu W, Tan Y, Wang J, Xia J. Abnormal expression of interleukin-6 is associated with epidermal alternations in localized scleroderma. Clin Rheumatol 2022; 41:2179-2187. [DOI: 10.1007/s10067-022-06127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
|
12
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 2021; 17:596-607. [PMID: 34480165 DOI: 10.1038/s41584-021-00683-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/21/2022]
Abstract
Systemic sclerosis (SSc) is a prototypical inflammatory fibrotic disease involving inflammation, vascular abnormalities and fibrosis that primarily affect the skin and lungs. The aetiology of SSc is unknown and its pathogenesis is only partially understood. Of all the rheumatic diseases, SSc carries the highest all-cause mortality rate and represents an unmet medical need. A growing body of evidence implicates epigenetic aberrations in this intractable disease, including specific modifications affecting the three main cell types involved in SSc pathogenesis: immune cells, endothelial cells and fibroblasts. In this Review, we discuss the latest insights into the role of DNA methylation, histone modifications and non-coding RNAs in SSc and how these epigenetic alterations affect disease features. In particular, histone modifications have a role in the regulation of gene expression pertinent to activation of fibroblasts to myofibroblasts, governing their fate. DNA methyltransferases are crucial in disease pathogenesis by mediating methylation of DNA in specific promoters, regulating expression of specific pathways. We discuss targeting of these enzymes for therapeutic gain. Innovative epigenetic therapy could be targeted to treat the disease in a precision epigenetics approach.
Collapse
|
14
|
Rusek M, Krasowska D. Non-Coding RNA in Systemic Sclerosis: A Valuable Tool for Translational and Personalized Medicine. Genes (Basel) 2021; 12:1296. [PMID: 34573278 PMCID: PMC8471866 DOI: 10.3390/genes12091296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are heritable and ultimately play a role in modulating gene expression and, thus, in regulating cell functions. Non-coding RNAs have growing recognition as novel biomarkers and crucial regulators of pathological conditions in humans. Their characteristic feature is being transcribed in a tissue-specific pattern. Now, there is emerging evidence that lncRNAs have been identified to be involved in the differentiation of human skin, wound healing, fibrosis, inflammation, and immunological response. Systemic sclerosis (SSc) is a heterogeneous autoimmune disease characterized by fibrosis, vascular abnormalities, and immune system activation. The pathogenesis remains elusive, but clinical manifestations reveal autoimmunity with the presence of specific autoantibodies, activation of innate and adaptive immunity, vascular changes, and active deposition of extracellular matrix components leading to fibrosis. The use of multi-omics studies, including NGS, RNA-seq, or GWAS, has proposed that the non-coding genome may be a significant player in its pathogenesis. Moreover, it may unravel new therapeutic targets in the future. The aim of this review is to show the pathogenic role of long non-coding RNAs in systemic sclerosis. Investigation of these transcripts' functions has the potential to elucidate the molecular pathology of SSc and provide new opportunities for drug-targeted therapy for this disorder.
Collapse
Affiliation(s)
- Marta Rusek
- Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin, 20-080 Lublin, Poland;
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
15
|
Snarskaya ES, Vasileva KD. Localized scleroderma: actual insights and new biomarkers. Int J Dermatol 2021; 61:667-674. [PMID: 34347884 DOI: 10.1111/ijd.15811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Localized scleroderma (LS, morphea, limited scleroderma, focal scleroderma) is a chronic autoimmune disease characterized by a progressive damage to the connective tissue with a predominance of fibrosclerotic disorders in the skin and the subcutaneous tissue. In addition surrounding structures may be affected: fascia, muscle, and bone tissues. This review reflects the current understanding about limited scleroderma, its pathogenesis, diagnosis, new biomarkers, and information about the possibilities of its transition to systemic scleroderma. The following new biomarkers have been identified: galactosylated IgG (Ig-Gal), progranulin (PGRN), chemokine CCXL 18, various types of microRNA (miRNA-let-7a, miRNA-7, miRNA-196a, miRNA-155, miRNA-483-5p), periostin, and myelin basic protein (MBP). Knowledge about new biomarkers of LS will help us to explore the patients' predisposition to the development of systemic scleroderma. In addition, by acting on these biomarkers, it is possible to prevent the progression of LS in the early stages and its transition to systemic scleroderma. The review also presents the current understanding of autoantibodies in LS and their correlation with clinical signs of the disease.
Collapse
Affiliation(s)
- Elena S Snarskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Dermatovenerology, Moscow, Russia
| | - Kseniia D Vasileva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Dermatovenerology, Moscow, Russia
| |
Collapse
|
16
|
Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the Role of miR-155 in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:669382. [PMID: 34025671 PMCID: PMC8137895 DOI: 10.3389/fimmu.2021.669382] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding conserved RNAs containing 19 to 24 nucleotides that are regulators of post-translational modifications and are involved in the majority of biological processes such as immune homeostasis, T helper cell differentiation, central and peripheral tolerance, and immune cell development. Autoimmune diseases are characterized by immune system dysregulation, which ultimately leads to destructive responses to self-antigens. A large body of literature suggests that autoimmune diseases and immune dysregulation are associated with different miRNA expression changes in the target cells and tissues of adaptive or innate immunity. miR-155 is identified as a critical modulator of immune responses. Recently conducted studies on the expression profile of miR-155 suggest that the altered expression and function of miR-155 can mediate vulnerability to autoimmune diseases and cause significant dysfunction of the immune system.
Collapse
Affiliation(s)
- Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Vafashoar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Modulation of microRNome by Human Cytomegalovirus and Human Herpesvirus 6 Infection in Human Dermal Fibroblasts: Possible Significance in the Induction of Fibrosis in Systemic Sclerosis. Cells 2021; 10:cells10051060. [PMID: 33946985 PMCID: PMC8146000 DOI: 10.3390/cells10051060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) and Human herpesvirus 6 (HHV-6) have been reportedly suggested as triggers of the onset and/or progression of systemic sclerosis (SSc), a severe autoimmune disorder characterized by multi-organ fibrosis. The etiology and pathogenesis of SSc are still largely unknown but virological and immunological observations support a role for these beta-herpesviruses, and we recently observed a direct impact of HCMV and HHV-6 infection on the expression of cell factors associated with fibrosis at the cell level. Since miRNA expression has been found profoundly deregulated at the tissue level, here we aimed to investigate the impact on cell microRNome (miRNome) of HCMV and HHV-6 infection in in vitro infected primary human dermal fibroblasts, which represent one of the main SSc target cells. The analysis, performed by Taqman arrays detecting and quantifying 754 microRNAs (miRNAs), showed that both herpesviruses significantly modulated miRNA expression in infected cells, with evident early and late effects and deep modulation (>10 fold) of >40 miRNAs at each time post infection, including those previously recognized for their key function in fibrosis. The correlation between these in vitro results with in vivo observations is strongly suggestive of a role of HCMV and/or HHV-6 in the multistep pathogenesis of fibrosis in SSc and in the induction of fibrosis-signaling pathways finally leading to tissue fibrosis. The identification of specific miRNAs may open the way to their use as biomarkers for SSc diagnosis, assessment of disease progression and possible antifibrotic therapies.
Collapse
|
18
|
Immune Stroma in Lung Cancer and Idiopathic Pulmonary Fibrosis: A Common Biologic Landscape? Int J Mol Sci 2021; 22:ijms22062882. [PMID: 33809111 PMCID: PMC8000622 DOI: 10.3390/ijms22062882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) identifies a specific entity characterized by chronic, progressive fibrosing interstitial pneumonia of unknown cause, still lacking effective therapies. Growing evidence suggests that the biologic processes occurring in IPF recall those which orchestrate cancer onset and progression and these findings have already been exploited for therapeutic purposes. Notably, the incidence of lung cancer in patients already affected by IPF is significantly higher than expected. Recent advances in the knowledge of the cancer immune microenvironment have allowed a paradigm shift in cancer therapy. From this perspective, recent experimental reports suggest a rationale for immune checkpoint inhibition in IPF. Here, we recapitulate the most recent knowledge on lung cancer immune stroma and how it can be translated into the IPF context, with both diagnostic and therapeutic implications.
Collapse
|
19
|
Ramahi A, Altorok N, Kahaleh B. Epigenetics and systemic sclerosis: An answer to disease onset and evolution? Eur J Rheumatol 2020; 7:S147-S156. [PMID: 32697935 PMCID: PMC7647676 DOI: 10.5152/eurjrheum.2020.19112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence that implicates epigenetic modification in the pathogenesis of systemic sclerosis (SSc). The complexity of epigenetic regulation and its dynamic nature complicate the investigation of its role in the disease. We will review the current literature for factors that link epigenetics to SSc by discussing DNA methylation, histone acetylation and methylation, and non-coding RNAs (ncRNAs), particularly microRNA changes in endothelial cells, fibroblasts (FBs), and lymphocytes. These three cell types are significantly involved in the early stages and throughout the course of the disease and are particularly vulnerable to epigenetic regulation. The pathogenesis of SSc is likely related to modifications of the epigenome by environmental signals in individuals with a specific genetic makeup. The epigenome is an attractive therapeutic target; however, successful epigenetics-based treatments require a better understanding of the molecular mechanisms controlling the epigenome and its alteration in the disease.
Collapse
Affiliation(s)
- Ahmad Ramahi
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Nezam Altorok
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Bashar Kahaleh
- Division of Rheumatology and Immunology, Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| |
Collapse
|
20
|
Wajda A, Łapczuk-Romańska J, Paradowska-Gorycka A. Epigenetic Regulations of AhR in the Aspect of Immunomodulation. Int J Mol Sci 2020; 21:E6404. [PMID: 32899152 PMCID: PMC7504141 DOI: 10.3390/ijms21176404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental factors contribute to autoimmune disease manifestation, and as regarded today, AhR has become an important factor in studies of immunomodulation. Besides immunological aspects, AhR also plays a role in pharmacological, toxicological and many other physiological processes such as adaptive metabolism. In recent years, epigenetic mechanisms have provided new insight into gene regulation and reveal a new contribution to autoimmune disease pathogenesis. DNA methylation, histone modifications, chromatin alterations, microRNA and consequently non-genetic changes in phenotypes connect with environmental factors. Increasing data reveals AhR cross-roads with the most significant in immunology pathways. Although study on epigenetic modulations in autoimmune diseases is still not well understood, therefore future research will help us understand their pathophysiology and help to find new therapeutic strategies. Present literature review sheds the light on the common ground between remodeling chromatin compounds and autoimmune antibodies used in diagnostics. In the proposed review we summarize recent findings that describe epigenetic factors which regulate AhR activity and impact diverse immunological responses and pathological changes.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
21
|
MicroRNA-155 Participates in the Expression of LSD1 and Proinflammatory Cytokines in Rheumatoid Synovial Cells. Mediators Inflamm 2020; 2020:4092762. [PMID: 32908449 PMCID: PMC7474383 DOI: 10.1155/2020/4092762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-155 (miRNA-155) is abundant in fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA). Lysine-specific demethylase 1 (LSD1) has been found that it can ameliorate the severity of RA. Tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 are key proinflammatory cytokines implicated in the pathogenesis of RA. In our study, we investigated whether miRNA-155 participates in the expression of LSD1 and proinflammatory cytokines in rheumatoid synovial cells. First of all, flow cytometry and cell counting kit-8 analysis were employed to explore the apoptosis and proliferation of FLS, respectively. Subsequently, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was applied to probe into the level of miRNA-155 in FLS when stimulated by miRNA-155 molecules. Moreover, RT-qPCR was used to explore the relative LSD1 miRNA expression in FLS when stimulated by miRNA-155 molecules, and Western blot and immunofluorescence assay were applied to probe into the expression level of LSD1. Finally, enzyme-linked immunosorbent assay was employed to analyze the secreting level of proinflammatory cytokines in FLS when stimulated by miRNA-155 molecules. RA-FLS showed a higher apoptosis rate than normal FLS. The cell proliferation of both HFLS and MH7A cells was promoted by miRNA-155 upregulation. Meanwhile, the expression of LSD1 and proinflammatory cytokines in the FLS of RA was also changed by miRNA-155 regulation. In conclusion, miRNA-155 participates in the expression of LSD1 and proinflammatory cytokines in rheumatoid synovial cells. These findings imply a potential function and interaction of miRNA-155 and LSD1.
Collapse
|
22
|
Zhang L, Wu H, Zhao M, Lu Q. Meta‐analysis of differentially expressed microRNAs in systemic sclerosis. Int J Rheum Dis 2020; 23:1297-1304. [DOI: 10.1111/1756-185x.13924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Lian Zhang
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Haijing Wu
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Ming Zhao
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| | - Qianjin Lu
- Department of Dermatology Hunan Key Laboratory of Medical Epigenomics Central South University Changsha China
| |
Collapse
|
23
|
Shi M, Zong X, Chen L, Guo X, Ding X. MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell Dev Biol Anim 2020; 56:522-532. [PMID: 32754856 DOI: 10.1007/s11626-020-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) is involved in diverse biological processes of cells including dermal fibroblasts that contributed to wound healing and resulted in keloid scarring. MiR-506-3p has been identified as a tumor suppressor or oncogene in fibroblasts of various cancers, while the role of miR-506-3p in regulating functions of post-burn dermal fibroblasts is poorly known. In this study, miR-506-3p was confirmed to be significantly downregulated in burned tissues and heat-stimulated dermal fibroblasts. Expression levels of autophagy-related proteins suggested thermal stimulus promoting the autophagy in dermal fibroblasts. Then, miR-506-3p inhibition enhanced cell proliferation and cell cycle process in dermal fibroblasts after thermal stimulus, whereas overexpression of miR-506-3p showed the opposite effect. Western blot assay showed that inhibition of miR-506-3p resulted in the upregulation of the expression levels of LC3-II, ATG5, and structural protein collagen I, as well as the downregulation of p62. Marker proteins of intermolecular cross-links in collagen synthesis, including hydroxylysylpyridinoline (HP), lysinepyridine (LP), and lysyl hydroxylase 2 (LH2), were increased by miR-506-3p overexpression and decreased by miR-506-3p inhibition. Moreover, transfection with miR-506-3p mimic suppressed the proliferation and autophagy in heat-stimulated dermal fibroblasts in a dose-dependent manner. Subsequently, dual luciferase reporter gene assay demonstrated that Beclin-1 was a direct target of miR-506-3p, and reintroduction of Beclin-1 could antagonize the suppressive effect of miR-506-3p overexpression on fibroblast proliferation, autophagy, and the intermolecular cross-links in collagen synthesis. Taken together, our findings showed that miR-506-3p regulated autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression.
Collapse
Affiliation(s)
- Min Shi
- School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Xiaoming Zong
- Department of Oncology, Shaanxi Friendship Hospital, Xi'an, China
| | - Lei Chen
- School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Xiaobo Guo
- Department of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Xinqiang Ding
- Department of Dermatology, Xi'an Children's Hospital, 69 Xijuyuan Road, Lianhu District, Xi'an, 710000, China.
| |
Collapse
|
24
|
Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 2020; 130:110542. [PMID: 32738636 DOI: 10.1016/j.biopha.2020.110542] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
NOD-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular receptor that senses foreign pathogens and endogenous danger signals. It assembles with apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 to form a multimeric protein called the NLRP3 inflammasome. Among its various functions, the NLRP3 inflammasome can induce the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 while also promoting gasdermin D (GSDMD)-mediated pyroptosis. Previous studies have established a vital role for the NLRP3 inflammasome in innate and adaptive immune system as well as its contribution to several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), systemic sclerosis (SSc), and ankylosing spondylitis (AS). In this review, we briefly introduce the biological features of the NLRP3 inflammasome and present the mechanisms underlying its activation and regulation. We also summarize recent studies that have reported on the roles of NLRP3 inflammasome in the immune system and several autoimmune diseases, with a focus on therapeutic and clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jialong Guo
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
25
|
Wong L, You ZH, Guo ZH, Yi HC, Chen ZH, Cao MY. MIPDH: A Novel Computational Model for Predicting microRNA-mRNA Interactions by DeepWalk on a Heterogeneous Network. ACS OMEGA 2020; 5:17022-17032. [PMID: 32715187 PMCID: PMC7376568 DOI: 10.1021/acsomega.9b04195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Analysis of miRNA-target mRNA interaction (MTI) is of crucial significance in discovering new target candidates for miRNAs. However, the biological experiments for identifying MTIs have a high false positive rate and are high-priced, time-consuming, and arduous. It is an urgent task to develop effective computational approaches to enhance the investigation of miRNA-target mRNA relationships. In this study, a novel method called MIPDH is developed for miRNA-mRNA interaction prediction by using DeepWalk on a heterogeneous network. More specifically, MIPDH extracts two kinds of features, in which a biological behavior feature is learned using a network embedding algorithm on a constructed heterogeneous network derived from 17 kinds of associations among drug, disease, and 6 kinds of biomolecules, and the attribute feature is learned using the k-mer method on sequences of miRNAs and target mRNAs. Then, a random forest classifier is trained on the features combined with the biological behavior feature and attribute feature. When implementing a 5-fold cross-validation experiment, MIPDH achieved an average accuracy, sensitivity, specificity and AUC of 75.85, 74.37, 77.33%, and 0.8044, respectively. To further evaluate the performance of MIPDH, other classifiers and feature descriptors are conducted for comparisons. MIPDH can achieve a better performance. Additionally, case studies on hsa-miR-106b-5p, hsa-let-7d-5p, and hsa-let-7e-5p are also implemented. As a result, 14, 9, and 9 out of the top 15 targets that interacted with these miRNAs were verified using the experimental literature or other databases. All these prediction results indicate that MIPDH is an effective method for predicting miRNA-target mRNA interactions.
Collapse
Affiliation(s)
- Leon Wong
- The
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- XinJiang
Laboratory of Minority Speech and Language Information Processing, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhu-Hong You
- The
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- XinJiang
Laboratory of Minority Speech and Language Information Processing, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhen-Hao Guo
- The
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- XinJiang
Laboratory of Minority Speech and Language Information Processing, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hai-Cheng Yi
- The
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- XinJiang
Laboratory of Minority Speech and Language Information Processing, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhan-Heng Chen
- The
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- XinJiang
Laboratory of Minority Speech and Language Information Processing, Chinese Academy of Sciences, Urumqi 830011, China
| | - Mei-Yuan Cao
- Guang
Dong Polytechnic College, Zhaoqing 526100, Guangdong, China
| |
Collapse
|
26
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Epigenetics has been implicated in the pathogenesis of systemic sclerosis (SSc). In this review, the involvement of the three epigenetic mechanisms in SSc development and progression-DNA methylation, histone modifications, and non-coding RNAs-will be discussed. RECENT FINDINGS Alteration in epigenetics was observed in immune cells, dermal fibroblasts, and endothelial cells derived from SSc patients. Genes that are affected include those involved in immune cell function and differentiation, TGFβ and Wnt pathways, extracellular matrix accumulation, transcription factors, and angiogenesis. All the studies remain in the pre-clinical stage. Extensive research provides evidence that epigenetic alterations are critical for SSc pathogenesis. Future epigenomic studies will undoubtedly continue to broaden our understanding of disease pathogenesis and clinical heterogeneity. They will also provide the scientific basis for repurposing epigenetic-modifying agents for SSc patients.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Pl., 4025 BSRB, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
28
|
O'Reilly S. Epigenetic modulation as a therapy in systemic sclerosis. Rheumatology (Oxford) 2019; 58:191-196. [PMID: 29579252 DOI: 10.1093/rheumatology/key071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 01/07/2023] Open
Abstract
SSc is an autoimmune idiopathic disease in which there is an inflammatory component driving fibrosis. The chief cell involved is the myofibroblast, which when activated secretes copious amounts of extracellular matrix that forms deposits, leading to stiffness and fibrosis. The fibrosis is most prevalent in the skin and lungs. In recent years epigenetic modifications have been uncovered that positively and negatively regulate the genesis of the myofibroblasts and that can be activated and regulated by a variety of cytokines and hormones. The epigenetic contribution to these cells and to SSc is only now really coming to light, and this opens up a new therapeutic target for the disease for which many epigenetic drugs, such as miRNA replacements, are beginning to be developed. This review will examine the epigenetic regulators in the disease and possible targeting of these.
Collapse
Affiliation(s)
- Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon-Tyne, UK
| |
Collapse
|
29
|
Wolska-Gawron K, Bartosińska J, Krasowska D. MicroRNA in localized scleroderma: a review of literature. Arch Dermatol Res 2019; 312:317-324. [PMID: 31637470 PMCID: PMC7248018 DOI: 10.1007/s00403-019-01991-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 09/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Localized scleroderma (LoSc) is rare connective tissue disease that manifests with inflammation and fibrosis of the skin. Depending on the LoSc subtype, adjacent structures such as subcutaneous tissue, fascia, muscles, bones may be affected. The hallmark of fibrosis is tissue remodelling with excess deposition of extracellular matrix proteins (ECM), principally collagens. MicroRNAs (miRNAs) are small, noncoding RNA molecules that consist of 19-24 nucleotides and act as negative regulators of gene expression at the posttranscriptional level. Based on the current articles, approximately 40 microRNAs have been linked to fibrosis in different organs and diseases. The majority of these molecules promote or inhibit fibrosis by targeting connective tissue growth factor (CTGF), extracellular matrix proteins, TGF-β pathway and MAPK (mitogen-activated protein kinase) pathway. Further, particular microRNAs regulate fibrogenesis by altering epithelial-to-mesenchymal transition (EMT) or activating proliferation of myofibroblasts. MiRNAs are relatively stable, detectable in tissues and body fluids (serum, plasma) which suggest that they may serve as beneficial biomarkers to monitor the course of the disease and response to treatment. Herein, we report the present state of knowledge on microRNA expression in localized scleroderma.
Collapse
Affiliation(s)
- Katarzyna Wolska-Gawron
- Chair and Department of Dermatology, Venerology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland.
| | - Joanna Bartosińska
- Chair and Department of Dermatology, Venerology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venerology and Paediatric Dermatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
30
|
Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:238-250. [PMID: 35382507 PMCID: PMC8922566 DOI: 10.1177/2397198319855872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 08/02/2023]
Abstract
Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.
Collapse
Affiliation(s)
- Paula S Ramos
- Paula S. Ramos, Division of Rheumatology and Immunology, Department of Medicine and Department of Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, MSC 637, Charleston, SC 29425, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Linear scleroderma is the most common subtype of localized scleroderma (LoS) in children. It can be associated with extracutaneous manifestations and long-term sequelae. Thus, appropriate diagnosis and management are key to improve the prognosis. In this review, we summarize the most relevant recent publications for the diagnosis, evaluation of disease activity and adequate management of patients with linear scleroderma. RECENT FINDINGS There are specific clinical features that indicate activity in LoS; dermoscopy and Wood's lamp may be useful. Summarizing, scoring methods seem to provide the most adequate assessment of LoS; but several biomarkers that correlate with activity have been studied: E-selectin and IL-2 receptor, CD34+ dermal dendritic cells and Th/Th1 immunophenotype with decreased T helper (Th2), T regulatory (Tregs), B and natural killer (NK) cells. Recent studies propose hydroxychloroquine monotherapy and tocilizumab as potential therapeutic options. SUMMARY Clinical evaluation, both physical exam and history, is the most important aspect in diagnosing and assessing activity of linear scleroderma. Clinical scoring methods may be most useful for evaluation of activity; eventually, other biomarkers could be relevant in clinical practice. For most patients with linear scleroderma, the first choice of treatment is methotrexate, but physical therapy, plastic surgery and/or orthopedic management are key to improve residual limitations and quality of life. VIDEO ABSTRACT: http://links.lww.com/MOP/A35.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Autoimmune diseases are of unknown origin, and they represent significant causes of morbidity and mortality. Here, we review new developments in the understanding of their pathogenesis that have led to development of well tolerated and effective treatments. RECENT FINDINGS In addition to the long-recognized genetic impact of the HLA locus, interferon regulatory factors, PTPN22, STAT4, and NOX have been implicated in pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Smoking, ultraviolet light, diet, and microbiota exert strong environmental influence on development of RA and SLE. Metabolism has been recognized as a critical integrator of genetic and environmental factors, and it controls immune cell differentiation both under physiological and pathological conditions. SUMMARY With the advent of high-throughput genetic, proteomic, and metabolomic technologies, the field of medicine has been shifting towards systems-based and personalized approaches to diagnose and treat common conditions, including rheumatic diseases. Regulatory checkpoints of metabolism and signal transduction, such as glucose utilization, mitochondrial electron transport, JAK, mTOR, and AMPK pathway activation, and production of pro-inflammatory cytokines IL-1, IL-6, and IL-17 have presented new targets for therapeutic intervention. This review amalgamates recent discoveries in genetics and metabolomics with immunological pathways of pathogenesis in rheumatic diseases.
Collapse
Affiliation(s)
- Eric Liu
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | |
Collapse
|
33
|
Moura J, Sørensen A, Leal EC, Svendsen R, Carvalho L, Willemoes RJ, Jørgensen PT, Jenssen H, Wengel J, Dalgaard LT, Carvalho E. microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Sci Rep 2019; 9:5836. [PMID: 30967591 PMCID: PMC6456606 DOI: 10.1038/s41598-019-42309-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Treatment for chronic diabetic foot ulcers is limited by the inability to simultaneously address the excessive inflammation and impaired re-epithelization and remodeling. Impaired re-epithelization leads to significantly delayed wound closure and excessive inflammation causes tissue destruction, both enhancing wound pathogen colonization. Among many differentially expressed microRNAs, miR-155 is significantly upregulated and fibroblast growth factor 7 (FGF7) mRNA (target of miR-155) and protein are suppressed in diabetic skin, when compared to controls, leading us to hypothesize that topical miR-155 inhibition would improve diabetic wound healing by restoring FGF7 expression. In vitro inhibition of miR-155 increased human keratinocyte scratch closure and topical inhibition of miR-155 in vivo in wounds increased murine FGF7 protein expression and significantly enhanced diabetic wound healing. Moreover, we show that miR-155 inhibition leads to a reduction in wound inflammation, in accordance with known pro-inflammatory actions of miR-155. Our results demonstrate, for the first time, that topical miR-155 inhibition increases diabetic wound fibroblast growth factor 7 expression in diabetic wounds, which, in turn, increases re-epithelization and, consequently, accelerates wound closure. Topical miR-155 inhibition targets both excessive inflammation and impaired re-epithelization and remodeling, being a potentially new and effective treatment for chronic diabetic foot ulcers.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Anja Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rikke Svendsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lina Carvalho
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rie Juul Willemoes
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Per Trolle Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States. .,Arkansas Children's Research Institute, Little Rock, Arkansas, United States.
| |
Collapse
|
34
|
The MicroRNA miR-155 Is Essential in Fibrosis. Noncoding RNA 2019; 5:ncrna5010023. [PMID: 30871125 PMCID: PMC6468348 DOI: 10.3390/ncrna5010023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
The function of microRNAs (miRNAs) during fibrosis and the downstream regulation of gene expression by these miRNAs have become of great biological interest. miR-155 is consistently upregulated in fibrotic disorders, and its ablation downregulates collagen synthesis. Studies demonstrate the integral role of miR-155 in fibrosis, as it mediates TGF-β1 signaling to drive collagen synthesis. In this review, we summarize recent findings on the association between miR-155 and fibrotic disorders. We discuss the cross-signaling between macrophages and fibroblasts that orchestrates the upregulation of collagen synthesis mediated by miR-155. As miR-155 is involved in the activation of the innate and adaptive immune systems, specific targeting of miR-155 in pathologic cells that make excessive collagen could be a viable option before the depletion of miR-155 becomes an attractive antifibrotic approach.
Collapse
|
35
|
Islas JF, Moreno-Cuevas JE. A MicroRNA Perspective on Cardiovascular Development and Diseases: An Update. Int J Mol Sci 2018; 19:E2075. [PMID: 30018214 PMCID: PMC6073753 DOI: 10.3390/ijms19072075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the latest research pertaining to MicroRNAs (miRs) related to cardiovascular diseases. In today's molecular age, the key clinical aspects of diagnosing and treating these type of diseases are crucial, and miRs play an important role. Therefore, we have made a thorough analysis discussing the most important candidate protagonists of many pathways relating to such conditions as atherosclerosis, heart failure, myocardial infarction, and congenital heart disorders. We approach miRs initially from the fundamental molecular aspects and look at their role in developmental pathways, as well as regulatory mechanisms dysregulated under specific cardiovascular conditions. By doing so, we can better understand their functional roles. Next, we look at therapeutic aspects, including delivery and inhibition techniques. We conclude that a personal approach for treatment is paramount, and so understanding miRs is strategic for cardiovascular health.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| | - Jorge Eugenio Moreno-Cuevas
- Tecnologico de Monterrey, Grupo de Investigación con Enfoque Estratégico en Bioingeniería y Medicina Regenerativa, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, NL 64710, Mexico.
| |
Collapse
|
36
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
37
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
38
|
Horsburgh S, Todryk S, Ramming A, Distler JH, O’Reilly S. Innate lymphoid cells and fibrotic regulation. Immunol Lett 2018; 195:38-44. [DOI: 10.1016/j.imlet.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/04/2023]
|
39
|
Bergmann C, Brandt A, Merlevede B, Hallenberger L, Dees C, Wohlfahrt T, Pötter S, Zhang Y, Chen CW, Mallano T, Liang R, Kagwiria R, Kreuter A, Pantelaki I, Bozec A, Abraham D, Rieker R, Ramming A, Distler O, Schett G, Distler JHW. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis 2017; 77:150-158. [DOI: 10.1136/annrheumdis-2017-211501] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
ObjectivesSystemic sclerosis (SSc) fibroblasts remain activated even in the absence of exogenous stimuli. Epigenetic alterations are thought to play a role for this endogenous activation. Trimethylation of histone H3 on lysine 27 (H3K27me3) is regulated by Jumonji domain-containing protein 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in a therapeutically targetable manner. The aim of this study was to explore H3K27me3 demethylases as potential targets for the treatment of fibrosis.MethodsJMJD3 was inactivated by small interfering RNA-mediated knockdown and by pharmacological inhibition with GSKJ4. The effects of targeted inactivation of JMJD3 were analysed in cultured fibroblasts and in the murine models of bleomycin-induced and topoisomerase-I (topoI)-induced fibrosis. H3K27me3 at the FRA2 promoter was analysed by ChIP.ResultsThe expression of JMJD3, but not of UTX, was increased in fibroblasts in SSc skin and in experimental fibrosis in a transforming growth factor beta (TGFβ)-dependent manner. Inactivation of JMJD3 reversed the activated fibroblast phenotype in SSc fibroblasts and prevented the activation of healthy dermal fibroblasts by TGFβ. Pharmacological inhibition of JMJD3 ameliorated bleomycin-induced and topoI-induced fibrosis in well-tolerated doses. JMJD3 regulated fibroblast activation in a FRA2-dependent manner: Inactivation of JMJD3 reduced the expression of FRA2 by inducing accumulation of H3K27me3 at the FRA2 promoter. Moreover, the antifibrotic effects of JMJD3 inhibition were reduced on knockdown of FRA2.ConclusionWe present first evidence for a deregulation of JMJD3 in SSc. JMJD3 modulates fibroblast activation by regulating the levels of H3K27me3 at the promoter of FRA2. Targeted inhibition of JMJD3 limits the aberrant activation of SSc fibroblasts and exerts antifibrotic effects in two murine models.
Collapse
|
40
|
Abstract
Purpose of Review This review provides a summary of recent insights into the role of the local white adipose tissue (WAT) in systemic sclerosis. Recent Findings Adipocytes located in an interfacial WAT area adjacent to fibrotic lesions have an intermediate phenotype and special properties implicated in fibrotic pathology in systemic sclerosis (SSc). The important role of these cells is recognized in different pathologies, such as wound healing, psoriasis, breast cancer, and prostate cancer. Additionally, both immature and mature adipocytes are involved in the appearance of fibroblast-like cells but exhibit different phenotypes and synthetic properties. Summary Adipocytes from interfacial WAT adjacent to the fibrotic area in SSc are phenotypically different from bulk adipocytes and are involved in pathogenesis of SSc. Immature and mature adipocytes from this WAT layer differentiate into various types of fibroblast-like cells, making the local ratio of immature to mature adipocytes in interfacial WAT of particular importance in SSc pathogenesis.
Collapse
|
41
|
Walczyk M, Paradowska-Gorycka A, Olesinska M. Epigenetics: The Future Direction in Systemic Sclerosis. Scand J Immunol 2017; 86:427-435. [DOI: 10.1111/sji.12595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Walczyk
- Department of Connective Tissue Diseases; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| | - A. Paradowska-Gorycka
- Department of Biochemistry and Molecular Biology; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| | - M. Olesinska
- Department of Connective Tissue Diseases; National Institute of Geriatrics, Rheumatology and Rehabilitation; Warsaw Poland
| |
Collapse
|
42
|
Abstract
Systemic sclerosis (SSc) is a pro-fibrotic condition with a poorly understood aetiology. Evidence presented by Artlett et al. in this issue suggests that the microRNA miR-155 is key, with its involvement dependent on the NLRP3 inflammasome. This links epigenetic events with inflammasome signalling in SSc and opens the door to new therapeutic strategies for the treatment of SSc.
Collapse
Affiliation(s)
- John Henderson
- Immunology group, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle Upon Tyne, Tyne and Wear, NE2 8ST, UK
| | - Steven O'Reilly
- Immunology group, Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle Upon Tyne, Tyne and Wear, NE2 8ST, UK.
| |
Collapse
|
43
|
Cross J, Stenton GR, Harwig C, Szabo C, Genovese T, Di Paola R, Esposito E, Cuzzocrea S, Mackenzie LF. AQX-1125, small molecule SHIP1 activator inhibits bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2017; 174:3045-3057. [PMID: 28658529 PMCID: PMC5573425 DOI: 10.1111/bph.13934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/26/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The phosphatase SHIP1 negatively regulates the PI3K pathway, and its predominant expression within cells of the haematopoietic compartment makes SHIP1 activation a novel strategy to limit inflammatory signalling generated through PI3K. AQX-1125 is the only clinical-stage, orally administered, SHIP1 activator. Here, we demonstrate the prophylactic and therapeutic effects of AQX-1125, in a mouse model of bleomycin-induced lung fibrosis. EXPERIMENTAL APPROACH For prophylactic evaluation, AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or dexamethasone (1 mg·kg-1 ·d-1 , i.p.) were given to CD-1 mice starting 3 days before intratracheal administration of bleomycin (0.1 IU per mouse) and continued daily for 7 or 21 days. Therapeutic potentials of AQX-1125 (3, 10 or 30 mg·kg-1 ·d-1 , p.o.) or pirfenidone (90 mg·kg-1 ·d-1 , p.o.) were assessed by initiating treatment 13 days after bleomycin instillation and continuing until day 28. KEY RESULTS Given prophylactically, AQX-1125 (10 and 30 mg·kg-1 ) reduced histopathological changes in lungs, 7 and 21 days following bleomycin-induced injury. At the same doses, AQX-1125 reduced the number of total leukocytes, neutrophil activity, TGF-β immunoreactivity and soluble collagen in lungs. Administered therapeutically, AQX-1125 (10 and 30 mg·kg-1 ) improved lung histopathology, cellular infiltration and reduced lung collagen content. At 30 mg·kg-1 , the effects of AQX-1125 were similar to those of pirfenidone (90 mg·kg-1 ) with corresponding improvements in disease severity. CONCLUSIONS AND IMPLICATIONS AQX-1125 prevented bleomycin-induced lung injury during the inflammatory and fibrotic phases. AQX-1125, given therapeutically, modified disease progression and improved survival, as effectively as pirfenidone.
Collapse
Affiliation(s)
| | | | - Curtis Harwig
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Csaba Szabo
- Aquinox Pharmaceuticals (Canada) Inc.VancouverBCCanada
| | - Tiziana Genovese
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Emanuale Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and PharmacologyUniversity of MessinaMessinaItaly
| | | |
Collapse
|
44
|
Abstract
Morphea, also known as localized scleroderma, encompasses a group of idiopathic sclerotic skin diseases. The spectrum ranges from relatively mild phenotypes, which generally cause few problems besides local discomfort and visible disfigurement, to subtypes with severe complications such as joint contractures and limb length discrepancies. Eosinophilic fasciitis (EF, Shulman syndrome) is often regarded as belonging to the severe end of the morphea spectrum. The exact driving mechanisms behind morphea and EF pathogenesis remain to be elucidated. However, extensive extracellular matrix formation and autoimmune dysfunction are thought to be key pathogenic processes. Likewise, these processes are considered essential in systemic sclerosis (SSc) pathogenesis. In addition, similarities in clinical presentation between morphea and SSc have led to many theories about their relatedness. Importantly, morphea may be differentiated from SSc based on absence of sclerodactyly, Raynaud’s phenomenon, and nailfold capillary changes. The diagnosis of morphea is often based on characteristic clinical findings. Histopathological evaluation of skin biopsies and laboratory tests are not necessary in the majority of morphea cases. However, full-thickness skin biopsies, containing fascia and muscle tissue, are required for the diagnosis of EF. Monitoring of disease activity and damage, especially of subcutaneous involvement, is one of the most challenging aspects of morphea care. Therefore, data harmonization is crucial for optimizing standard care and for comparability of study results. Recently, the localized scleroderma cutaneous assessment tool (LoSCAT) has been developed and validated for morphea. The LoSCAT is currently the most widely reported outcome measure for morphea. Care providers should take disease subtype, degree of activity, depth of involvement, and quality-of-life impairments into account when initiating treatment. In most patients with circumscribed superficial subtypes, treatment with topical therapies suffices. In more widespread disease, UVA1 phototherapy or systemic treatment with methotrexate (MTX), with or without a systemic corticosteroid combination, should be initiated. Disappointingly, few alternatives for MTX have been described and additional research is still needed to optimize treatment for these debilitating conditions. In this review, we present a state-of-the-art flow chart that guides care providers in the treatment of morphea and EF.
Collapse
|
45
|
MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond) 2017; 131:1923-1940. [PMID: 28705953 DOI: 10.1042/cs20170039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic 'antagomiRs' to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.
Collapse
|
46
|
Artlett CM, Sassi-Gaha S, Hope JL, Feghali-Bostwick CA, Katsikis PD. Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res Ther 2017. [PMID: 28623945 PMCID: PMC5473986 DOI: 10.1186/s13075-017-1331-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the important role that microRNAs (miRNAs) play in immunity and inflammation, their involvement in systemic sclerosis (SSc) remains poorly characterized. miRNA-155 (miR-155) plays a role in pulmonary fibrosis and its expression can be induced with interleukin (IL)-1β. SSc fibroblasts have activated inflammasomes that are integrally involved in mediating the myofibroblast phenotype. In light of this, we investigated whether miR-155 played a role in SSc and if its expression was dependent on inflammasome activation. METHODS miR-155 expression was confirmed in SSc dermal and lung fibroblasts by quantitative polymerase chain reaction (PCR). Wild-type and NLRP3-deficient murine fibroblasts were utilized to explore the regulation of miR-155 during inflammasome activation. miR-155-deficient fibroblasts and retroviral transductions with a miR-155 expression or control vectors were used to understand the contribution of miR-155 in fibrosis. RESULTS miR-155 was significantly increased and the highest expressing miRNA in SSc lung fibroblasts. Its expression was dependent on inflammasome activation as miR-155 expression could be blocked when inflammasome signaling was inhibited. In the absence of miR-155, inflammasome-mediated collagen synthesis could not be induced but was restored when miR-155 was expressed in miR-155-deficient fibroblasts. CONCLUSIONS miR-155 is upregulated in SSc. These results suggest that the inflammasome promotes the expression of miR-155 and that miR-155 is a critical miRNA that drives fibrosis.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| | - Sihem Sassi-Gaha
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Jennifer L Hope
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.,Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carol A Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Peter D Katsikis
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.,Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 2017; 83:73-94. [PMID: 28526340 DOI: 10.1016/j.jaut.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
With unknown etiology, scleroderma (SSc) is a multifaceted disease characterized by immune activation, vascular complications, and excessive fibrosis in internal organs. Genetic studies, including candidate gene association studies, genome-wide association studies, and whole-exome sequencing have supported the notion that while genetic susceptibility to SSc appears to be modest, SSc patients are genetically predisposed to this disease. The strongest genetic association for SSc lies within the MHC region, with loci in HLA-DRB1, HLA-DQB1, HLA-DPB1, and HLA-DOA1 being the most replicated. The non-HLA genes associated with SSc are involved in various functions, with the most robust associations including genes for B and T cell activation and innate immunity. Other pathways include genes involved in extracellular matrix deposition, cytokines, and autophagy. Among these genes, IRF5, STAT4, and CD247 were replicated most frequently while SNPs rs35677470 in DNASE1L3, rs5029939 in TNFAIP3, and rs7574685 in STAT4 have the strongest associations with SSc. In addition to genetic predisposition, it became clear that environmental factors and epigenetic influences also contribute to the development of SSc. Epigenetics, which refers to studies that focus on heritable phenotypes resulting from changes in chromatin structure without affecting the DNA sequence, is one of the most rapidly expanding fields in biomedical research. Indeed extensive epigenetic changes have been described in SSc. Alteration in enzymes and mediators involved in DNA methylation and histone modification, as well as dysregulated non-coding RNA levels all contribute to fibrosis, immune dysregulation, and impaired angiogenesis in this disease. Genes that are affected by epigenetic dysregulation include ones involved in autoimmunity, T cell function and regulation, TGFβ pathway, Wnt pathway, extracellular matrix, and transcription factors governing fibrosis and angiogenesis. In this review, we provide a comprehensive overview of the current findings of SSc genetic susceptibility, followed by an extensive description and a systematic review of epigenetic research that has been carried out to date in SSc. We also summarize the therapeutic potential of drugs that affect epigenetic mechanisms, and outline the future prospective of genomics and epigenomics research in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Bergmann C, Distler JHW. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 2017; 9:463-477. [DOI: 10.2217/epi-2016-0150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prolonged activation of fibroblasts is a central hallmark of fibrosing disorders such as systemic sclerosis (SSc). Fibroblasts are the key effector cells. They differentiate into an activated myofibroblast phenotype. In contrast to normal wound healing with transient activation, myofibroblasts persist in fibrosing disorders. Current hypothesis suggests that profibrotic cytokines might trigger epigenetic changes which contribute to the persistently activated fibroblast phenotype. In the last years, several epigenetic alterations have been described in SSc and have been linked to different pathogenic aspects of the disease, in particular to aberrant fibroblast activation and tissue fibrosis, but also to vascular manifestations and inflammation. The focus of this review is the current knowledge on epigenetic changes in fibroblast activation in SSc.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg HW Distler
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
49
|
Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y. A comparative study of the characterization of miR-155 in knockout mice. PLoS One 2017; 12:e0173487. [PMID: 28278287 PMCID: PMC5344489 DOI: 10.1371/journal.pone.0173487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models.
Collapse
Affiliation(s)
- Dong Zhang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yongchun Cui
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bin Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Xiaokang Luo
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Bo Li
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
| | - Yue Tang
- Chinese Academy of Medical Sciences, Peking Union Medical College, National Centre for Cardiovascular Disease, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Beijing, China
- * E-mail:
| |
Collapse
|
50
|
Li F, Li L, Cheng M, Wang X, Hao J, Liu S, Duan H. SHIP, a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease. Biochem Biophys Res Commun 2016; 482:1477-1483. [PMID: 27965087 DOI: 10.1016/j.bbrc.2016.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023]
Abstract
Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lisha Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meijuan Cheng
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiumin Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|