1
|
Zhang L, Deng R, Liu L, Du H, Tang D. Novel insights into cuproptosis inducers and inhibitors. Front Mol Biosci 2024; 11:1477971. [PMID: 39659361 PMCID: PMC11628392 DOI: 10.3389/fmolb.2024.1477971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cuproptosis is a new pattern of Cu-dependent cell death distinct from classic cell death pathways and characterized by aberrant lipoylated protein aggregation in TCA cycle, Fe-S cluster protein loss, HSP70 elevation, proteotoxic and oxidative stress aggravation. Previous studies on Cu homeostasis and Cu-induced cell death provide a great basis for the discovery of cuproptosis. It has gradually gathered enormous research interests and large progress has been achieved in revealing the metabolic pathways and key targets of cuproptosis, due to its role in mediating some genetic, neurodegenerative, cardiovascular and tumoral diseases. In terms of the key targets in cuproptosis metabolic pathways, they can be categorized into three types: oxidative stress, mitochondrial respiration, ubiquitin-proteasome system. And strategies for developing cuproptosis inducers and inhibitors involved in these targets have been continuously improved. Briefly, based on the essential cuproptosis targets and metabolic pathways, this paper classifies some relevant inducers and inhibitors including small molecule compounds, transcription factors and ncRNAs with the overview of principle, scientific and medical application, in order to provide reference for the cuproptosis study and target therapy in the future.
Collapse
Affiliation(s)
- Ligang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruiting Deng
- Beijing Mercer United International Education Consulting Co., Ltd., Guangzhou, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Tang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, China
| |
Collapse
|
2
|
Shirke AA, Walker E, Chavali S, Ramamurthy G, Zhang L, Panigrahi A, Basilion JP, Wang X. A Synergistic Strategy Combining Chemotherapy and Photodynamic Therapy to Eradicate Prostate Cancer. Int J Mol Sci 2024; 25:7086. [PMID: 39000194 PMCID: PMC11241360 DOI: 10.3390/ijms25137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Prostate cancer is the most prevalent cancer among men in the United States and is a leading cause of cancer-related death. Prostate specific membrane antigen (PSMA) has been established as a biomarker for prostate cancer diagnosis and treatment. This study aimed to develop a novel theranostic agent, PSMA-1-MMAE-Pc413, which integrates a PSMA-targeting ligand, the photosensitizer Pc413, and the microtubular inhibitor monomethyl auristatin E (MMAE) for synergistic therapeutic efficacy. In vitro uptake studies revealed that PSMA-1-MMAE-Pc413 demonstrated selective and specific uptake in PSMA-positive PC3pip cells but not in PSMA-negative PC3flu cells, with the uptake in PC3pip cells being approximately three times higher. In vitro cytotoxicity assays showed that, when exposed to light, PSMA-1-MMAE-Pc413 had a synergistic effect, leading to significantly greater cytotoxicity in PSMA-positive cells (IC50 = 2.2 nM) compared to PSMA-1-Pc413 with light irradiation (IC50 = 164.9 nM) or PSMA-1-MMAE-Pc413 without light irradiation (IC50 = 12.6 nM). In vivo imaging studies further demonstrated the selective uptake of PSMA-1-MMAE-Pc413 in PC3pip tumors. In in vivo studies, PSMA-1-MMAE-Pc413 dramatically improves the therapeutic outcome for prostate cancer by providing a synergistic effect that surpasses the efficacy of each treatment modality alone in PC3pip tumors. These findings suggest that PSMA-1-MMAE-Pc413 has strong potential for clinical application in improving prostate cancer treatment.
Collapse
Affiliation(s)
- Aditi A. Shirke
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Sriprada Chavali
- Department of Biochemistry, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA;
| | - Gopalakrishnan Ramamurthy
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Abhiram Panigrahi
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| |
Collapse
|
3
|
Chen J, Chen S, Luo H, Wan X, Wu W, Wang S. The complementary and alternative roles of elemene injection in cancer: An umbrella review. Pharmacol Res 2023; 198:107007. [PMID: 37992915 DOI: 10.1016/j.phrs.2023.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND In the past, many meta-analyses (MAs) suggested that elemene injection (EI) played a complementary and alternative role in cancer treatment. However, some results were contradictory and a lot of evidences weren't classified. Thus, their clinical guidance effect was very limited. METHODS Two reviewers independently retrieved 8 databases from their origin to May 19, 2023 and appropriate MAs were taken into consideration. A pooled analysis was conducted to merge results extracted from trials of included MAs. The methodological quality of MAs and the evidence certainty of pooled results were assessed. RESULTS 31 MAs were taken into analysis with poor methodological quality. The main weaknesses were in the areas of heterogeneity analysis, bias risk, and literature selection. According to the present evidence, on the one hand, compared with conventional treatment (CT) alone, EI combined with CT may significantly enhance short-term or long-term efficacy and reduce adverse reactions caused by CT in multiple cancers. On the other hand, using EI alone also can improve ORR in the malignant (pleural) effusion and lessen the recurrence rate in bladder cancer obviously with fewer adverse reactions compared with CT alone. However, this evidence was rated as moderate to very low certainty mainly due to the risk of bias in clinical trials. CONCLUSION EI may be a viable medication for the treatment of cancer although more convincing trials are still required to demonstrate its alternative and complementary benefits. Besides, it seems to have a broad potential for further development in immunotherapy, drug delivery technique, and predictive factor.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Shuqi Chen
- Department of Acupuncture, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Huiyan Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Xinliang Wan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
4
|
Mao Y, Liu X, He K, Lin C, He B, Gao J. Xuanhusuo powder has an anti-breast cancer effect by inhibiting myeloid-derived suppressor cell differentiation in the spleen of mice through down-regulating granulocyte colony stimulating factor. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:88-100. [PMID: 37283122 PMCID: PMC10407995 DOI: 10.3724/zdxbyxb-2022-0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the mechanism of Xuanhusuo powder (XHSP) inhibiting the differentiation of spleen myeloid-derived suppressor cells (MDSCs) in breast cancer mice. METHODS Forty-eight BALB/c female mice aged 4-5 weeks were selected, 6 of them were in normal control group, while others were in tumor-bearing models established by orthotopic injection of 4T1 cells into the subcutaneous fat pad of the second pair of left mammary glands. The tumor-bearing mice were divided into granulocyte colony stimulating factor (G-CSF) control group, G-CSF knock-down group, model control group, XHSP small dose group, XHSP medium dose group, XHSP high dose group, and cyclophosphamide (CTX) group, with 6 mice in each group. G-CSF control group and G-CSF knock-down group were constructed by stably transfecting 4T1 cells established by shRNA lentivirus combined with puromycin selection. 48 h after the model was established, XHSP small, medium, high dose group were given 2, 4, 8 g·kg-1·d-1 intragastric administration once a day, respectively. CTX was given 30 mg/kg by intraperitoneal injection, once every other day. The other groups were given an equal volume of 0.5% hydroxymethylcellulose sodium. The drugs in each group were continuously administered for 25 d. Histological changes in spleen were observed by HE staining, the proportion of MDSCs subsets in the spleen were detected by flow cytometry, the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence, and the concentration of G-CSF in peripheral blood was detected by ELISA. The spleen of tumor-bearing mice was co-cultured with 4T1 stably transfected cell lines in vitro, treated with XHSP (30 μg/mL) for 24 h, and the co-expression of CD11b and Ly6G in the spleen was detected by immunofluorescence. 4T1 cells were treated by XHSP (10, 30, 100 μg/mL) for 12 h. The mRNA level of G-CSF was detected by realtime RT-PCR. RESULTS Compared with normal mice, the red pulp of the spleen in tumor-bearing mice was widened with megakaryocyte infiltration. The proportion of spleen polymorphonucleocyte-like MDSCs (PMN-MDSCs) was significantly increased (P<0.01) and the co-expression of CD11b and Ly6G was increased, and the concentration of G-CSF in peripheral blood was significantly increased (P<0.01). However, XHSP could significantly reduce the proportion of PMN-MDSCs (P<0.05) and the co-expression of CD11b and Ly6G in the spleen, down-regulate the mRNA level of G-CSF in 4T1 cells (P<0.01). The concentration of G-CSF in peripheral blood of tumor-bearing mice also decreased (P<0.05) and tumor volume was reduced and splenomegaly was improved (all P<0.05). CONCLUSIONS XHSP may play an anti-breast cancer role by down-regulating G-CSF, negatively regulating the differentiation of MDSCs, and reconstruct the spleen myeloid microenvironment.
Collapse
Affiliation(s)
- Youer Mao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, Zhejiang Province, China.
| | - Xi Liu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 311499, China.
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, Zhejiang Province, China.
| | - Kai He
- Department of Traditional Chinese Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chen Lin
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 311499, China
| | - Bingqian He
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 311499, China
| | - Jianli Gao
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 311499, China.
| |
Collapse
|
5
|
Shin SY, Nguyen LK. SynDISCO: A Mechanistic Modeling-Based Framework for Predictive Prioritization of Synergistic Drug Combinations Targeting Cell Signalling Networks. Methods Mol Biol 2023; 2634:357-381. [PMID: 37074588 DOI: 10.1007/978-1-0716-3008-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The widespread development of resistance to cancer monotherapies has prompted the need to identify combinatorial treatment approaches that circumvent drug resistance and achieve more durable clinical benefit. However, given the vast space of possible combinations of existing drugs, the inaccessibility of drug screens to candidate targets with no available drugs, and the significant heterogeneity of cancers, exhaustive experimental testing of combination treatments remains highly impractical. There is thus an urgent need to develop computational approaches that complement experimental efforts and aid the identification and prioritization of effective drug combinations. Here, we provide a practical guide to SynDISCO, a computational framework that leverages mechanistic ODE modeling to predict and prioritize synergistic combination treatments directed at signaling networks. We demonstrate the key steps of SynDISCO and its application to the EGFR-MET signaling network in triple negative breast cancer as an illustrative example. SynDISCO is, however, a network- and cancer-independent framework, and given a suitable ODE model of the network of interest, it could be leveraged to discover cancer-specific combination treatments.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Li J, Dai P, Sun J, Yu W, Han W, Li K. FBP1 induced by β-elemene enhances the sensitivity of gefitinib in lung cancer. Thorac Cancer 2022; 14:371-380. [PMID: 36525508 PMCID: PMC9891864 DOI: 10.1111/1759-7714.14750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND β-elemene is known to play a critical role in tumorigenesis as well as tyrosine kinase inhibitor (TKI) resistance in lung cancer. However, the biological function and molecular mechanism remain largely unknown. METHODS In this study, the common genes involved in gefitinib resistance and β-elemene were identified using bioinformatic analysis. The expression of FBP1 was examined by qRT-PCR and Western blot analysis. Cell proliferation, flow cytometry, clone formation and IC50 assays were performed to assess the effects of β-elemene and FBP1. Western blot analysis was used to evaluate apoptosis-related gene expression. Finally, in vivo experiments were conducted to assess the crucial role of FBP1 in gefitinib-resistant HCC827/GR cells in nude mice. RESULTS Screening analysis demonstrated that fructose-1,6-bisphosphatase (FBP1) was induced by β-elemene and downregulated in gefitinib-resistant lung cells. Functionally, overexpression of FBP1 inhibited proliferation and gefitinib resistance and promoted apoptosis of PC9/GR and HCC827/GR cells in vitro. Mechanistically, FBP1 impeded the nuclear translocation of p-STAT3. The FBP1/STAT3 axis was required for FBP1-mediated apoptosis-related gene expression. In vivo experiments further confirmed the enhanced effects of FBP1 on lung cancer cell sensitivity to gefitinib. CONCLUSION Our research indicated that β-elemene suppressed proliferation and enhanced sensitivity to gefitinib by inducing apoptosis through the FBP1/STAT3 axis in gefitinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Jian Li
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Ping Dai
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Jing Sun
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Wenyan Yu
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Wei Han
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| | - Kaichun Li
- Department of OncologyShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Cao LY, Xu JY, Zhuo XT, Zhang W, Wei LJ, Dong JH, Bai RR, Wang X, Jiang YY, Wang YJ, Ye XY, Xie T, Huang ZH. 2,2'-((1R,3R,4S)-4-methyl-4-vinylcyclohexane-1,3-diyl) bis(prop-2-en-1-amine), a bisamino derivative of β-Elemene, inhibits glioblastoma growth through downregulation of YAP signaling. Am J Cancer Res 2022; 12:5484-5499. [PMID: 36628286 PMCID: PMC9827083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/20/2022] [Indexed: 01/12/2023] Open
Abstract
β-Elemene, a compound extracted from Chinese herb Curcuma wenyujin, has been demonstrated with antitumor effects in various cancers, including glioblastoma (GBM), a primary brain tumor with high morbidity and mortality. In this study, we reported a bisamino derivative of β-Elemene, 2, 2'-((1R, 3R, 4S)-4-methyl-4-vinylcyclohexane-1, 3-diyl) bis(prop-2-en-1-amine) (compound 1), displayed a better anti-GBM effect than β-Elemene with lower concentration. GBM cell lines (C6 and U87) were treated with compound 1 and subsequently analyzed by several assays. Compound 1 significantly inhibited the migration of C6 and U87 cells based on wound healing assay, transwell assay and inverted migration assay. Furthermore, colony formation assay, immunostaining and flow cytometry assays revealed that compound 1 significantly inhibited the proliferation of GBM cells. In addition, compound 1 induced the apoptosis of GBM cells. Mechanistically, we found Yes-associated protein (YAP) was down-regulated in compound 1-treated GBM cells, and the overexpression of YAP partially rescued the anti-GBM effects of compound 1. Finally, compound 1 suppresses the GBM growth in xenograft model through inactivation YAP signaling. Taken together, these results reveal that a novel derivative of β-Elemene, compound 1, exhibits more potent anti-GBM activity than β-Elemene through inactivating YAP signaling pathway, which will provide novel strategies for the treatment of GBM.
Collapse
Affiliation(s)
- Li-Ying Cao
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Jia-Yun Xu
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xiao-Tao Zhuo
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Li-Jia Wei
- Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Jian-Hong Dong
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Ren-Ren Bai
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xin Wang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Yuan-Yuan Jiang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Yong-Jie Wang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| |
Collapse
|
8
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
9
|
Gao TH, Liao W, Lin LT, Zhu ZP, Lu MG, Fu CM, Xie T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154090. [PMID: 35580439 DOI: 10.1016/j.phymed.2022.154090] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatobiliary disease currently serves as an urgent health issue in public due to health-modulating factors such as extension of life expectancy, increasingly sedentary lifestyles and over-nutrition. A definite treatment remains lacking owing to different stages of the disease itself and its intricate pathogenesis. Traditional Chinese medicine (TCM) has been gradually popularized in clinic with the satisfactory efficacy and good safety. Curcumae Rhizoma (called E Zhu, EZ in Chinese) is a representative herb, which has been used to treat hepatobiliary disease for thousands of years. PURPOSE To systematically summarize the recent research advances on the pharmacological activities of EZ and its constituents, explain the underlying mechanisms of preventing and treating hepatobiliary diseases, and assess the shortcomings of existing work. Besides, ethnopharmacology, phytochemicals, and toxicology of EZ have been researched. METHODS The information about EZ was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG using keywords given below and terms like pharmacological and phytochemical details of this plant. RESULTS The chemical constituents isolated and identified from EZ, such as terpenoids including β-elemene, furanodiene, germacrone, etc. and curcuminoids including curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc. prove to have hepatoprotective effect, anti-liver fibrotic effect, anti-fatty liver effect, anti-liver neoplastic effect, and cholagogic effect through TGF-β1/Smad, JNK1/2-ROS, NF-κB and other anti-inflammatory and antioxidant signaling pathways. Also, EZ is often combined with other Chinese herbs in the treatment of hepatobiliary diseases with good clinical efficacy and no obvious adverse reactions. CONCLUSION It provides a preclinical basis for the efficacy of EZ as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases. Even so, the further studies still needed to alleviate hepatotoxicity and expand clinical application.
Collapse
Affiliation(s)
- Tian-Hui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Ting Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei-Gui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Chao-Mei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
10
|
Yang L, Wang H, Lu W, Yang G, Lin Z, Chen R, Li H. Quantitative proteomic analysis of oxaliplatin induced peripheral neurotoxicity. J Proteomics 2022; 266:104682. [PMID: 35830924 DOI: 10.1016/j.jprot.2022.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction during OXA treatment. Its underlying mechanisms remain unclear, and no effective treatment or prevention therapies are currently available. Here, we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to investigate the global proteome alterations in the dorsal root ganglion (DRG) tissues from mice injected with OXA for different periods. We identified 1128 differentially regulated proteins that were divided into six subclusters according to their alteration trends. Interestingly, these proteins were involved in cellular processes such as cell cycle, ribosomal stress, metabolism, and ion transport. In addition, OXA administration induced abundance changes of ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, we investigated the effects of diroximel fumarate (DRF), an FDA-approved oral fumarate drug for the treatment of relapsing forms of multiple sclerosis. Our findings showed that DRF could effectively ameliorate symptoms of OIPN and reduce the level of oxidative stress in mice. Taken together, our study systematically mapped the proteome alteration associated with the neural toxicity of OXA, and the findings could be leveraged to better understand the mechanisms of OIPN and to develop more effect treatment therapies. SIGNIFICANCE: Oxaliplatin (OXA)-induced peripheral neurotoxicity (OIPN) is a high-incidence and dose-dependent adverse reaction with unclear mechanism. Here we employed a data independent acquisition (DIA)-based quantitative proteomic strategy to explore the proteome changes in dorsal root ganglion (DRG) tissues from mice treated by OXA. The findings provided novel insights regarding the mechanisms of OIPN. For example, our data showed that OXA induced a broad disturbance in metabolism, particularly in glycolysis and amino acid metabolism. Additionally, we observed abundance changes of many ion channels and proteins associated with mitochondrial function and reactive oxygen species production. Furthermore, this study provided the first evidence for the possibility of repositioning diroximel fumarate (DRF) for treating OIPN.
Collapse
Affiliation(s)
- Linlin Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hua Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wanting Lu
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Gangqi Yang
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyan Li
- General Surgery Department and Neurology Department, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China.
| |
Collapse
|
11
|
A Review on the Recent Advancements on Therapeutic Effects of Ions in the Physiological Environments. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review focuses on the therapeutic effects of ions when released in physiological environments. Recent studies have shown that metallic ions like Ag+, Sr2+, Mg2+, Mn2+, Cu2+, Ca2+, P+5, etc., have shown promising results in drug delivery systems and regenerative medicine. These metallic ions can be loaded in nanoparticles, mesoporous bioactive glass nanoparticles (MBGNs), hydroxyapatite (HA), calcium phosphates, polymeric coatings, and salt solutions. The metallic ions can exhibit different functions in the physiological environment such as antibacterial, antiviral, anticancer, bioactive, biocompatible, and angiogenic effects. Furthermore, the metals/metalloid ions can be loaded into scaffolds to improve osteoblast proliferation, differentiation, bone development, fibroblast growth, and improved wound healing efficacy. Moreover, different ions possess different therapeutic limits. Therefore, further mechanisms need to be developed for the highly controlled and sustained release of these ions. This review paper summarizes the recent progress in the use of metallic/metalloid ions in regenerative medicine and encourages further study of ions as a solution to cure diseases.
Collapse
|
12
|
Wu J, Tang X, Shi Y, Ma C, Zhang H, Zhang J, Lu Y, Wei J, Li L, Han L. Crosstalk of LncRNA HOTAIR and SP1-mediated repression of PDK1 contributes to β-Elemene-inhibited proliferation of hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114456. [PMID: 34333105 DOI: 10.1016/j.jep.2021.114456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is a liver malignancy which lacks effective treatment and has a poor prognosis. β-Elemene refers to a natural Curcuma wenyujin-derived single molecular entity, which exhibits various biological activities, and is especially well-known for it's antitumor properties. AIM OF THE RESEARCH LncRNA HOTAIR, SP1, and PDK1 have displayed oncogenic roles in many tumors, participating in the initiation and progression of cancers by mediating multiple signaling pathways. However, there are only a few reports about their roles and mutual relationship in the growth of HCC cells. Therefore, this study aimed to investigate the expression of LncRNA HOTAIR, SP1, and PDK1 and their interaction with β-Elemene in HCC cells. MATERIALS AND METHODS MTT, a Colony formation assay, and flow cytometry were employed to evaluate the growth of HCC and LO2 cells under β-Elemene. LncRNA HOTAIR, SP1 and PDK1 plasmids were transfected into HCC cells by a transient transfection assay, and the expression and interaction of LncRNA HOTAIR, SP1 and PDK1 were assessed via qRT-PCR and western blotting. RESULTS β-Elemene suppressed HCC cell growth through the downregulation of LncRNA HOTAIR, SP1 and PDK1. The results demonstrated a reciprocal interaction among LncRNA HOTAIR, SP1 and PDK1. Exogenous overexpression LncRNA HOTAIR or SP1 eliminated the suppressive effects of β-Elemene on them, and both of which regulated PDK1 expression in HCC cells. Additionally, exogenously overexpressed SP1 or LncRNA HOTAIR prevented β-Elemene inhibition of the protein-level expression of PDK1, whereas overexpressing PDK1 had no effect on SP1, though it still weakened the inhibition of cell growth and LncRNA HOTAIR expression by β-Elemene. CONCLUSION β-Elemene suppresses HCC cell proliferation via through the regulation of LncRNA HOTAIR, SP1, PDK1 and their interaction.
Collapse
Affiliation(s)
- JingJing Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - XiaoJuan Tang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Yao Shi
- Department of Cerebrovascular Disease, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - ChangJu Ma
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Hongyu Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Junhong Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Yue Lu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Jianan Wei
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Li Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Ling Han
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, Guangdong, China; State key laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
13
|
Tan T, Li J, Luo R, Wang R, Yin L, Liu M, Zeng Y, Zeng Z, Xie T. Recent Advances in Understanding the Mechanisms of Elemene in Reversing Drug Resistance in Tumor Cells: A Review. Molecules 2021; 26:5792. [PMID: 34641334 PMCID: PMC8510449 DOI: 10.3390/molecules26195792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors are life-threatening, and chemotherapy is one of the common treatment methods. However, there are often many factors that contribute to the failure of chemotherapy. The multidrug resistance of cancer cells during chemotherapy has been reported, since tumor cells' sensitivity decreases over time. To overcome these problems, extensive studies have been conducted to reverse drug resistance in tumor cells. Elemene, an extract of the natural drug Curcuma wenyujin, has been found to reverse drug resistance and sensitize cancer cells to chemotherapy. Mechanisms by which elemene reverses tumor resistance include inhibiting the efflux of ATP binding cassette subfamily B member 1(ABCB1) transporter, reducing the transmission of exosomes, inducing apoptosis and autophagy, regulating the expression of key genes and proteins in various signaling pathways, blocking the cell cycle, inhibiting stemness, epithelial-mesenchymal transition, and so on. In this paper, the mechanisms of elemene's reversal of drug resistance are comprehensively reviewed.
Collapse
Affiliation(s)
- Tiantian Tan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruhua Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Liyan Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengmeng Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (T.T.); (J.L.); (R.L.); (R.W.); (L.Y.); (M.L.)
- Key Laboratory of Element Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Liu Y, Zheng C, Huang Y, He M, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (Beijing) 2021; 2:315-340. [PMID: 34766149 PMCID: PMC8554658 DOI: 10.1002/mco2.55] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Surgery is the primary treatment approach for cancer, but the survival rate is very low due to the rapid progression of the disease and presence of local and distant metastasis at diagnosis. Adjuvant chemotherapy and radiotherapy are important components of the multidisciplinary approaches for cancer treatment. However, resistance to radiotherapy and chemotherapy may result in treatment failure or even cancer recurrence. Radioresistance in cancer is often caused by the repair response to radiation-induced DNA damage, cell cycle dysregulation, cancer stem cells (CSCs) resilience, and epithelial-mesenchymal transition (EMT). Understanding the molecular alterations that lead to radioresistance may provide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. Patients who develop resistance to chemotherapy drugs cannot benefit from the cytotoxicity induced by the prescribed drug and will likely have a poor outcome with these treatments. Chemotherapy often shows a low response rate due to various drug resistance mechanisms. This review focuses on the molecular mechanisms of radioresistance and chemoresistance in cancer and discusses recent developments in therapeutic strategies targeting chemoradiotherapy resistance to improve treatment outcomes.
Collapse
Affiliation(s)
- Ya‐Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Can‐Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Yun‐Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Ming‐Liang He
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| |
Collapse
|
15
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
16
|
Hu D, Gao J, Yang X, Liang Y. A Comprehensive Mini-Review of Curcumae Radix: Ethnopharmacology, Phytochemistry, and Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211020628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumae Radix is an efficacious ingredient with various medicinal properties empirically used in traditional Chinese medicine (TCM) formula for the treatment of cancer, depression, chest pain, dysmenorrhea, epilepsy, and jaundice. However, either phytochemical or pharmacological information of Curcumae Radix underlying its traditionally medicinal uses is rarely summarized and systematically analyzed. To provide evidence for clinical trials, a comprehensive literature review has been prepared of the phytochemicals, and ethnopharmacological and pharmacological mechanisms of this herb. The review approach consisted of searching several web-based scientific databases, including PubMed, Web of Science, and Elsevier. The keywords included “Curcumae Radix,” “ Curcuma wenyujin,” “ Curcuma longa,” “ Curcuma kwangsiensis,” and “ Curcuma phaeocaulis.” Based on the proposed criteria, 57 articles were evaluated in detail. The accumulated data indicate that Curcumae Radix contains a number of bioactive phytochemicals, mainly sesquiterpenes, diarylheptanoids, and diarylpentanoids, which account for a variety of medicinal values, such as anticancer, anti-inflammation, anti-hepatic fibrosis, and antioxidant. A wide range of apoptotic proteins, cell adhesion molecules, inflammatory cytokines, and enzymic and nonenzymic antioxidants could be modulated by either Curcumae Radix or its bioactive compounds, thus underpinning a fundamental understanding for the pharmacological effects of this herb. This review highlights the therapeutic potential of Curcumae Radix to progress the development of versatile adjuvants or therapeutic agents in the future.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
17
|
Chen Y, Zhu Z, Chen J, Zheng Y, Limsila B, Lu M, Gao T, Yang Q, Fu C, Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 2021; 138:111350. [PMID: 33721752 DOI: 10.1016/j.biopha.2021.111350] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, β-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (β-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Yi Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yongfeng Zheng
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Boonjai Limsila
- Institute of Thai-Chinese Medicine Department of Thai Traditional and Alternative Medicines, Ministry of Public Health, Bangkok 11000, Thailand
| | - Meigui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Tianhui Gao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chaomei Fu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Wan Liao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
18
|
Anti-Tumor Drug Discovery Based on Natural Product β-Elemene: Anti-Tumor Mechanisms and Structural Modification. Molecules 2021; 26:molecules26061499. [PMID: 33801899 PMCID: PMC7998186 DOI: 10.3390/molecules26061499] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Natural products are important sources for drug discovery, especially anti-tumor drugs. β-Elemene, the prominent active ingredient extract from the rhizome of Curcuma wenyujin, is a representative natural product with broad anti-tumor activities. The main molecular mechanism of β-elemene is to inhibit tumor growth and proliferation, induce apoptosis, inhibit tumor cell invasion and metastasis, enhance the sensitivity of chemoradiotherapy, regulate the immune system, and reverse multidrug resistance (MDR). Elemene oral emulsion and elemene injection were approved by the China Food and Drug Administration (CFDA) for the treatment of various cancers and bone metastasis in 1994. However, the lipophilicity and low bioavailability limit its application. To discover better β-elemene-derived anti-tumor drugs with satisfying drug-like properties, researchers have modified its structure under the premise of not damaging the basic scaffold structure. In this review, we comprehensively discuss and summarize the potential anti-tumor mechanisms and the progress of structural modifications of β-elemene.
Collapse
|
19
|
Katanaev VL, Blagodatski A, Xu J, Khotimchenko Y, Koval A. Mining Natural Compounds to Target WNT Signaling: Land and Sea Tales. Handb Exp Pharmacol 2021; 269:215-248. [PMID: 34455487 DOI: 10.1007/164_2021_530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT signaling plays paramount roles in organism development, physiology, and disease, representing a highly attractive target for drug development. However, no WNT-modulating drugs have been approved, with several candidates trudging through the early clinical trials. This delay instigates alternative approaches to discover WNT-modulating drugs. Natural products were the source of therapeutics for centuries, but the chemical diversity they offer, especially when looking at different taxonomic groups and habitats, is still to a large extent unexplored. These considerations urge researchers to screen natural compounds for the WNT-modulatory activities. Since several reviews on such endeavors exist, we here have attempted to present these efforts as "Land and sea tales" (citing the book title by Rudyard Kipling) superimposing them onto the traditional pipeline of drug discovery and early development. In doing so, we illustrate each step of the pipeline with case studies stemming from our own research. It will become obvious that several steps of the pipeline need to be modified when applied to natural products rather than to synthetic libraries. Yet the main message of this chapter is that natural compounds represent a powerful source for the WNT signaling modulators and can be developed towards drug candidates against WNT-dependent maladies.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| | - Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences Pushchino, Moscow, Russia
| | - Jiabin Xu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Centre in Oncohaematology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Abu-Izneid T, Rauf A, Shariati MA, Khalil AA, Imran M, Rebezov M, Uddin MS, Mahomoodally MF, Rengasamy KRR. Sesquiterpenes and their derivatives-natural anticancer compounds: An update. Pharmacol Res 2020; 161:105165. [PMID: 32835868 DOI: 10.1016/j.phrs.2020.105165] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
Sesquiterpenes belong to the largest group of plant secondary metabolites, which consist of three isoprene building units. These compounds are widely distributed in various angiosperms, a few gymnosperms and bryophytes. Sesquiterpenes and their allied derivatives are bio-synthesized in various plant parts including leaves, fruits and roots. These plant-based metabolites are predominantly identified in the Asteraceae family, wherein up to 5000 complexes have been documented to date. Sesquiterpenes and their derivatives are characteristically associated with plant defence mechanisms owing to their antifungal, antibacterial and antiviral activities. Over the last two decades, these compounds have been reportedly demonstrated health promoting perspectives against a wide range of metabolic syndromes i.e. hyperglycemia, hyperlipidemia, cardiovascular complications, neural disorders, diabetes, and cancer. The high potential of sesquiterpenes and their derivatives against various cancers like breast, colon, bladder, pancreatic, prostate, cervical, brain, liver, blood, ovarium, bone, endometrial, oral, lung, eye, stomach and kidney are the object of this review. Predominantly, it recapitulates the literature elucidating sesquiterpenes and their derivatives while highlighting the mechanistic approaches associated with their potent anticancer activities such as modulating nuclear factor kappa (NF-kB) activity, inhibitory action against lipid peroxidation and retarding the production of reactive oxygen & nitrogen species (ROS&RNS).
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Preclinical Evidence of Curcuma longa and Its Noncurcuminoid Constituents against Hepatobiliary Diseases: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8761435. [PMID: 32802138 PMCID: PMC7411463 DOI: 10.1155/2020/8761435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Hepatobiliary disease currently serves as an important public health issue due to the fact that it is one of the major causes of death among economically active individuals and can easily progress to chronic diseases. Despite the development of vaccines and numerous drugs, a definite treatment remains lacking owing to different stages of the disease itself, its intricate pathogenesis, an effect uncertainty for long-term use, resistance, and side effects. Curcuma longa (C. longa), which belongs to the family Zingiberaceae and the genus Curcuma, has long been used not only as spice for curry or dye but also as a constituent of herbal formula for the treatment of different diseases due to its bioactive activities. Recently, many studies on the experimental results of C. longa have been published relative to hepatobiliary diseases such as fatty liver, hepatitis, cirrhosis, and tumors. Therefore, in this review, we aimed to summarize the pharmacological effects and underlying molecular mechanisms of C. longa and its four compounds, β-elemene, germacrone, ar-turmerone, and bisacurone, against hepatobiliary diseases. C. longa exhibited antioxidant, hepatoprotective, antisteatotic, anti-inflammatory, antifibrotic, antitumor, and cholagogic effects by regulating apoptosis, CYP2E1, Nrf, lipid metabolism-related factors, TGF-β, NF-κB, CYP7A1, and so on. In particular, β-elemene could be an attractive compound owing to its remarkable hepatoprotective, anti-inflammatory, antifibrotic, and antitumor activities. Altogether, the present review provides a preclinical basis for the efficacy of C. longa as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases, despite the need for further studies to establish the extraction conditions and separation of active constituents with high bioavailability, and warrants further evaluation in clinical trials.
Collapse
|
22
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
23
|
Cymbopogon Proximus Essential Oil Protects Rats against Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis. Molecules 2020; 25:molecules25081786. [PMID: 32295062 PMCID: PMC7221672 DOI: 10.3390/molecules25081786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy is an independent risk factor of many cardiovascular diseases. Several cardiovascular protective properties of Cymbopogon proximus have been reported. However, no reports investigating the direct effect of C. proximus essential oil on the heart are available. The goal of this study was to explore the cardioprotective effect of C. proximus on cardiac hypertrophy and fibrosis. Male albino rats were administered C. proximus essential oil in the presence or absence of hypertrophic agonist isoproterenol. Cardiac hypertrophy and fibrosis were assessed using real-time polymerase chain reaction (PCR) and histological examination. Pre- treatment of rats with C. proximus decreased the ratio of heart weight to body weight and gene expression of hypertrophy markers atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC), which were induced by isoproterenol. Moreover, C. proximus prevented the increase in gene expression of fibrosis markers procollagen I and procollagen III and alleviated the collagen volume fraction caused by isoproterenol. The pre- treatment with C. proximus essential oil conferred cardio-protection against isoproterenol- induced cardiac hypertrophy and fibrosis.
Collapse
|
24
|
Fliefel R, El Ashwah A, Entekhabi S, Kumbrink J, Ehrenfeld M, Otto S. Bifunctional effect of Zoledronic Acid (ZA) on human mesenchymal stem cells (hMSCs) based on the concentration level. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:634-641. [PMID: 32171967 DOI: 10.1016/j.jormas.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Treatment of massive bone defects is a great challenge. Mesenchymal stem cells (MSCs) enhance bone regeneration by differentiating into osteoblasts. Bisphosphonates (BPs) are antiresorptives reducing bone resorption. Despite Medication-related osteonecrosis of the jaw (MRONJ) is a known side effect of antiresorptives, evidences suggest that BPs have positive effect on bone formation. The aims of this study were to investigate the effect of zoledronic acid (ZA) and geranylgeraniol (GGOH) on human mesenchymal stem cells (hMSCs) being a part of the bone microenvironment and evaluate whether low dose of bisphosphonate has enhanced osteogenic differentiation of hMSCs. MATERIALS AND METHODS The effect of ZA and GGOH on MSCs was investigated in addition to the effect of low doses of ZA on osteogenic differentiation of MSCs and analysed by WST-1, Live/Dead staining and coefficient of drug index (CDI). The osteogenic differentiation of the cells was confirmed by ALP activity, xylenol orange and alizarin red staining, microarray and PCR with levels of statistical significance indicated at *P<0.05, **P<0.01 and ***P<0.0001. MAIN FINDINGS Although, high concentration of ZA had significantly decreased the cell viability in MSCs, GGOH reversed the action of ZA on the cells while at very high concentration; it caused severe reduction in the cell viability. CDI showed antagonism or synergism depending on the concentrations of ZA and GGOH. CONCLUSION The treatment of cells with ZA has increased the mineralization and osteogenic differentiation of MSCs. Our study supported the hypothesis that zoledronic acid plays a bifunctional role depending on the concentration.
Collapse
Affiliation(s)
- R Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians-University, Nussbaumstrasse 20, 80336 Munich, Germany; Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig-Maximilians-University, Lindwurmstrasse 2a, 80337 Munich, Germany; Department of Oral and Maxillofacial Surgery, Alexandria-University, Champollion Street, 21500 Alexandria, Egypt.
| | - A El Ashwah
- Department of Oral and Maxillofacial Surgery, Alexandria-University, Champollion Street, 21500 Alexandria, Egypt
| | - S Entekhabi
- Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians-University, Nussbaumstrasse 20, 80336 Munich, Germany
| | - J Kumbrink
- Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, 36,Thalkirchner street, 80337 Munich Germany
| | - M Ehrenfeld
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig-Maximilians-University, Lindwurmstrasse 2a, 80337 Munich, Germany
| | - S Otto
- Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians-University, Nussbaumstrasse 20, 80336 Munich, Germany; Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, Ludwig-Maximilians-University, Lindwurmstrasse 2a, 80337 Munich, Germany
| |
Collapse
|
25
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Amerigos Daddy J.C. K, Chen M, Raza F, Xiao Y, Su Z, Ping Q. Co-Encapsulation of Mitoxantrone and β-Elemene in Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Leukemia. Pharmaceutics 2020; 12:pharmaceutics12020191. [PMID: 32102214 PMCID: PMC7076650 DOI: 10.3390/pharmaceutics12020191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Multidrug resistance (MDR) due to P-glycoprotein (P-gp) overexpression is a major obstacle to successful leukemia chemotherapy. The combination of anticancer chemotherapy with a chemosensitizer of P-gp inhibitor is promising to overcome MDR, generate synergistic effects, and maximize the treatment effect. Herein, we co-encapsulated a chemotherapeutic drug of mitoxantrone (MTO) and a P-gp inhibitor of β-elemene (βE) in solid lipid nanoparticles (MTO/βE-SLNs) for reversing MDR in leukemia. The MTO/βE-SLNs with about 120 nm particle size possessed good colloidal stability and sustained release behavior. For the cellular uptake study, doxorubicin (DOX) was used as a fluorescence probe to construct SLNs. The results revealed that MTO/βE-SLNs could be effectively internalized by both K562/DOX and K562 cells through the pathway of caveolate-mediated endocytosis. Under the optimized combination ratio of MTO and βE, the in vitro cytotoxicity study indicated that MTO/βE-SLNs showed a better antitumor efficacy in both K562/DOX and K562 cells than other MTO formulations. The enhanced cytotoxicity of MTO/βE-SLNs was due to the increased cellular uptake and blockage of intracellular ATP production and P-gp efflux by βE. More importantly, the in vivo studies revealed that MTO/βE-SLNs could significantly prolong the circulation time and increase plasma half-life of both MTO and βE, accumulate into tumor and exhibit a much higher anti-leukemia effect with MDR than other MTO formulations. These findings suggest MTO/βE-SLNs as a potential combined therapeutic strategy for overcoming MDR in leukemia.
Collapse
Affiliation(s)
| | | | | | | | - Zhigui Su
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| | - Qineng Ping
- Correspondence: (Z.S.); (Q.P.); Tel.: +86-25-83271092 (Q.P.)
| |
Collapse
|
27
|
Abo El-Nasr NME, Saleh DO, Mahmoud SS, Nofal SM, Abdelsalam RM, Safar MM, El-Abhar HS. Olmesartan attenuates type 2 diabetes-associated liver injury: Cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and RAS signaling pathways. Eur J Pharmacol 2020; 874:173010. [PMID: 32067934 DOI: 10.1016/j.ejphar.2020.173010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Olmesartan (OLM), an angiotensin receptor blocker, was tested against diabetes/insulin resistance (IR) models associated with renal/cardiovascular complications. Methods: we tested its potential role against diabetes-induced hepatic hitches using an IR/type2 diabetic (IR/D) model induced by high fat/high fructose diet for 7 weeks + a single sub-diabetogenic dose of streptozotocin (35mg/kg; i.p). IR/D rats were orally treated with OLM (10 mg/kg), pioglitazone (PIO; 5 or 10 mg/kg) or their combinations for 4 consecutive weeks. OLM alone opposed the detrimental effects of IR/D; it significantly improved metabolic parameters, liver function, and abated hepatic oxidative stress, and inflammatory cytokine interleukin-6 (IL-6) and its upstream mediator nuclear factor kappa B. Consequently, OLM turned off the downstream cue p-Jak2/STAT3/SOCS3. Moreover, it suppressed the elevated AGE/RAGE/p-JNK pathway and increased the PPARγ/adiponectin cue to signify its anti-inflammatory and anti-oxidant capacity (GSH, MDA). Nevertheless, co-administration of OLM to PIO showed a synergistic improvement in all the aforementioned parameters in a dose dependent manner. Additionally, OLM with PIO10 provoked a surge in hepatic PPARγ and adiponectin (5 and 6 folds) with a sharp decrease of about 85% in the NF-κB/IL-6/p-STAT3/SCOS3 pathway. These effects were confirmed by the histopathological study. In conclusion, OLM and its combination with PIO enhanced insulin sensitivity and guarded against hepatic complications associated with type 2 diabetes probably via modulating various inter-related pathways; namely, metabolic alteration, renin-angiotensin system, inflammatory trajectories, as well as oxidative stress. This study manifests the potential synergistic effects of OLM as an adjuvant therapy to the conventional antidiabetic therapies.
Collapse
Affiliation(s)
- Nesma M E Abo El-Nasr
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt.
| | - Dalia Osama Saleh
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sawsan S Mahmoud
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Salwa M Nofal
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industry, Future University, Cairo, Egypt
| |
Collapse
|
28
|
Gan D, He W, Yin H, Gou X. β-elemene enhances cisplatin-induced apoptosis in bladder cancer cells through the ROS-AMPK signaling pathway. Oncol Lett 2019; 19:291-300. [PMID: 31897141 PMCID: PMC6924103 DOI: 10.3892/ol.2019.11103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/17/2019] [Indexed: 01/02/2023] Open
Abstract
Cisplatin-based chemotherapy is the standard regimen for patients with bladder cancer, but its effectiveness is limited by high toxicity and the development of drug resistance. β-elemene (β-ELE), a compound extracted from Rhizoma zedoariae, has antitumor activity in various malignancies and exhibits low toxicity. However, the effects and specific mechanism of β-ELE in bladder cancer remain unclear. The present study aimed to investigate the antitumor activity and possible mechanisms of β-ELE alone and in combination with cisplatin in bladder cancer cells. Cell viability was determined using Cell Counting Kit-8. Cell cycle and reactive oxygen species (ROS) analyses were performed by flow cytometry. Apoptosis was detected by Hoechst 33258 and Annexin-V/propidium iodide staining. Mitochondrial membrane potential was determined by staining with a JC-1 probe, flow cytometry and fluorescence microscopy. Protein expression was detected by western blotting. The results revealed that β-ELE significantly inhibited the proliferation of various bladder cancer cell lines and induced cell cycle arrest at G0/G1-phase in T24 and 5637 cells. Compared with cisplatin alone, co-treatment with β-ELE increased cisplatin-mediated cytotoxicity against T24 cells, which resulted in the loss of mitochondrial membrane potential and release of cytochrome c into the cytoplasm. Co-treatment with β-ELE and cisplatin enhanced ROS accumulation and activation of 5′AMP-activated protein kinase (AMPK), which induced apoptosis. The results of the present study suggested that β-ELE inhibited the proliferation of bladder cancer cells in vitro and enhanced cisplatin-induced mitochondria-dependent apoptosis via the ROS-AMPK signaling pathway. Combination therapy with β-ELE requires further investigation as a potential treatment of bladder cancer.
Collapse
Affiliation(s)
- Daoju Gan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
29
|
Zhu J, Li B, Ji Y, Zhu L, Zhu Y, Zhao H. β‑elemene inhibits the generation of peritoneum effusion in pancreatic cancer via suppression of the HIF1A‑VEGFA pathway based on network pharmacology. Oncol Rep 2019; 42:2561-2571. [PMID: 31638231 PMCID: PMC6826333 DOI: 10.3892/or.2019.7360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer remains one of the most lethal types of cancer. Late-stage pancreatic cancer patients usually suffer peritoneum effusion, which severely compromises quality of life. Great efforts have been made concerning the treatment of peritoneum effusion, including treatment with β-elemene. Although peritoneal perfusion of β-elemene attenuates the progression of malignant effusion without severe adverse effects in the clinic, the underlying molecular mechanism underlying the activity of β-elemene against peritoneum effusion remains unclear. In the present study, a network pharmacology approach was undertaken to explore the mechanism of β-elemene against peritoneum effusion. Particularly, the networks of β-elemene and pancreatic cancer target genes were constructed based on the BATMAN-TCM and DigSee databases, respectively. Thirty-three genes, including hypoxia inducible factor 1 subunit α (HIF1A), were discovered in both networks. A potential interaction of β-elemene with HIF1A was revealed by molecular docking simulation and co-expression analysis of pancreatic cancer datasets from The Cancer Genome Atlas (TCGA) database. Additionally, experimental validation by MTT assay demonstrated that β-elemene suppressed proliferation of PANC-1 and BxPC3 cells and cells from peritoneum effusion in patients with pancreatic cancer. Furthermore, the protein expression levels of HIF1A and vascular endothelial growth factor A (VEGFA), as detected by western blotting, were reduced by β-elemene. Overall, this study proposes a potential molecular mechanism illustrating that β-elemene can block the HIF1A/VEGFA pathway, thereby inhibiting the generation of peritoneum effusion in pancreatic cancer based on network pharmacology analysis, and further highlights the importance of targeting the HIF1A/VEGF pathway as a therapeutic approach to treat peritoneum effusion in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Junqiu Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Bo Li
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Yongsuo Ji
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Linglin Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Yanfei Zhu
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Hong Zhao
- Department of Oncology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
30
|
Alonso-Peña M, Espinosa-Escudero RA, Soto-Muñiz M, Sanchon-Sanchez P, Sanchez-Martin A, Marin JJ. Role of transportome in the pharmacogenomics of hepatocellular carcinoma and hepatobiliary cancer. Pharmacogenomics 2019; 20:957-970. [PMID: 31486734 DOI: 10.2217/pgs-2019-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important factor determining the pharmacological response to antitumor drugs is their concentrations in cancer cells, which accounts for the net interaction with their intracellular molecular targets. Accordingly, mechanisms leading to reduced intracellular levels of active agents play a crucial role in cancer chemoresistance. These include impaired drug uptake through solute carrier (SLC) proteins and efficient drug export by ATP-dependent pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. Since the net movement of drugs in-and-out the cells depends on the overall expression of carrier proteins, defining the so-called transportome, special attention has been devoted to the study of transcriptome regarding these proteins. Nevertheless, genetic variants affecting SLC and ABC genes may markedly affect the bioavailability and, hence, the efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Ricardo A Espinosa-Escudero
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Meraris Soto-Muñiz
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Paula Sanchon-Sanchez
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Anabel Sanchez-Martin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain
| | - Jose Jg Marin
- Experimental Hepatology & Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, 37007, Spain.,Center for the Study of Liver & Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, 28029, Spain
| |
Collapse
|
31
|
Scott GK, Yau C, Becker BC, Khateeb S, Mahoney S, Jensen MB, Hann B, Cowen BJ, Pegan SD, Benz CC. Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Mol Cancer Ther 2019; 18:1374-1385. [PMID: 31189611 PMCID: PMC6679736 DOI: 10.1158/1535-7163.mct-18-1323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (S-5-oxo: S-5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (N-PPG: N-propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor N-PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with N-PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that N-PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered in vivo Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (S-5-oxo and N-PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed in vitro when the PRODH suicide inhibitor, N-PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of N-PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.
Collapse
Affiliation(s)
- Gary K Scott
- Buck Institute for Research on Aging, Novato, California
| | - Christina Yau
- Buck Institute for Research on Aging, Novato, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | - Sana Khateeb
- Buck Institute for Research on Aging, Novato, California
| | - Sophia Mahoney
- Buck Institute for Research on Aging, Novato, California
| | | | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Bryan J Cowen
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado
| | - Scott D Pegan
- Center for Drug Discovery, College of Pharmacy, University of Georgia, Athens, Georgia
| | - Christopher C Benz
- Buck Institute for Research on Aging, Novato, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
32
|
Wang X, Liu Z, Sui X, Wu Q, Wang J, Xu C. Elemene injection as adjunctive treatment to platinum-based chemotherapy in patients with stage III/IV non-small cell lung cancer: A meta-analysis following the PRISMA guidelines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152787. [PMID: 31005810 DOI: 10.1016/j.phymed.2018.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Elemene injection is an anticancer Chinese patent medicine that is widely used for the treatment of advanced lung cancer. Its active ingredients are β-, γ- and δ-elemene, which are extracted from Curcumaaromatica Salisb. (Curcumawenyujin Y.H. Chen & C. Ling). PURPOSE To evaluate the effects of Elemene injection as adjunctive treatment to platinum-based chemotherapy (PBC) in patients with stage III/IV non-small cell lung cancer. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials (RCTs). MATERIALS AND METHODS A systematic review and meta-analysis were conducted following the PRISMA (Preferred Reported Items for Systematic Review and Meta-analysis) guidelines. Analyses were performed using Review Manager 5.3, Comprehensive Meta-Analysis 3.0 and Trial Sequential Analysis software. All RCTs comparing Elemene injection combined with PBC vs. PBC alone were selected and assessed for inclusion. The disease control rate (DCR) was defined as the primary endpoint, and the objective Response rate (ORR), survival rate, quality of life (QOL), cellular immune function and toxicities were the secondary outcomes. RESULTS 15 RCTs recruiting 1,410 patients with stage III/IV NSCLC were included. The methodological quality of most included trials was low to moderate. Compared with PBC alone, Elemene injection plus PBC can improve DCR (RR = 1.23, 95% CI 1.16 to 1.31, p < 0.00001), ORR (RR = 1.62, 95% CI 1.44 to 1.82, p < 0.00001), 1- and 2-year survival rates (RR = 1.33, 95% CI 1.11 to 1.59, p = 0.002; RR = 1.73, 95% CI 1.21 to 2.46, p = 0.002, respectively), QOL (RR = 1.91, 95% CI 1.58 to 2.32, p < 0.00001), CD4+T cell counts (WMD = 10.43, 95% CI 8.25 to 12.62, p < 0.00001), and the CD4+/CD8+ratio (WMD = 0.78, 95% CI 0.42 to 1.14, p < 0.0001) and can reduce severe toxicities by 58% (RR = 0.42, 95% CI 0.34 to 0.52, p < 0.00001). CONCLUSION Elemene injection is a safe and effective adjunctive treatment to platinum-based chemotherapy in patients with stage III/IV NSCLC. Elemene injection can improve clinical efficacy, enhance cellular immune function and alleviate the toxicity of chemotherapy. High-quality RCTs with significant survival outcomes and longer follow-ups are warranted to confirm the results further.
Collapse
Affiliation(s)
- Xuewei Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Zhengtang Liu
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Xinbing Sui
- Department of Medical Oncology, Holistic Integrative Oncology Institutes and Holistic Integrative Cancer Center of Traditional Chinese and Western Medicine, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, PR China; Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
| | - Jue Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, PR China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| |
Collapse
|
33
|
Yong L, Ma Y, Liang C, He G, Zhao Z, Yang C, Hai B, Pan X, Liu Z, Liu X. Oleandrin sensitizes human osteosarcoma cells to cisplatin by preventing degradation of the copper transporter 1. Phytother Res 2019; 33:1837-1850. [PMID: 31050072 DOI: 10.1002/ptr.6373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Yong
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Yunlong Ma
- The Center for Pain MedicinePeking University Third Hospital Beijing 100191 China
| | - Chen Liang
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Guanping He
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Zhigang Zhao
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Chenlong Yang
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Bao Hai
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Xiaoyu Pan
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Zhongjun Liu
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Xiaoguang Liu
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| |
Collapse
|
34
|
Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed Pharmacother 2019; 114:108812. [PMID: 30965237 DOI: 10.1016/j.biopha.2019.108812] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
β-Elemene is a sesquiterpene compound extracted from the herb Curcuma Rhizoma and is used in traditional Chinese medicine (TCM) to treat several types of cancer, with no reported severe adverse effects. Recent studies, using in vitro and in vivo studies combined with molecular methods, have shown that β-elemene can inhibit cell proliferation, arrest the cell cycle, and induce cell apoptosis. Recent studies have identified the molecular targets of β-elemene that may have a role in cancer therapy. This review aims to discuss the anticancer potential of β-elemene through its actions on several molecular targets including kinase enzymes, transcription factors, growth factors and their receptors, and proteins. β-Elemene also regulates the expression of several key molecules that are involved in tumor angiogenesis and metastasis including vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), E-cadherin, N-cadherin, and vimentin. Also, β-elemene has been shown to have regulatory effects on the immune response and increases the sensitivity of cancer cells to chemoradiotherapy and has shown effects on multidrug resistance (MDR) in malignancy. Recent studies have shown that β-elemene can induce autophagy, which prevents cancer cells from undergoing apoptosis. Therefore, the molecular mechanisms for the treatment effects on cancer of the herbal extract, β-elemene, which has been used for centuries in traditional Chinese medicine, are now being studied and identified.
Collapse
|
35
|
Shan K, Wang Y, Hua H, Qin S, Yang A, Shao J. Ginsenoside Rg3 Combined with Oxaliplatin Inhibits the Proliferation and Promotes Apoptosis of Hepatocellular Carcinoma Cells via Downregulating PCNA and Cyclin D1. Biol Pharm Bull 2019; 42:900-905. [PMID: 30930425 DOI: 10.1248/bpb.b18-00852] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study aims to investigate the effects of ginsenoside Rg3 combined with oxaliplatin on the proliferation and apoptosis of hepatocellular carcinoma cells and the related mechanism. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to examine the proliferation rate of hepatocellular carcinoma cell SMMC-7721 with different treatment. Flow cytometry was performed to examine apoptosis rate of hepatocellular carcinoma cells with different treatment. Immunofluorescence and Western blot methods were used to evaluate the expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in different groups. We found that ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin significantly suppressed the proliferation and promoted the apoptosis of SMMC-7721. Meanwhile, ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin also significantly inhibited the expressions of PCNA and cyclin D1. Moreover, compared with ginsenoside Rg3 group and oxaliplatin group, the effect of ginsenoside Rg3 + oxaliplatin was more remarkable. Taken together, cells treated with oxaliplatin+ ginsenoside enhanced the anti-tumor effect and may inhibit the proliferation and promoted apoptosis of hepatocellular carcinoma via regulating the expression of PCNA and cyclin D1.
Collapse
Affiliation(s)
- Kuizhong Shan
- Nanjing University of Chinese Medicine.,Department of Oncology, Kunshan Second People's Hospital
| | | | - Haiqing Hua
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Shukui Qin
- Department of Oncology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Aizhen Yang
- Central Laboratory, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine
| | - Jie Shao
- Department of Oncology, Jiangsu Province Hospital of TCM, the Affiliated Hospital of Nanjing University of Chinese Medicine
| |
Collapse
|
36
|
Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett 2019; 449:45-55. [PMID: 30771433 DOI: 10.1016/j.canlet.2019.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Wnt signaling is overactivated in triple-negative breast cancer (TNBC) and several other cancers, and its suppression emerges as an effective anticancer treatment. However, no drugs targeting the Wnt pathway exist on the market nor in advanced clinical trials. Here we provide a comprehensive body of preclinical evidence that an anti-leprotic drug clofazimine is effective against TNBC. Clofazimine specifically inhibits canonical Wnt signaling in a panel of TNBC cells in vitro. In several mouse xenograft models of TNBC, clofazimine efficiently suppresses tumor growth, correlating with in vivo inhibition of the Wnt pathway in the tumors. Clofazimine is well compatible with doxorubicin, exerting additive effects on tumor growth suppression, producing no adverse effects. Its excellent and well-characterized pharmacokinetics profile, lack of serious adverse effects at moderate (yet therapeutically effective) doses, its combinability with cytotoxic therapeutics, and the novel mechanistic mode of action make clofazimine a prime candidate for the repositioning clinical trials. Our work may bring forward the anti-Wnt targeted therapy, desperately needed for thousands of patients currently lacking targeted treatments.
Collapse
Affiliation(s)
- Kamal Ahmed
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
37
|
Cardoso BA, Ramos TL, Belo H, Vilas-Boas F, Real C, Almeida AM. Vorinostat synergizes with antioxidant therapy to target myeloproliferative neoplasms. Exp Hematol 2019; 72:60-71.e11. [PMID: 30769020 DOI: 10.1016/j.exphem.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
BCR-ABL-negative myeloproliferative neoplasms (MPNs) are driven by JAK-STAT pathway activation, but epigenetic alterations also play an important pathophysiological role. These can be pharmacologically manipulated with histone deacetylase inhibitors (HDACIs), which have proven to be clinically effective in the treatment of MPNs but exhibit dose-limiting toxicity. The treatment of primary MPN cells with vorinostat modulates the expression of genes associated with apoptosis, cell cycle, inflammation, and signaling. The induction of this transcriptional program results in decreased cellular viability, paralleled by a decrease in levels of reactive oxygen species (ROS). In vitro manipulation of ROS levels revealed that the reduction of ROS levels promoted apoptosis. When vorinostat was combined with antioxidant agents, the apoptosis of MPN cells increased in a synergistic manner. The results described here suggest a novel and promising therapeutic strategy combining HDACIs with ROS-reducing agents to treat MPNs.
Collapse
Affiliation(s)
- Bruno A Cardoso
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E, Lisboa, Portugal; Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Teresa L Ramos
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E, Lisboa, Portugal; Universidad de Salamanca-IBSAL-Hospital Universitario, Servicio de Hematología, Salamanca, Spain
| | - Hélio Belo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E, Lisboa, Portugal; Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - António M Almeida
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E, Lisboa, Portugal; Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Hospital da Luz, Lisboa, Portugal.
| |
Collapse
|
38
|
Wu D, Lv D, Zhang T, Guo L, Ma F, Zhang C, Lv G, Huang L. Antitumor effects of β-elemene via targeting the phosphorylation of insulin receptor. Endocr Relat Cancer 2019; 26:187-199. [PMID: 30422809 PMCID: PMC6347285 DOI: 10.1530/erc-18-0370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Ewing sarcoma family tumors (ESFTs) are a group of aggressive and highly metastatic tumors lacking efficient therapies. Insulin-like growth factor 1 receptor (IGF1R) blockade is one of the most efficient targeting therapy for ESFTs. However, the appliance is obstructed by drug resistance and disease recurrence due to the activation of insulin receptor (IR) signaling induced by IGF1R blockade. Herein β-elemene, a compound derived from natural plants, exhibited a remarkable proliferation repression on ESFT cells, which was weakened by a caspase inhibitor Z-VAD. β-elemene in combination with IGF1R inhibitors enhanced markedly the repression on cellular proliferation and mTOR activation by IGF1R inhibitors and suppressed the PI3K phosphorylation induced by IGF1R inhibitors. To investigate the mechanisms, we focused on the effects of β-elemene on IR signaling pathway. β-elemene significantly suppressed the insulin-driven cell growth and the activation of mTOR and PI3K in tumor cells, while the toxicity to normal hepatocytes was much lower. Further, the phosphorylation of IR was found to be suppressed notably by β-elemene specifically in tumor cells other than normal hepatocytes. In addition, β-elemene inhibited the growth of ESFT xenografts in vivo, and the phosphorylation of IR and S6 ribosomal protein was significantly repressed in the β-elemene-treated xenografts. These data suggest that β-elemene targets IR phosphorylation to inhibit the proliferation of tumor cells specifically and enhance the effects of IGF1R inhibitors. Thus, this study provides evidence for novel approaches by β-elemene alone or in combination with IGF1R blockades in ESFTs and IR signaling hyperactivated tumors.
Collapse
Affiliation(s)
- Dawei Wu
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Dongwei Lv
- Department of Sports Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Fangli Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Caihua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Guofeng Lv
- Department of Sports Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Correspondence should be addressed to L Huang or G Lv: or
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
- Correspondence should be addressed to L Huang or G Lv: or
| |
Collapse
|
39
|
Proteasome Inhibition in Multiple Myeloma: Head-to-Head Comparison of Currently Available Proteasome Inhibitors. Cell Chem Biol 2019; 26:340-351.e3. [PMID: 30612952 DOI: 10.1016/j.chembiol.2018.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
Proteasome inhibitors (PIs) are a backbone of multiple myeloma (MM) therapy. The proteasome harbors six proteolytically active subunits (β1, β2, β5), while β5 was identified as rate-limiting and is a primary target of clinically available PIs. The most effective pattern of subunit inhibition provided by these PIs for cytotoxic activity in MM is unknown. A head-to-head comparison of clinically available PIs shows that in the clinically relevant setting only the co-inhibition of β1 or β2 with β5 activity achieves meaningful functional proteasome inhibition and cytotoxicity, while the selective β2/β5 inhibition of both constitutive and immunoproteasome is the most cytotoxic. In the long-term setting, selective inhibition of β5 subunit is sufficient to induce cytotoxicity in PI-sensitive, but not in PI-resistant MM, and the β5/β2 co-inhibition is the most cytotoxic in PI-resistant MM. These results give a rational basis for selecting individual PIs for the treatment of MM.
Collapse
|
40
|
Wang S, Zhang C, Li Y, Li P, Zhang D, Li C. Anti-liver cancer effect and the mechanism of arsenic sulfide in vitro and in vivo. Cancer Chemother Pharmacol 2018; 83:519-530. [PMID: 30542770 DOI: 10.1007/s00280-018-3755-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed at investigating the anti-tumor effect of arsenic sulfide (As2S2) against liver cancer both in vivo and in vitro and to elucidate its underlying mechanisms. METHODS Cell viability of the human hepatocellular carcinoma cell lines SMMC-7721, BEL-7402, HepG2 were measured by CCK-8 assay. The effects of As2S2 on cell proliferation and apoptosis of SMMC-7721 cells were investigated using Calcein-AM and PI staining, Hoechst 33258 staining, crystal violet staining, and JC-1 staining. Cell cycle and Annexin V/PI assay were analyzed via flow cytometry. The expression of apoptosis-related proteins, phosphorylation of PI3K and AKT were detected by Western blotting. H22-bearing mice model was established to evaluate the anti-tumor effect of As2S2 in vivo. HE staining, PCNA was observed via immunohistochemistry, and TUNEL assay was used to assess the anti-proliferation and pro-apoptotic effects of As2S2. RESULTS As2S2 significantly inhibited the growth of human hepatoma cells SMMC-7721, BEL-7402 and HepG2. As2S2 inhibited cell proliferation effectively by inducing G0/G1 cell cycle arrest in SMMC-7721 cells. As2S2 could increase Bax/Bcl-2 ratio, decrease mitochondrial membrane potential, promote the release of cytochrome c, increase the levels of cleaved caspase-3 and PARP, indicating that As2S2 induced apoptosis in SMMC-7721 cells via mitochondrial-mediated apoptosis pathway. Further research showed that As2S2 inhibited the PI3K/AKT signaling pathway leading to apoptotic cell death. In addition, As2S2 significantly inhibited tumor growth in H22-bearing mice and induced apoptosis by deactivating PI3K/AKT pathway, which was consistent with the in vitro results. CONCLUSION These findings suggested that As2S2 could induce apoptosis of liver cancer cells in vitro and in vivo, which was related to PI3K/AKT-mediated mitochondrial pathway and may provide a novel promising therapeutic agent for liver cancer treatment.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yumei Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ping Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dafang Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Chaoying Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
41
|
Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis 2018; 9:1179. [PMID: 30518936 PMCID: PMC6281583 DOI: 10.1038/s41419-018-1221-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.
Collapse
|
42
|
Cheng H, Ge X, Zhuo S, Gao Y, Zhu B, Zhang J, Shang W, Xu D, Ge W, Shi L. β-Elemene Synergizes With Gefitinib to Inhibit Stem-Like Phenotypes and Progression of Lung Cancer via Down-Regulating EZH2. Front Pharmacol 2018; 9:1413. [PMID: 30555330 PMCID: PMC6284059 DOI: 10.3389/fphar.2018.01413] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
The inhibitors for EGF receptor tyrosine kinase (EGFR-TKIs) such as gefitinib have been used as a standard treatment for non-small cell lung cancer (NSCLC), but the increasingly occurrence of drug resistance, the associated adverse effects and the enrichment of cancer stem cells significantly impedes its clinical application. β-elemene is a natural sesquiterpene with potent anti-cancer ability, and also it is renowned for its plant-origin, safety and the additive effect with traditional therapies, which prompt us to explore its potential to co-operate with TKIs to achieve greater therapeutic efficacy. Impressively, our study demonstrates that, elemene, in combination of gefitinib, displayed a significantly higher activity in inhibiting lung cancer cellular proliferation, migration and invasion. More importantly, combinative treatment profoundly impaired the epithelial to mesenchymal transition (EMT), the stem-like properties and the self-renewal capacity of lung cancer cells, and hence impeded the in vivo tumor development. We also reveal that the synergistic anti-tumor effect of elemene and gefitinib was largely mediated their regulation of enhancer of zeste homolog 2 (EZH2), an oncogenic histone methyltransferase and gene transcriptional regulator. Thus, our data indicate that combinative treatment of elemene and gefitinib has greater anti-neoplastic activity and greater efficacies in targeting cancer stem-like properties, mainly through regulating the malignant gene modifier and hence the subsequent effector molecules required for cancer progression. The findings may have potential implications for treating aggressive and resistant lung cancers.
Collapse
Affiliation(s)
- Haibo Cheng
- Collaborative Innovation Center of Cancer Prevention and Treatment, The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyin Ge
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiqin Zhuo
- School of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanan Gao
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Collaborative Innovation Center of Cancer Prevention and Treatment, The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China.,Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Weihong Ge
- School of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyun Shi
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China.,Key Lab of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Chung SW, Cho YS, Choi JU, Kim HR, Won TH, Kim SY, Byun Y. Highly potent monomethyl auristatin E prodrug activated by caspase-3 for the chemoradiotherapy of triple-negative breast cancer. Biomaterials 2018; 192:109-117. [PMID: 30447398 DOI: 10.1016/j.biomaterials.2018.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Despite the emergence of advanced therapeutics such as targeted therapy and immunotherapy in the modern oncology, cytotoxic chemotherapy still remains as the first-line treatment option in a wide range of cancers attributing to its potency. Many endeavors have been made to overcome the toxicity issues of cytotoxic chemotherapy by improving the specific delivery to the tumor, with active tumor targeting being one of the most popular approaches. However, such an approach has been challenged by the intratumor heterogeneity and the lack of valid molecular target in many types of cancer. Here, we introduce a novel albumin-binding prodrug MPD02 that could specifically deliver highly potent cytotoxin monomethyl auristatin E (MMAE) to the tumor as an important component of chemoradiotherapy for the treatment of triple-negative breast cancer (TNBC). MPD02 was synthesized by conjugating MMAE to the C-terminus of the KGDEVD peptide via self-eliminating linker and introducing a maleimide group to the Lys side chain of the peptide. MPD02 was able to bind albumin after administration via maleimide group for an extended circulation time and metabolized into MMAE in tumor-specific manner by reacting with the caspase-3 upregulated in tumor by radiotherapy, exerting a highly potent anticancer effect with good safety profile in two different TNBC xenograft models.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Uk Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Tae Hyung Won
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States.
| |
Collapse
|
44
|
Chung SW, Kim GC, Kweon S, Lee H, Choi JU, Mahmud F, Chang HW, Kim JW, Son WC, Kim SY, Byun Y. Metronomic oral doxorubicin in combination of Chk1 inhibitor MK-8776 for p53-deficient breast cancer treatment. Biomaterials 2018; 182:35-43. [DOI: 10.1016/j.biomaterials.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023]
|
45
|
Zhai B, Zeng Y, Zeng Z, Zhang N, Li C, Zeng Y, You Y, Wang S, Chen X, Sui X, Xie T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int J Nanomedicine 2018; 13:6279-6296. [PMID: 30349250 PMCID: PMC6186893 DOI: 10.2147/ijn.s174527] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
β-elemene is a noncytotoxic Class II antitumor drug extracted from the traditional Chinese medicine Curcuma wenyujin Y. H. Chen et C. Ling. β-elemene exerts its effects by inhibiting cell proliferation, arresting the cell cycle, inducing cell apoptosis, exerting antiangiogenesis and antimetastasis effects, reversing multiple-drug resistance (MDR), and enhancing the immune system. Elemene injection and oral emulsion have been used to treat various tumors, including cancer of the lung, liver, brain, breast, ovary, gastric, prostate, and other tissues, for >20 years. The safety of both elemene injection and oral emulsion in the clinic has been discussed. Recently, the secondary development of β-elemene has attracted the attention of researchers and made great progress. On the one hand, studies have been carried out on liposome-based systems (including solid lipid nanoparticles [SLNs], nanostructured lipid carriers [NLCs], long-circulating liposomes, active targeting liposomes, and multidrug-loaded liposomes) and emulsion systems (including microemulsions, self-emulsion drug delivery systems [SEDDSs], and active targeting microemulsion) to solve the issues of poor solubility in water, low bioavailability, and severe phlebitis, as well as to improve antitumor efficacy. The pharmacokinetics of different drug delivery systems of β-elemene are also summarized. On the other hand, a number of highly active anticancer β-elemene derivatives have been obtained through modification of the structure of β-elemene. This review focuses on the two drug delivery systems and derivatives of β-elemene for cancer therapy.
Collapse
Affiliation(s)
- Bingtao Zhai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Nana Zhang
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Chenxi Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Yijun Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuling Wang
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Xiabin Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Xinbing Sui
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, China, ;
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, China, ;
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, China, ;
| |
Collapse
|
46
|
Inactivation of Stat3 and crosstalk of miRNA155-5p and FOXO3a contribute to the induction of IGFBP1 expression by beta-elemene in human lung cancer. Exp Mol Med 2018; 50:1-14. [PMID: 30209296 PMCID: PMC6135838 DOI: 10.1038/s12276-018-0146-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
β-Elemene, an active component of natural plants, has been shown to exhibit anticancer properties. However, the detailed mechanism underlying these effects has yet to be determined. In this study, we show that β-elemene inhibits the growth of lung cancer cells. Mechanistically, we found that β-elemene decreased the phosphorylation of signal transducer and activator of transcription 3 (Stat3) and miRNA155-5p mRNA but induced the protein expression of human forkhead box class O (FOXO)3a; the latter two were abrogated in cells with overexpressed Stat3. Notably, miRNA155-5p mimics reduced FOXO3a luciferase reporter activity in the 3-UTR region and protein expression, whereas overexpressed FOXO3a countered the reduction of the miRNA155-5p levels by β-elemene. Moreover, β-elemene increased the mRNA and protein expression levels as well as promoter activity of insulin-like growth factor-binding protein 1 (IGFBP1); this finding was not observed in cells with a silenced FOXO3a gene and miRNA155-5p mimics. Finally, silencing of IGFBP1 blocked β-elemene-inhibited cell growth. Similar findings were observed in vivo. In summary, our results indicate that β-elemene increases IGFBP1 gene expression via inactivation of Stat3 followed by a reciprocal interaction between miRNA155-5p and FOXO3a. This effect leads to inhibition of human lung cancer cell growth. These findings reveal a novel molecular mechanism underlying the inhibitory effects of β-elemene on lung cancer cells. A compound found in one Chinese medicinal herb inhibits the growth of lung cancer cells by indirectly activating a protein with anti-proliferative properties. Hann and colleagues from the Guangzhou University of Chinese Medicine, China, uncovered the molecular pathways by which β-elemene, a natural compound isolated from the Curcuma wenyujin plant, mediates the anti-cancer effects. They showed that β-elemene inactivates the two important regulatory molecules, one protein and another small RNA, while also inducing the expression of one protein that promotes in killing cancer cells. These changes lead to elevated levels of the protein that prevents cell invasion and spread. Collectively, this altered signaling inside the lung cancer cell lead to reduced growth, in both cell-based culture and mouse model. The findings help explain why β-elemene has potential as a therapeutic agent in lung cancer.
Collapse
|
47
|
Mishra M, Jayal P, Karande AA, Chandra N. Identification of a co-target for enhancing efficacy of sorafenib in HCC through a quantitative modeling approach. FEBS J 2018; 285:3977-3992. [PMID: 30136368 DOI: 10.1111/febs.14641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Sorafenib (SFB), a multi-kinase inhibitor, is the only approved drug for treating hepatocellular carcinoma (HCC). However, SFB shows low efficacy in many cases. HCC related mortality therefore remains to be high worldwide. SFB, a multi-kinase inhibitor is also known to modulate the redox homeostasis in cancer cells. To understand the effect of SFB on the redox status, a quantitative understanding of the system is necessary. Kinetic modeling of the relevant pathways is a useful approach for obtaining a quantitative understanding of the pathway dynamics and to rank the individual factors based on the extent of influence they wield on the pathway. Here, we report a comprehensive model of the glutathione reaction network (GSHnet ), consisting of four modules and includes SFB-induced redox stress. We compared GSHnet simulations for HCC of six different etiologies with healthy liver, and correctly identified the expected variations in cancer. Next, we studied alterations induced in the system upon SFB treatment and observed differential H2 O2 dynamics in all the conditions. Using metabolic control analysis, we identified glutathione S-transferase (GST) as the enzyme with the highest selective control coefficient, making it an attractive co-target for potentiating the action of SFB across all six etiologies. As a proof-of-concept, we selected ethacrynic acid (EA), a known inhibitor of GST, and verified ex vivo that EA synergistically potentiates the cytotoxic effect of SFB. Being an FDA approved drug, EA is a promising candidate for repurposing as a combination therapy with SFB for HCC treatment.
Collapse
Affiliation(s)
- Madhulika Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanka Jayal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
48
|
Oria VO, Bronsert P, Thomsen AR, Föll MC, Zamboglou C, Hannibal L, Behringer S, Biniossek ML, Schreiber C, Grosu AL, Bolm L, Rades D, Keck T, Werner M, Wellner UF, Schilling O. Proteome Profiling of Primary Pancreatic Ductal Adenocarcinomas Undergoing Additive Chemoradiation Link ALDH1A1 to Early Local Recurrence and Chemoradiation Resistance. Transl Oncol 2018; 11:1307-1322. [PMID: 30172883 PMCID: PMC6121830 DOI: 10.1016/j.tranon.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis with frequent post-surgical local recurrence. The combination of adjuvant chemotherapy with radiotherapy is under consideration to achieve a prolonged progression-free survival (PFS). To date, few studies have determined the proteome profiles associated with response to adjuvant chemoradiation. We herein analyzed the proteomes of primary PDAC tumors subjected to additive chemoradiation after surgical resection and achieving short PFS (median 6 months) versus prolonged PFS (median 28 months). Proteomic analysis revealed the overexpression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) and Monoamine Oxidase A (MAOA) in the short PFS cohort, which were corroborated by immunohistochemistry. In vitro, specific inhibition of ALDH1A1 by A37 in combination with gemcitabine, radiation, and chemoradiation lowered cell viability and augmented cell death in MiaPaCa-2 and Panc 05.04 cells. ALDH1A1 silencing in both cell lines dampened cell proliferation, cell metabolism, and colony formation. In MiaPaCa-2 cells, ALDH1A1 silencing sensitized cells towards treatment with gemcitabine, radiation or chemoradiation. In Panc 05.04, increased cell death was observed upon gemcitabine treatment only. These findings are in line with previous studies that have suggested a role of ALDH1A1 chemoradiation resistance, e.g., in esophageal cancer. In summary, we present one of the first proteome studies to investigate the responsiveness of PDAC to chemoradiation and provide further evidence for a role of ALDH1A1 in therapy resistance.
Collapse
Affiliation(s)
- V O Oria
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Freiburg, Germany
| | - P Bronsert
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Tumorbank Comprehensive Cancer Center Freiburg, Medical Center- University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - A R Thomsen
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - M C Föll
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - C Zamboglou
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Behringer
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Freiburg, Germany
| | - M L Biniossek
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany
| | - C Schreiber
- Institute of Pathology, UKSH Campus Lübeck, Lübeck, Germany
| | - A L Grosu
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Radiation Oncology, Medical Center - University of Freiburg, Germany
| | - L Bolm
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - D Rades
- Department of Radiation Oncology, UKSH Campus Lübeck, Lübeck, Germany
| | - T Keck
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - M Werner
- Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; Tumorbank Comprehensive Cancer Center Freiburg, Medical Center- University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - U F Wellner
- Clinic of Surgery, UKSH Campus Lübeck, Lübeck, Germany
| | - O Schilling
- Institute of Molecular Medicine and Cell Research, Freiburg, Germany; Institute of Surgical Pathology, University Medical Center, Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells. NANOMATERIALS 2018; 8:nano8090658. [PMID: 30149630 PMCID: PMC6164691 DOI: 10.3390/nano8090658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Light-activated therapies are ideal for treating cancer because they are non-invasive and highly specific to the area of light application. Photothermal therapy (PTT) and photodynamic therapy (PDT) are two types of light-activated therapies that show great promise for treating solid tumors. In PTT, nanoparticles embedded within tumors emit heat in response to laser light that induces cancer cell death. In PDT, photosensitizers introduced to the diseased tissue transfer the absorbed light energy to nearby ground state molecular oxygen to produce singlet oxygen, which is a potent reactive oxygen species (ROS) that is toxic to cancer cells. Although PTT and PDT have been extensively evaluated as independent therapeutic strategies, they each face limitations that hinder their overall success. To overcome these limitations, we evaluated a dual PTT/PDT strategy for treatment of triple negative breast cancer (TNBC) cells mediated by a powerful combination of silica core/gold shell nanoshells (NSs) and palladium 10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene-based (Pd[DMBil1]-PEG750) photosensitizers (PSs), which enable PTT and PDT, respectively. We found that dual therapy works synergistically to induce more cell death than either therapy alone. Further, we determined that low doses of light can be applied in this approach to primarily induce apoptotic cell death, which is vastly preferred over necrotic cell death. Together, our results show that dual PTT/PDT using silica core/gold shell NSs and Pd[DMBil1]-PEG750 PSs is a comprehensive therapeutic strategy to non-invasively induce apoptotic cancer cell death.
Collapse
|
50
|
Xu L, Guo T, Qu X, Hu X, Zhang Y, Che X, Song H, Gong J, Ma R, Li C, Fan Y, Ma Y, Hou K, Wu P, Dong H, Liu Y. β-elemene increases the sensitivity of gastric cancer cells to TRAIL by promoting the formation of DISC in lipid rafts. Cell Biol Int 2018; 42:1377-1385. [PMID: 29957841 DOI: 10.1002/cbin.11023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
β-Elemene, an anti-cancer drug extracted from traditional Chinese medicinal herb, showed anti-tumor effects on gastric cancer cells. Our previous studies reported gastric cancer cells are insensitive to TRAIL. However, whether β-elemene could enhance anti-cancer effects of TRAIL on gastric cancer cells is unknown. In our present study, β-elemene prevented gastric cancer cell viability in dose-dependent manner, and when combined with TRAIL, obviously inhibited proliferation and promoted apoptosis in gastric cancer cells. Compared to β-elemene or TRAIL alone, treatment with β-elemene and TRAIL obviously promoted DR5 clustering as well as translocation of Caspase-8, DR5 and FADD into lipid rafts. This led to cleavage of Caspase-8 and the formation of death-inducing signaling complex (DISC) in lipid rafts. The cholesterol-sequestering agent nystatin partially reversed DR5 clustering and DISC formation, preventing apoptosis triggered by the combination of β-elemene and TRAIL. Our results suggest that β-elemene increases the sensitivity of gastric cancer cells to TRAIL partially by promoting the formation of DISC in lipid rafts.
Collapse
Affiliation(s)
- Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Tianshu Guo
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Ye Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Huicong Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Jing Gong
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui Ma
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yibo Fan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yanju Ma
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Peihong Wu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Hang Dong
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|